通信网络接口
- 格式:doc
- 大小:490.50 KB
- 文档页数:7
常用通信接口介绍及应用常用通信接口是指在不同设备之间进行数据传输的标准化接口。
这些接口通过规定数据传输的电气特性、物理连接和协议规则,实现了不同设备之间的互联互通。
常用通信接口广泛应用于电子设备、计算机设备、工业自动化、通信设备等领域。
以下是几种常见的通信接口及其应用:1. 串口接口(Serial Port Interface)串口接口是一种最常见、最简单的通信接口。
它通过串行传输方式,将数据以bit位的形式串行传输。
串口接口通常采用RS-232或RS-485标准,并广泛应用于计算机、嵌入式系统等领域。
2. 并口接口(Parallel Port Interface)并口接口是一种传输速率较低,但传输距离较长的通信接口。
它采用多根数据线同时传输数据,适用于需要同时传输大量数据的场合,例如打印机、外部存储设备等。
3. USB接口(Universal Serial Bus Interface)USB接口是一种高速、热插拔的通信接口。
USB接口的优点是传输速度快、插拔方便,并且支持多种外设连接。
USB接口广泛应用于计算机、手机、相机、音频设备等各种消费电子产品。
4. HDMI接口(High Definition Multimedia Interface)HDMI接口是一种用于高清视频和音频传输的数字接口。
它可以同时传输高清视频和多声道音频信号,并保持高质量的传输效果。
HDMI接口广泛应用于电视、投影仪、音视频设备等领域。
5. 以太网接口(Ethernet Interface)以太网接口是一种用于局域网(LAN)的通信接口。
它采用广泛的以太网协议,支持高速数据传输和远程通信。
以太网接口广泛应用于计算机网络、工业自动化、智能家居等场合。
6. 蓝牙接口(Bluetooth Interface)蓝牙接口是一种短距离无线通信接口。
它通过无线电波进行数据传输,适用于移动设备、智能穿戴设备、无线耳机等设备之间的数据传输和通信。
常用通讯接口介绍及应用常用的通讯接口是指用于不同设备之间进行数据传输和通信的接口标准或协议。
通讯接口在各种电子设备和计算机系统中发挥着非常重要的作用,它们决定了设备之间能否正常进行数据交换和通信。
下面将介绍一些常见的通讯接口及其应用。
1. USB(Universal Serial Bus,通用串行总线):USB接口是一种用于计算机和其他电子设备之间连接和传输数据的通用接口标准。
目前应用最广泛的是USB 3.0接口,它的传输速度可以达到5Gbps,适用于连接鼠标、键盘、打印机、移动硬盘等外部设备。
3. Ethernet(以太网):以太网接口是一种广泛应用于局域网(LAN)的传输接口,用于连接计算机、服务器、网络设备等。
它的速度可以从10Mbps到1Gbps不等,可根据实际应用需求选择连接速度。
以太网接口是企业网络和家庭网络的主要通信接口。
4. Bluetooth(蓝牙):蓝牙接口是一种用于短距离无线通讯的接口标准,通常用于连接手机、耳机、音箱、无线鼠标等设备。
蓝牙接口具有低功耗、低成本、无线传输、广泛兼容等特点,适用于个人消费电子产品和物联网设备。
5. Wi-Fi(Wireless Fidelity,无线保真):Wi-Fi接口是一种无线局域网接口,用于在有无线网络覆盖的范围内进行无线数据传输和通信。
Wi-Fi接口可连接到无线路由器,实现多设备之间的高速无线通信,广泛应用于智能手机、平板电脑、笔记本电脑等设备。
6. SATA(Serial ATA,串行ATA):SATA接口是一种用于连接计算机主板和存储设备(如硬盘、SSD)的接口标准。
SATA接口具有高速传输、易于安装、可靠性高等特点,适用于个人电脑和服务器等设备。
除了上述介绍的通讯接口,还有很多其他常用的通讯接口,如RS-232、RS-485、CAN(Controller Area Network,控制器局域网)、I2C (Inter Integrated Circuit,串行总线)、SPI(Serial Peripheral Interface,串行外设接口)等,它们在各种电子设备和计算机系统中应用广泛。
通信接口有哪些_几种常见的通信接口通信接口(communicaTIon interface )是指中央处理器和标准通信子系统之间的接口。
如:RS232接口。
RS232接口就是串口,电脑机箱后方的9芯插座,旁边一般有|O|O| 样标识。
主要分类一般机箱有两个,新机箱有可能只有一个。
笔记本电脑有可能没有。
有很多工业仪器将它作为标准通信端口。
通信的内容与格式一般附在仪器的用户说明书中。
计算机与计算机或计算机与终端之间的数据传送可以采用串行通讯和并行通讯二种方式。
由于串行通讯方式具有使用线路少、成本低,特别是在远程传输时,避免了多条线路特性的不一致而被广泛采用。
在串行通讯时,要求通讯双方都采用一个标准接口,使不同的设备可以方便地连接起来进行通讯。
RS-232-C接口(又称EIA RS-232-C)是目前最常用的一种串行通讯接口。
它是在1970年由美国电子工业协会(EIA)联合贝尔系统、调制解调器厂家及计算机终端生产厂家共同制定的用于串行通讯的标准。
它的全名是数据终端设备(DTE)和数据通讯设备(DCE)之间串行二进制数据交换接口技术标准该标准规定采用一个25个脚的DB25连接器,对连接器的每个引脚的信号内容加以规定,还对各种信号的电平加以规定。
随着电子技术的发展和市场的需求,各种各类的仪表越来越多地应用于各个不同领域的自动化控制设备和监测系统中,这要求系统之间以及各系统自身的各个组成部分之间必须保持良好的通信来完成采集数据的传输,先进的通信协议技术能可靠地保证这一点。
通信协议是通信双方的约定,对数据格式、同步方式、传送速度、传送步骤、检纠错方式以及控制字符定义等问题做出统一规定,通信双方必须共同遵守,实现不同设备、不同系统间的相互沟通。
将通信协议合理地应用于新产品的开发中,不仅能使产品的设计更加灵活、使用更为便捷,还能扩大产品的使用范围、增强产品市场竞争力。
几种常见的通信接口1、标准串口(RS232)。
在移动通信系统中,接口都是比较重要的部分,今天,我们谈谈NG接口。
NG接口:简单的解释就是无线接入网和5G核心网之间的接口。
NG接口是一个逻辑接口,规范了NG接口,NG-RAN节点与不同制造商提供的AMF的互连;同时,分离NG接口无线网络功能和传输网络功能,以便于引入未来的技术。
从任何一个NG-RAN节点向5GC可能存在多个NG-C逻辑接口。
然后,通过NAS节点选择功能确定NG-C接口的选择。
从任何一个NG-RAN 节点向5GC可能存在多个NG-U逻辑接口。
NG-U接口的选择在5GC 内完成,并由AMF发信号通知NG-RAN节点。
NG接口分为NG-C接口(NG-RAN和5GC之间的控制面接口)和NG-U 接口(NG-RAN和5GC之间的用户面接口)。
NG接口规范的一般原则如下:•NG接口是开放的;••NG接口支持NG-RAN和5GC之间的信令信息交换;••从逻辑角度来看,NG是NG-RAN节点和5GC节点之间的点对点接口。
即使在NGRAN和5GC之间没有物理直接连接的情况下,点对点逻辑接口也是可行的。
••NG接口支持控制平面和用户平面分离;••NG接口分离无线网络层和传输网络层;••NG接口是满足不同新要求和支持新服务和新功能的未来证明;••NG接口与可能的NG-RAN部署变体分离;••NG应用协议支持模块化过程设计,并使用允许优化编码/解码效率的算法。
•NG接口用户面NG用户面接口(NG-U)在NG-RAN节点和UPF之间定义。
NG接口的用户面协议栈如图2.1.3.1-1所示。
传输网络层建立在IP传输上,GTP-U用于UDP /IP之上,以承载NG-RAN节点和UPF之间的用户面PDU。
NG-U在NG-RAN节点和UPF之间提供无保证的用户面PDU传送。
NG接口控制面NG控制面接口(NG-C)在NG-RAN节点和AMF之间定义。
NG接口的控制面协议栈如图2.1.3.1-2所示。
传输网络层建立在IP传输之上,为了可靠地传输信令消息,在IP之上添加SCTP。
基于51单片机的网络通信接口设计摘要:文章将TCP/IP协议嵌入通用8位单片机中,通过单片机控制网络芯片RTL8019AS实现了低端单片机的Internet接入。
文中给出系统硬件原理框图和有关实现TCP/IP协议的程序处理流程图,对系统的软硬件架构做了阐述,并详细的介绍了硬件电路的连接,分析了实现TCP/IP通信的硬件原理,使普通的8位单片机具有了互联网络的接入功能。
关键词:单片机;TCP/IP协议;通信协议;开放互联系统随着信息技术的飞速发展,特别是3C(计算机、通讯、消费电子)合一的加速发展和互联网的迅速普及,常常使用CAN总线、RS-232和RS-485串行通信、IIC 和IIS等总线实现多个系统之间的数据传输与交换以及互联,通过这种总线互联的方式进行通信不仅受到信号传输距离限制,而且只有很少与之有关的通信协议,即使有也是孤立于Internet之外。
若将系统接入Internet则可以实现远程数据采集、监控和诊断;并可以成为网络共享资源的一部分,而且还可以访问Internet上的资源。
由于以太网进行通信一般都基于TCP/IP协议,整个网络只需要有底层通讯协议就能够满足系统要求,并且便于和Internet实现互联。
TCP/IP协议是一个庞大的协议簇,对系统资源消耗比较大,如何在RAM较小的单片机系统上实现TCP/IP协议成为以太网应用于单片机系统的难点。
因为用在低端单片机系统中一方面要占用大量的内存,另一方面容易造成系统不能实时响应。
因此我们可以使用由台湾Realtek公司生产的高度集成以太网控制器芯片RTL8019AS。
1系统硬件接口设计实现Internet接入的方案很多,如PC网关+专用网、EmWare的EMIT技术、集成了网络控制器的微处理器、低端单片机+网卡芯片相结合等。
上述方案中以“低端单片机+网卡芯片”实现Internet接入最为经济、简单;其原理是用单片机加载TCP/IP协议控制以太网网卡进行数据传输,从而实现与以太网进行通信。
GPIB一、简介:GPIB(General-Purpose Interface Bus)-通用接口总线,大多数打印机就是通过GPIB线以及GPIB接口与电脑相连。
1965年惠普公司设计HP-IB1975年 HP-IB变成IEEE-488标准1987年 IEEE488.2被采纳, IEEE 488-1978变成IEEE488.1-19871990年SCPI规范被引入IEEE 488仪器1992年修订IEEE 488.21993年 NI公司提出HS4881965年, 惠普公司(Hewlett-Packard)设计了惠普接口总线(HP-IB, 用于连接惠普的计算机和可编程仪器.由于其高转换速率(通常可达1Mbytes/s), 这种接口总线得到普遍认可, 并被接收为IEEE标准488-1975和ANSI/IEEE 标准488.1-1987. 后来, GPIB比HP-IB的名称用得更广泛. ANSI /IEEE 488.2 -1987加强了原来的标准, 精确定义了控制器和仪器的通讯方式. 可编程仪器的标准命令(Standard Commands for Programmable Instruments, SCPI)采纳了IEEE488.2定义的命令结构,创建了一整套编程命令二、接口与总线接口部分是由各种逻辑电路组成,与各仪器装置安装在一起,用于对传输的信息进行发送、接收、编码和译码;总线部分是一条无源的多芯电缆,用做传输各种消息。
将具有GPIB接口的仪器用GPIB总线连接起来的标准接口总线系统。
在一个GPIB标准接口总线系统中,要进行有效的通信联络至少有“讲者”、“听者”、“控者”三类仪器装置。
讲者是通过总线发送仪器消息的仪器装置(如测量仪器、数据采集器、计算机等),在一个GPIB系统中,可以设置多个讲者,但在某一时刻,只能有一个讲者在起作用。
听者是通过总线接收由讲者发出消息的装置(如打印机、信号源等),在一个GPIB系统中,可以设置多个听者,并且允许多个听者同时工作。
C接口C接口-移动交换中心MSC与HLR间的接口。
当建立呼叫时,MSC经此口从HLR中获取路由选择信息;当呼叫结束时,MSC经此口向HLR发送计费信息,若此MSC为GMSC,而当地面固定交换网需要获取被呼移动台的位置信息以建立呼叫时,可通过GMSC向该被叫用户登记的HLR进行查询,并将结果信息传送给固定交换网。
注:AUC一般的内置于HLR中,对上图中,可以清楚地看到各个接口的情况A接口A接口是中继侧应用广泛的一种数字接口,数字交换与数字传输结合,构成了当今数字电信网络。
传统中继系统终端的功能往往移至交换机接口中,使交换机系统和传输系统的界限变得模糊不明确。
数字中继接口与模拟用户接口相比不需要馈电、振铃、混合电路和编译码等功能。
但数字中继接口必须能从接收信号中提取时钟和帧同步信号,PCM一次群数字中继接口的典型结构如图所示。
整个接口可划分为四部分,分别完成信号的收发、同步时钟提取、信令提取和插入及异常情况下报警。
数字中继接口电路由专用集成电路芯片来实现,如DS21x54系列。
A接口是MSC/VLR/SSP与BSC之间的接口。
A接口定义为网络子系统(NSS)与基站子系统(BSS)间的通信接口。
从系统上来讲,就是移动交换中心(MSC)与基站控制器(BSC)之间的接口,物理链路采用标准的2.048Mbit/s的数字传输链路实现。
此接口传递的信息包括移动台管理、基站管理、移动性管理、接续管理等。
GB接口Gb接口 Gb接口是SGSN和BSS间接口(在华为的GPRS系统中,Gb 接口是SGSN和PCU之间的接口),通过该接口SGSN完成同BSS系统、MS 之间的通信,以完成分组数据传送、移动性管理、会话管理方面的功能。
该接口是GPRS组网的必选接口。
在目前的GPRS标准协议中,指定Gb接口采用帧中继作为底层的传输协议,SGSN同BSS之间可以采用帧中继网进行通信,也可以采用点到点的帧中继连接进行通信。
Iu接口Iu接口负责核心网(CN)和RNC之间的信令交互。
Iub是RNC和NODE-B之间的接口,用来传输RNC和NODE-B之间的信令以及来自无线接口的数据。
Iub 接口协议包括三层,无线网络层、传输网络层和物理层。
Iu-ps是指分组域的Iu接口,Iu-cs指电路域的接口。
iu-bc接口是广播域的接口。
Iur接口是两个RNC之间的逻辑接口,用来传送RNC之间的控制信令和用户数据。
Iur接口协议栈包括三层:无线网络层、传输网络层和物理层。
SGSN SGSN - GPRS服务支持节点SGSN是英文Serving GPRS Support Node的缩写。
SGSN作为GPRS/TD-SCDMA(WCDMA)核心网分组域设备重要组成部分,主要完成分组数据包的路由转发、移动性管理、会话管理、逻辑链路管理、鉴权和加密、话单产生和输出等功能。
SGSN即GPRS服务支持节点,它通过Gb 接口提供与无线分组控制器PCU的连接,进行移动数据的管理,如用户身份识别,加密,压缩等功能;通过Gr接口与HLR相连,进行用户数据库的访问及接入控制;它还通过Gn接口与GGSN相连,提供IP数据包到无线单元之间的传输通路和协议变换等功能;SGSN还可以提供与MSC的Gs接口连接以及与SMSC之间的Gd接口连接,用以支持数据业务和电路业务的协同工作和短信收发等功能。
SGSN与GGSN 配合,共同承担TD-SCDMA(WCDMA)的PS功能。
当作为GPRS网络的一个基本的组成网元时,通过Gb接口和BSS相连。
其主要的作用就是为本SGSN服务区域的MS进行移动性管理,并转发输入/输出的IP分组,其地位类似于GSM电路网中的VMSC。
此外,SGSN 中还集成了类似于GSM网络中VLR的功能,当用户处于GPRS Attach (GPRS附着)状态时,SGSN 中存储了同分组相关的用户信息和位置信息。
当SGSN作为TD-SCDMA(WCDMA)核心网的PS域功能节点,它通过Iu_PS接口与UTRAN相连,主要提供PS域的路由转发、移动性管理、会话管理、鉴权和加密等功能。
GGSN9811主要提供PS与外部PDN (Packet Data Network,分组数据网)的接口,承担网关或路由器的功能。
SGSN和GGSN合称为GSN(GPRS Support Node)。
GGSN GGSN (Gateway GPRS Support Node) 网关GPRS支持节点GGSN(Gateway GSN,网关GSN)主要是起网关作用,它可以和多种不同的数据网络连接,如ISDN、PSPDN和LAN等。
有的文献中,把GGSN 称为GPRS路由器。
GGSN可以把GSM网中的GPRS分组数据包进行协议转换,从而可以把这些分组数据包传送到远端的TCP/IP或X.25网络。
GPRS网络与外网的分界线,对内负责Gn网络的传输,对外是一台因特网路由器。
其中的BGGSN(Border GGSN)负责连接不同运营商之间的Gn网络,实现网间漫游。
GGSN通过基于IP协议的GPRS骨干网与其它GGSN和SGSN相连功能1)网络接入控制功能GGSN具有网络控制的信息屏蔽功能,可以选择哪些分组能够进入GPRS 网络,以便保证GPRS网络的安全;GGSN具有计费信息收集功能,能够收集每个MS实用外部数据网和GPRS网络资源相关的计费信息G_CDR。
2)维护路由表,实现路由选择和分组的转发功能GGSN具有存储转发功能,从上一节点接收到的分组数据(PDP PDU)转发给路由中下一个节点的功能。
GGSN同时具有对PDP PDU排序的功能。
GGSN应保证GGSN与MS 之间传送的PDP PDU的最大尺寸为1500字节,对从外部数据网收到的大于上述要求的PDP PDU,GGSN应根据PDP的类型和具体实施对其进行分段、丢弃或拒绝。
GGSN具有PDP上下文激活、PDP上下文修改、PDP上下文去激活的功能;GGSN具有地址翻译和映射功能,包括查找DNS,实现域名解析功能;GGSN具有封装和隧道传输功能,可以将来自外部数据网的PDP PDU 用GTP字头和TCP/IP或UDP/IP字头进行分装的功能,并以这些字头中的相关地址信息作为标识,在GPRS骨干网中,利用一条点对点的双向隧道来传输封装数据。
对于发向外部数据网的PDP PDU,GGSN将去除其封装字头后再转发给外部数据网。
3)用户数据管理,实现对分组数据的过滤GGSN能够存储、修改及删除用户数据,实现对用户分组数据的过滤。
4)移动性管理功能GGSN能够配合SGSN 实现移动性管理的功能,主要是MS在不同的SGSN登录时的位置管理功能。
5)其他功能GGSN具有为MS动态分配IP地址的功能,或则可以通过接入DHCP(动态主机配置协议)服务器来实现动态分配IP的地址的功能;GGSN具有接入RADIUS(远端授权拨入用户服务)服务器等实现用户认证功能。
MSC移动交换中心(Mobile Switching Center)移动交换中心(MSC)是2G通信系统的核心网元之一。
是在电话和数据系统之间提供呼叫转换服务和呼叫控制的地方。
MSC 转换所有的在移动电话和PSTN 和其他移动电话之间的呼叫。
MSC: (mobile switching center) 移动网络完成呼叫连接、过区切换控制、无线信道管理等功能的设备,同时也是移动网与公用电话交换网(PSTN)、综合业务数字网(ISDN)等固定网的接口设备。
MSC是整个GSM网络的核心,它控制所有BSC的业务,提供交换功能及和系统内其它功能的连接,MSC可以直接提供或通过移动网关GMSC 提供和公共电话交换网(PSTN)、综合业务数字网(ISDN)、公共数据网(PDN)等固定网的接口功能,把移动用户与移动用户、移动用户和固定网用户互相连接起来。
MSC从GSM系统内的三个数据库,即归属位置寄存器(HLR)、拜访位置寄存器(VLR)和鉴权中心(AUC)中获取用户位置登记和呼叫请求所需的全部数据。
另外,MSC也根据最新获取的信息请求更新数据库的部分数据。
作为GSM网络的核心,MSC还支持位置登记、越区切换、自动漫游等具有移动特征的功能及其它网络功能。
对于容量比较大的移动通信网,一个NSS(网络子系统)可包括若干个MSC、HLR和VLR。
当某移动用户A进入到一个拜访移动交换中心(VMSC),为了建立对该移动用户A的呼叫,要通过移动用户A所归属的HLR(归属位置寄存器)获取路由信息。
MSC的功能在GSM网络中最重要的节点是MSC,它负责控制由手机发起或终止的用户呼叫。
MSC的主要功能如下: 1. 交换和呼叫路由选择:MSC控制用户呼叫的建立、监测和释放,有时还需要与网络的其它节点相互协作。
例如当手机呼叫PSTN时,需要为呼叫进行路由的选择。
2. 计费:MSC负责为手机通话进行计费,并且还处理如分时分区计费等特定计费费率的信息。
在通话过程中,MSC将记录这些信息,在通话结束后将其存储起来,然后可以输出给计费中心处理。
3. 业务提供:补充业务是由MSC提供并管理的,另外,SMS服务也是由MSC处理的。
4. 与HLR通信:MSC与HLR的通信主要发生在MS做被叫的通话建立过程中,这时HLR将向MSC请求一些路由信息。
5. 与VLR通信:VLR一般和MSC合并在一起,MSC与VLR通信是为了得到用户信息,尤其在通话建立和释放的时候。
6. 与其它MSC通信:在不同MSC之间的呼叫建立和小区间切换的时候,MSC之间要进行必要的相互通信。
7. 控制相连接的BSC:由于基站子系统是作为手机与交换子系统之间的接口单元,因此MSC必须要控制BSS主要的节点:BSC。
每一个MSC 可以控制许多个BSC,BSC的数量取决于在该MSC服务区里的话务量的大小。
MSC在呼叫建立和BSC间切换的时候需要与其控制的BSC联系。
8. 互连网直接接入服务:通常MSC是通过PSTN或其它的网络接入互连网业务供应商的互连网结点。
而互连网直接接入服务使得MSC可以直接与互连网结点通信,从而减少了呼叫建立的时间。
直接接入服务可以由一种叫做Tigris的接入服务器来提供。
接入服务器可以位于MSC里,也可以是与MSC相连的独立设备。
9. ISDN主速率接入(PRA):该功能使得MSC可以向用户提供PRA 服务。
例如,网络运营者可以使用该功能通过PLMN网提供PABX连接服务。
通过这种方法,运营者可以在ISDN商业用户领域与PSTN运营者展开直接的竞争VLR (Visitor Location Register):拜访位置寄存器。
是一个数据库,是存储所管辖区域中MS(统称拜访客户)的来话、去话呼叫所需检索的信息以及用户签约业务和附加业务的信息,例如客户的号码,所处位置区域的识别,向客户提供的服务等参数。