最新高三最后一卷-备用题数学试题
- 格式:doc
- 大小:1.56 MB
- 文档页数:25
合肥2024届高三最后一卷数学试题(答案在最后)(考试时间:150分钟满分:120分)注意事项:1.答题前,务必在答题卡和答题卷规定的地方填写自己的姓名、准考证号和座位号后两位.2.答题时、每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3.答题时,必须使用0.5毫米的黑色墨水签字笔在答题卷上书写,要求字体工整、笔迹清晰.作图题可先用铅笔在答题卷规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚.必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在试题卷、草稿纸上答题无效.4.考试结束,务必将答题卡和答题卷一并上交.第I 卷(选择题)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.1.已知向量()()2,3,1,3a b ==-,则2a b -=()A.2 B.3C.4D.5【答案】D 【解析】【分析】根据向量坐标进行线性运算,再由模长公式即可求解.【详解】()()()22,32,64,3,25a b a b -=--=--== ,故选:D.2.已知复数z 满足()1i 2i z ⋅+=-,则z =()A.13i 22+B.13i 22-C.13i22-- D.13i22-+【答案】A 【解析】【分析】根据题设求出z ,从而求出z 的值.【详解】由题知,()()()()2i 1i 2i 13i 13i 1i 1i 1i 222z ----====-++-,所以13i 22z =+.故选:A.3.已知焦点在x 轴上的椭圆的离心率为23,焦距为,则该椭圆的方程为()A.2213x y += B.2219x y +=C.22197x y += D.2213628x y +=【答案】C 【解析】【分析】根据离心率和焦距可得3a c =⎧⎪⎨=⎪⎩,进而可得2b ,即可得方程.【详解】由题意可知:232c a c ⎧=⎪⎨⎪=⎩,可得3a c =⎧⎪⎨=⎪⎩,则2927b =-=,所以该椭圆的方程为22197x y +=.故选:C.4.已知等比数列{}n a 的前n 项和为n S ,且3314,2S a ==,则4a =()A.1B.23或-1 C.23-D.23-或1【答案】D 【解析】【分析】根据等比数列基本量的计算即可求解公比,进而可求解.【详解】依题意,10a ≠,因为314,S =2312a a q ==,12112(1),a a a q ∴+==+故2610q q --=,故12q =或1,3q =-当12q =时,431a a q ==;当1,3q =-4323a a q ==-;423a ∴=-或1.故选:D5.已知α为三角形的内角,且15cos 4α-=,则sin 2α=()A.14-+ B.14 C.38- D.354-【答案】B 【解析】【分析】利用降幂公式得到答案.【详解】因为α为三角形的内角,1cos 4α=,所以sin 2α==14+===.故选:B6.甲乙丙丁戊5名同学坐成一排参加高考调研,若甲不在两端且甲乙不相邻的不同排列方式的个数为()A.36种B.48种C.54种D.64种【答案】A 【解析】【分析】利用间接法,先考虑甲乙不相邻的不同排列方式数,再减去甲站在一端且甲乙不相邻的排列方式数,结合排列数运算求解.【详解】先考虑甲乙不相邻的不同排列方式数,再减去甲站在一端且甲乙不相邻的排列方式数,所以总数为3211334233A A A A A 36-=种,故选:A.7.已知四棱锥P ABCD -的各顶点在同一球面上,若2224AD AB BC CD ====,PAB 为正三角形,且面PAB ⊥面ABCD ,则该球的表面积为()A.13π3B.16πC.52π3D.20π【答案】C 【解析】【分析】作辅助线,找到球心的位置,证明O 到四棱锥所有顶点距离相等;根据勾股定理,求出球的半径,进而求出球的表面积.【详解】如图,取AD 的中点E ,取AB 的中点G ,连接EG 、PG ,在线段PG 上取一点F ,使13FG PG =,过点E 作平面ABCD 的垂线OE ,使OE FG =,连接OF ,易知四边形ABCD 是等腰梯形,ABE 、BCE 、CDE 均为等边三角形,所以2AE BE CE DE ====,因为OE ⊥平面ABCD ,所以90OEA OEB OEC OED ∠=∠=∠=∠=︒,所以OA OB OC OD ===,因为PAB 为正三角形,G 为AB 的中点,所以PG AB ⊥,又因为平面PAB ⊥平面ABCD ,平面PAB ⋂平面ABCD AB =,PG ⊂平面PAB ,所以PG ⊥平面ABCD ,因为OE ⊥平面ABCD ,所以//PG OE ,即//FG OE又因为OE FG =,所以四边形OEGF 为平行四边形,所以//OF EG ,因为ABE 为正三角形,G 为AB 的中点,所以EG AB ⊥,又因为平面PAB ⊥平面ABCD ,平面PAB ⋂平面ABCD AB =,EG ⊂平面ABCD ,所以EG ⊥平面PAB ,所以OF ⊥平面PAB ,又因为F 是ABP 的外心,所以FA FB FP ==,所以OA OB OP ==,所以O 即为四棱锥外接球的球心,因为133OE FG PG ===,2AE =,所以3R OA ====所以2239524π4π)π33S R ==⋅=,故选:C.8.过()0,M p 且倾斜角为π,π2αα⎛⎫⎛⎫∈⎪ ⎪⎝⎭⎝⎭的直线l 与曲线2:2C x py =交于,A B 两点,分别过,A B 作曲线C 的两条切线12,l l ,若12,l l 交于N ,若直线MN 的倾斜角为β.则()tan αβ-的最小值为()A.2B.C. D.【答案】C 【解析】【分析】首先画出平面图形,求出tan tan 2k k αβ'⋅=⋅=-的结论,再利用两角和与差的正切公式以及前面的结论将()tan αβ-化简为()2k k ⎛⎫-+-⎪⎝⎭的形式,由基本不等式即可求得最值.【详解】如图,设()00,N x y ,1122(,),(,)A x y B x y ,由于曲线2:2x C y p=,则x y p '=,所以在A 点的切线方程为111()x y y x x p-=-,同理在B 点的切线方程为222()x y y x x p-=-,由于N 点是两切线的交点,所以1010120202()()x y y x x px y y x x p⎧-=-⎪⎪⎨⎪-=-⎪⎩,则AB l 为()000000()2xx xy y x x y y y x x p y y p p-=-⇒-=-⇒=+,且过()0,M p ,0y p ∴=-且0tan x k p α==,设2tan ,2p k k k x β''==-∴⋅=-,()tan tan tan 1tan tan αβαβαβ-∴-=+()21k k k k k k -⎛⎫==-+-≥ ⎪+⋅⎝⎭''当且仅当k =时“=”成立,故选:C.二、多选题:本题共3小题,共18分.在每小题给出的选项中,有多项符合题目要求.9.下表是某人上班的年收入(单位:万元)与上班年份的一组数据:年份x 1234567收入y2.93.33.64.44.85.25.9则下列命题正确的有()A.年收入的均值为4.3B.年收入的方差为1.2C.年收入的上四分位数为5D.若y 与x 可用回归直线方程0.5ˆˆyx a =+来模拟,则ˆ 2.3a =【答案】AD 【解析】【分析】对于A :根据平均数定义运算求解;对于B :根据方差公式分析求解;对于C :根据百分位数的定义分析求解;对于D :根据线性回归方程必过样本中心点分析求解.【详解】对于选项A :由题意可得:年收入的均值 2.9 3.3 3.6 4.4 4.8 5.2 5.94.37y ++++++==,故A正确;对于选项B :由题意可得:年份x 1234567收入y2.93.3 3.64.4 4.85.2 5.9()2y y - 1.9610.490.010.250.812.56所以年收入的方差21.9610.490.010.250.812.567.081.277s ++++++==≠,故В错误;对于选项C :因为70.75 5.25⨯=,所以年收入的上四分位数为第6个数据,是5.2,故C 错误;对于选项D :因为年份的平均数123456747++++++==x ,即样本中心点为()4,4.3,所以0.5 4.30.523ˆ4.ay x =-=-⨯=,故D 正确;故选:AD.10.已知函数()2cos sin f x x x x ωωω=-(0)>ω,则下列命题正确的有()A.当2ω=时,5π24x =是()y f x =的一条对称轴B.若()()122f x f x -=,且12minπx x -=,则12ω=C.存在()0,1ω∈,使得()f x 的图象向左平移π6个单位得到的函数为偶函数D.若()f x 在[]0,π上恰有5个零点,则ω的范围为72,3⎡⎫⎪⎢⎣⎭【答案】BD 【解析】【分析】首先对函数表达式进行化简,A 选项,将2ω=,5π24x =代入发现此处有对称中心,没有对称轴;B 选项,由题设知,π为半个周期;C 选项,对函数进行平移变换,再判断奇偶性;D 选项,求出π26x ω+的范围,再确定区间右端点π2π6ω+的范围,从而求出ω的范围.【详解】()1cos 211π1sin2=cos 2=sin 22222262x f x x x x x ωωωωω-⎛⎫=-+-+-⎪⎝⎭对于A ,当2ω=时,()π1sin 462f x x ⎛⎫=+- ⎪⎝⎭,所以55ππ11πsin 246622f ⎛⎫⎛⎫=+-=- ⎪ ⎪⎝⎭⎝⎭,所以5π24x =不是()y f x =的一条对称轴,故A 错误;对于B ,由题意知,2πT =,所以22π2πω=,又因为0ω>,所以12ω=,故B 正确;对于C ,()f x 向左平移π6个单位后,得到()ππ1ππ1sin 2sin 2662362g x x x ωωω⎡⎤⎛⎫⎛⎫=++-=++- ⎪ ⎢⎝⎭⎝⎭⎣⎦,假设()g x 为偶函数,则ππππ362k ω+=+,Z k ∈,解得13k ω=+,Zk ∈而(0,1)ω∈,所以假设不成立,故C 错误;对于D ,[]0,πx ∈时,πππ2,2π666x ωω⎡⎤+∈+⎢⎥⎣⎦,令()π1=sin 2062f x x ω⎛⎫+-= ⎪⎝⎭,则π1sin 262x ω⎛⎫+= ⎪⎝⎭,因为()f x 在[]0,π上恰有5个零点,所以π25π29π2π,666ω⎡⎫+∈⎪⎢⎣⎭,解得72,3ω⎡⎫∈⎪⎢⎣⎭,故D 正确.故选:BD.11.已知函数()()e ,ln xf xg x x ==-,则下列命题正确的有()A.若()g x ax ≥恒成立,则1a e≤-B.若()y f x =与1y ax =-相切,则2ea =C.存在实数a 使得()y f x ax =-和()y g x ax =+有相同的最小值D.存在实数a 使得方程()f x x a -=与()x g x a +=有相同的根且所有的根构成等差数列【答案】ACD 【解析】【分析】对于A :原题意等价于ln xa x ≤-在()0,∞+内恒成立,令()ln ,0x h x x x=->,利用导数求其最值,结合恒成立问题分析求解;对于B :对()y f x =求得,结合导数的几何意义列式分析可得()1ln 1a a -=-,代入2e a =检验即可;对于C :取1a =,利用导数求最值,进而分析判断;对于D :结合选项C 可知:()(),h x x ϕ的图象,设交点为()(),M m h m ,结合图象分析可知从左到右的三个交点的横坐标依次为ln ,,e m m m ,进而可得结果.【详解】对于选项A ,若()g x ax ≥,则ln x ax -≥,且0x >,可得ln xa x≤-,可知原题意等价于ln xa x≤-在()0,∞+内恒成立,令()ln ,0x h x x x =->,则()2ln 1x h x x ='-,令()0h x '>,解得0e x <<;令()0h x '<,解得e x >;可知()y h x =在()0,e 内单调递减,在()e,∞+内单调递增,则()()1e eh x h ≤=-,所以1a e≤-,故A 正确;对于选项B :因为()e xf x =,则()e xf x '=,设切点为()00,ex P x ,则切线斜率()0=ex k f x '=,可得切线方程为()000ee x x y x x -=-,即()000e e 1x x y x x =+-,由题意可得()000e e 11xx a x ⎧=⎪⎨-=-⎪⎩,整理得()1ln 1a a -=-,显然2e a =不满足上式,故B 错误;对于选项C :例如1a =,构建()()e xh x f x x x =-=-,则()e 1xh x '=-,令()0h x '>,解得0x >;令()0h x '<,解得0x <;可知()y h x =在(),0∞-内单调递减,在()0,∞+内单调递增,可知()y h x =的最小值为()01h =;构建()()ln ,0x g x x x x x ϕ=+=-+>,则()111x x x xϕ-=-+=',令()0x ϕ'>,解得1x >;令()0x ϕ'<,解得01x <<;可知()y x ϕ=在()0,1内单调递减,在()1,∞+内单调递增,可知()y x ϕ=的最小值为()11G =,可知()y f x ax =-和()y g x ax =+有相同的最小值1,故C 正确;对于选项D :结合选项C 可知:()(),h x x ϕ的图象大致如下:设交点为()(),M m h m ,易知01m <<,由图象可知:当直线y a =与曲线()y h x =和曲线()y x ϕ=共有三个不同的交点时,直线y a =必经过点()(),M m h m ,即()a h m =.因为()()h m m ϕ=,所以e ln m m m m -=-,即e 2ln 0m m m -+=.令()()()h x x a h m ϕ===,得e ln e x m x x x m -=-=-,解得x m =或e m x =,由01m <<得1e m m <<.所以当直线y a =与曲线()y h x =和()y x ϕ=共有三个不同的交点时,从左到右的三个交点的横坐标依次为ln ,,e m m m .因为e 2ln 0m m m -+=,即e ln 2m m m +=,所以ln ,,e m m m 成等差数列,故D 正确;故选:ACD.【点睛】关键点点睛:对于函数零点的个数的相关问题,利用导数和数形结合的数学思想来求解.这类问题求解的通法是:(1)构造函数,这是解决此类题的关键点和难点,并求其定义域;(2)求导数,得单调区间和极值点;(3)数形结合,挖掘隐含条件,确定函数图象与x 轴的交点情况进而求解.第Ⅱ卷(非选择题)三、填空题:本题共3小题,每小题5分,共15分.12.已知集合{}220A x x x =∈--≤N∣,集合(){}22210B x x a x a a =-+++=∣,若B A ⊆,则=a __________.【答案】0或1【解析】【分析】根据题意先求集合,A B ,结合包含关系分析求解.【详解】由题意可知:{}{}{}220120,1,2A x x x x x =∈--≤=∈-≤≤=NN ∣∣,(){}{}22210,1B x x a x a a a a =-+++==+∣,因为B A ⊆,可知{}0,1B =或{}1,2B =,可得0a =或1a =.故答案为:0或1.13.过()1,2P 的直线l 被曲线2240x x y -+=所截得的线段长度为l 的方程为__________.【答案】1x =或34110x y +-=【解析】【分析】根据曲线的方程确定曲线为圆,再根据直线与圆的位置,分2种情况讨论:①当直线的斜率不存在,②当直线的斜率存在时,每种情况下先设出直线的方程,利用直线被圆所截得的线段长度,求解直线的方程可得出答案.【详解】由曲线2240x x y -+=知,该曲线为圆()2224x y -+=且圆心为()2,0,半径为2r =.当直线斜率不存在时,直线方程为1x =,此时圆心到直线的距离为1d =.根据垂径定理,直线截圆所得线段长为:l ==,满足题意.当直线的斜率存在时,设直线方程为:()12y k x =-+,即20kx y k --+=圆心到直线的距离为d =,当直线截圆所得线段长度l =根据垂径定理2222l d r ⎛⎫+= ⎪⎝⎭可得,22222⎛⎫+= ⎪ ⎪⎝⎭,解得34k =-此时直线方程为34110x y +-=.故答案为:1x =或34110x y +-=.14.在ABC 中,设,,A B C 所对的边分别为,,a b c ,且,tan sin sin b c A B C ≠=+,则以下结论正确的有__________.①20,11a b c ⎛⎫ ⎪∈ ⎪ ⎪+⎝⎭;②211a b c ⎛⎫∈ +⎝⎭;③2b c a +⎫∈⎪⎭;④2b c a ⎛+∈ ⎝;⑤a ∞⎫∈+⎪⎪⎭.【答案】⑤【解析】【分析】依题意可得sin sin sin cos A B C A =+,利用正弦定理将角化边得到cos ab c A=+,将上式两边平方,再由余弦定理得到2220cos a b c A+-=,最后由余弦定理及基本不等式计算可得.【详解】因为tan sin sin A B C =+,即sin sin sin cos AB C A=+,由正弦定理可得cos ab c A=+,所以22222cos a b c bc A=++,又2222cos bc A b c a +-=,所以()()22222222cos 2cos cos cos a b c A bc A b c A b c a A=++=+++-,所以()2221cos 0cos a b c A A ⎛⎫+-+= ⎪⎝⎭,因为()0,πA ∈,所以()cos 1,1A ∈-,则1cos 0A +≠,所以2220cos a b c A+-=,()222cos a b c A =+,又b c ≠,所以222b c bc +>,所以()222222cos 2cos a b cA bc A bc a =+>=+-,所以2222b c a +>,则a >a ∞⎫∈+⎪⎪⎭.故答案为:⑤【点睛】关键点点睛:本题关键是余弦定理的灵活应用,第一次得到2220cos a b c A+-=,再由基本不等式得到()222222cos 2cos a b cA bc A bc a =+>=+-.四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.15.正方体1111ABCD A B C D -的棱长为2,P 是线段1AB 上的动点.(1)求证:平面11BDD B ⊥平面11A BC ;(2)1PB 与平面11A BC 所成的角的正弦值为3,求PB 的长.【答案】(1)证明见解析(2)PB =【解析】【分析】(1)根据题意可得111A C DD ⊥,1111AC B D ⊥,进而可证11A C ⊥平面11BDD B ,即可得结果;(2)设1B 在平面11A BC 上的射影点为E ,连接1,EP EB ,利用等体积法可得13EB =,结合线面夹角可得13EB =,进而可得结果.【小问1详解】因为1DD ⊥平面1111D C B A ,且11AC ⊂平面1111D C B A ,可得111AC DD ⊥,四边形1111D C B A 为正方形,则1111AC B D ⊥,且111111,B D DD D B D ⋂=,1DD ⊂平面11BDD B ,可得11A C ⊥平面11BDD B ,且11AC ⊂平面11A BC ,所以平面11BDD B ⊥平面11A BC .【小问2详解】设1B 在平面11A BC 上的射影点为E ,连接1,EP EB,可知11A BC V是以边长为1134A BC S =⨯=V ,因为111111B A BC B A B C V V --=,即1111222332EB ⨯=⨯⨯⨯⨯,解得1233EB =,设1PB 与平面11A BC 所成的角的大小为θ,则1113sin 3EB PB PB θ===,可得1PB =,在1BPB △中,由余弦定理得,222111π2cos4PB BB PB BB PB =+-⨯⨯,即224PB =+-,解得PB =.16.甲和乙进行中国象棋比赛,每局甲赢的概率为0.8,甲输的概率为0.2,且每局比赛相互独立.(1)若比赛采取三局两胜制,且乙已经赢得比赛,则比赛需要的局数X 的数学期望()E X 为多少?(保留小数点后一位)(2)由于甲、乙实力悬殊,乙提出“甲赢5局之前乙赢2局,则乙胜”,求乙胜的概率.【答案】(1)2.6(2)0.34464【解析】【分析】(1)分析可知X 的可能取值为2,3,结合条件概率求()()2,3P X P X ==,进而可得期望;(2)根据题意分析乙胜的情况,结合独立事件概率乘法公式分析求解.【小问1详解】记“乙已经赢得比赛”为事件A ,则()120.20.2C 0.20.80.20.104P A =⨯+⨯⨯⨯=,由题意可知:X 的可能取值为2,3,则有:()()12C 0.20.20.80.20.2582,30.104130.10413P X P X ⨯⨯⨯⨯======,所以X 的数学期望()583423 2.6131313E X =⨯+⨯=≈.【小问2详解】由题意可知:每局乙赢的概率00.2p =,则()()()()2321110200030004000C 1C 1C 1P A p p p p p p p p p p ⎡⎤⎡⎤⎡⎤=+-+-+-⎣⎦⎣⎦⎣⎦()415000C 1p p p ⎡⎤+-⎣⎦()()()()234200000121314151p p p p p ⎡⎤=+-+-+-+-⎣⎦()()()()()22340.21210.2310.2410.2510.2⎡⎤=+-+-+-+-⎣⎦0.048.6160.34464=⨯=,所以乙胜的概率0.34464.17.()()ex af x a -=∈R .(1)若()f x 的图象在点()()00,A x f x 处的切线经过原点,求0x ;(2)对任意的[)0,x ∈+∞,有()sin f x x ≥,求a 的取值范围.【答案】(1)1(2)πln2,42∞⎛⎤-+ ⎥⎝⎦【解析】【分析】(1)求得()ex af x -'=,得到()00ex af x -='且()00ex af x -=,根据题意,列出方程,即可求解;(2)根据题意,转化为e sin 0x a x --≥在[)0,x ∈+∞恒成立,令()e sin x ag x x -=-,当0a ≤时,符合题意;若0a >,求得()ecos x ag x x --'=,令()()h x g x '=,利用导数求得()g x '的单调性,结合()π00,02g g ⎛⎫<> '⎪⎝⎭',得到存在唯一的0π0,2x ⎛⎫∈ ⎪⎝⎭,使得()00g x '=,得出()g x 的单调性和极小值,进而求得a 的取值范围.【小问1详解】由函数()e x af x -=,可得()e x af x -'=,所以()00ex af x -='且()00ex af x -=,即切线的斜率为0e x a -,切点为()00e,x aA x -因为()f x 的图象在点()()00,A x f x 处的切线经过原点,可得000e 0ex a x ax ---=-,解得01x =.【小问2详解】任意的[)0,x ∈+∞,有()sin f x x ≥,即e sin 0x a x --≥在[)0,x ∈+∞恒成立,令()[)esi ,0,n x ag x x x -=∈-+∞,若0a ≤,则0x a -≥,可得e 1x a -≥,所以()e sin 1sin 0x ag x x x -=-≥-≥,符合题意;若0a >,可得()ecos x ag x x --'=,令()()h x g x '=,则()e sin x a h x x -+'=,当0πx ≤≤时,()0h x '>,()g x '在[]0,π递增,而()π2π0e 10,e02a ag g --⎛⎫=-<=> ⎪⎝⎭'',所以,存在唯一的[]0π0,0,π2x ⎛⎫∈⊆ ⎪⎝⎭,使得()000e cos 0x ag x x --'==,所以,当00x x <<时,()0g x '<,()g x 在()00,x 递减,当0πx x <<时,()0g x '>,()g x 在区间()0,πx 递增,故当0x x =,函数()g x 取得极小值()00000e sin cos sin 0x ag x x x x -=-=-≥,所以0π04x <≤,此时,00lncos x a x -=,可得00πlncos ln 42a x x =-≤-,即πln2042a <≤+;当πx >时,()πln 2142e sin e1e1e 10x x ax ag x x ---=-≥-≥-≥->,因而πln2042a <≤+,符合题意,综上所述,实数a 的取值范围是求πln2,42∞⎛⎤-+ ⎥⎝⎦.【点睛】方法点睛:对于利用导数研究不等式的恒成立与有解问题的求解策略:1、合理转化,根据题意转化为两个函数的最值之间的比较,列出不等式关系式求解;2、构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;3、利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.4、根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.18.已知双曲线2222:1(0,0)y x C a b a b-=>>的上焦点为(,下顶点为A,渐近线方程是y =,过20,3B ⎛⎫ ⎪⎝⎭点的直线交双曲线上支于,P Q 两点,,AP AQ 分别交直线23y =于,M N 两点,O 为坐标原点.(1)求C 的方程;(2)求证:,,,M N O A 四点共圆;(3)求(2)中的圆的半径r 的取值范围.【答案】(1)22142-=y x (2)证明见解析(3)5.3⎛ ⎝【解析】【分析】(1)根据题意得到关于,,a b c 的方程组,解出即可;(2)方法一:设直线2:3PQ y kx =+,联立双曲线方程得到韦达定理式,求出11836M x x y =+,22836N x x y =+,最后计算并证明出BO BA BM BN =即可;方法二:转化为证明出1OM AN k k =,同法一设线联立得到韦达定理式,再整体代入计算出1OM AN k k =即可;(3)设圆心为T ,计算出(),1T k -,根据r =k 的范围即可.【小问1详解】由题,222ac a b c b==+=,解得224,2a b ==,所以C 的方程为22142-=y x .【小问2详解】(方法一)设()()11222,,,,:3P x y Q x y PQ y kx =+,代入22142-=y x ,化简整理得()224322039k x kx -+-=,有()22212201632Δ420990k k k x x ⎧-≠⎪⎪⎛⎫=--->⎨ ⎪⎝⎭⎪⎪>⎩,解得21629k <<,且()()1212222243243239,223292k k x x x x k k kk -+====----,112:2y AP y x x +=-,令23y =得11836M x x y =+,同理22836N x x y =+,()()1212121288643636922x x x x BM BN y y y y =⨯=++++()()()121221212126464864922939x x x x y y k x x k x x ==+++++()()()22223292641632846499399232k k k k k k -==⋅+⋅+--,22162339BO BA ⎛⎫=⨯+= ⎪⎝⎭,则BO BA BM BN =,所以,,,M N O A 四点共圆.(方法二)设,OM AN 的倾斜角分别为,αβ.由对称性,不妨设PQ 的斜率0k >,此时,αβ均为锐角,所以,,,M N O A 四点共圆πAOM ANM ∠∠⇔+=,ππ2αβ⎛⎫⇔++= ⎪⎝⎭ππ,,0,22αβαβ⎛⎫⇔+=∈ ⎪⎝⎭tan tan 1αβ⇔=1OM AN k k ⇔=设()()11222,,,,:3P x y Q x y PQ y kx =+,代入22142-=y x ,化简整理得()224322039k x kx -+-=,有()22212201632Δ420,990k k k x x ⎧-≠⎪⎪⎛⎫=--->⎨ ⎪⎝⎭⎪⎪>⎩解得21629k <<,()()121222324,9232kx x x x k k =-+=---,112:2y AP y x x +=-,令23y =得11836M x x y =+,同理22836N x x y =+,121222,4OM AN AQ y y k k k x x ++===()21212121212121288864223339444OM ANkx kx k x x k x x y y k k x x x x x x ⎛⎫⎛⎫+++++ ⎪⎪++⎝⎭⎝⎭=⋅==()()()2222328464399232132492kk k k k k ⎡⎤⎡⎤⎢⎥⎢⎥-+-+--⎢⎥⎢⎥⎣⎦⎣⎦=⎡⎤⎢⎥--⎢⎥⎣⎦所以,,,M N O A 四点共圆.【小问3详解】设圆心为T ,则1T y =-,121212124448823636333M N T x x x x x x x y y kx kx ⎛⎫⎪+==+=+ ⎪++ ⎪++⎝⎭()()()()()()221212221212223284822392324438643284643339399232kk kx x x x k k k k k x x k x x k k k k⋅+⋅++--==⋅=+++⋅+⋅+--,(),1T k ∴-,因为21629k <<,则5.3r ⎛= ⎝【点睛】关键点点睛:本题第二问的关键是采用设线法得到韦达定理式,然后利用四点共圆的充要条件代入计算证明即可,第三问的关键是得到圆心坐标,从而得到r =19.给定自然数n 且2n ≥,设12,,,n x x x 均为正数,1ni i x T ==∑(T 为常数),11n i ni i nx x T x T x -==--∑.如果函数()f x 在区间I 上恒有()0f x ''>,则称函数()f x 为凸函数.凸函数()f x 具有性质:()1111n n i i i i f x f x n n ==⎛⎫≥ ⎪⎝⎭∑∑.(1)判断()1xf x x=-,()0,1x ∈是否为凸函数,并证明;(2)设()1,2,,ii x y i n T == ,证明:111111n ny y n -≤---;(3)求nnx T x -的最小值.【答案】(1)()f x 在()0,1上为凸函数,证明见解析(2)证明见解析(3)()5128221nn --.【解析】【分析】(1)对()f x 求导之后,再求二阶导数,证明()0f x ''>即可得出结论;(2)根据凸函数的性质得,()11111111n n i i i i f y f y n n --==⎛⎫≥ ⎪--⎝⎭∑∑;将11n i n i i nx x T x T x -==--∑中的分子、分母同时除以T ,得到()111n ni i n y f y y -==-∑;加上1111n ni i n n i i y y y y -===-=-∑∑,利用以上条件得到一个关于n y 与n 的不等式,变形后即可得出结论.(3)设i i x y T=,将n n x T x -转化为1n n y y -,判断其单调性,将问题转化为求n y 的最小值;利用(2)的结论,求出n y 的最小值,代入1n ny y -即可得出答案.【小问1详解】()f x 在()0,1上为凸函数.证明:由题知,()22(1(1)())(11)x f x x x x ==-'----,所以()43(1)(11)2()2f x x x x =-'=--',因为()0,1x ∈,所以10x ->,()0f x ''>,所以()f x 在()0,1上为凸函数.【小问2详解】证明:因为i i x y T =()1,2,,i n = ,所以11111n n n i i i i i i x T y x TT T =======∑∑∑,由题知11n i n i i n x x T x T x -==--∑,分子分母同时除以T ,得1111i n n i n i x x TT x x T T -==--∑,所以1111n i n i i n y y y y -==--∑,即()111n n i i n y f y y -==-∑,根据凸函数的性质得,()11111111n n i i i i f y f y n n --==⎛⎫≥ ⎪--⎝⎭∑∑,所以111111111111n i n i n n i i y y n n y y n -=-=-⋅≥----∑∑,又因为1111n n i i n n i i y y yy -===-=-∑∑,所以1(11111))111(11(11)n n n n n n y y y n n y n y y n ⋅---⋅≥=------⋅--,两边同时乘以n 1-,得(1)(111()1)n n n n y n y y n y --≥----,因为()1,2,,i x n T i <= ,所以(0,1)i i x y T =∈,又因为2n ≥,所以(1)(1011(1))n n n n y n y y n y --≥>----,两边同时取倒数,得11(11(1))1)(111n n n n n y n y y n y y n ----≤=-----,所以111111n n y y n -≤---,即111111n n y y n -≤---.【小问3详解】设i i x y T =()1,2,,i n = ,则n n x y T =,且()0,1n y ∈,所以11111n n n n n n n x x y T x T x y y T ===-----,随n y 增大而增大,由(2)知,111111n n y y n -≤---,所以()2111n n n n y y y n n y -⋅--≤--,所以()2(34)210n n y n n y n --+-≤-,当2n =时,120n y -+≤,12n y ≥,所以1111n n n x T x y =-≥--,当且仅当1212y y ==时,等号成立,当3n ≥时,()()34342222n n n y n n ---+≤≤--,所以1n n n n x y T x y =≥--22(5128)(34)(24)4128n n n n nn n--++-+-=-+()22288(22412821n n n nn n n-+-+--==-+-,当且仅当()()12111221nny ny y yn n n--=====---时,等号成立,当2n=时,最小值为1,满足上式,所以nnxT x-的最小值是()5128221nn--.【点睛】关键点点睛:第2问的关键是将条件中x转化为y,紧紧围绕凸函数的性质来做文章;第3问关键是将nnxT x-转化为1nnyy-,利用第2问的结论,求出ny的最小值.。
2024年湖南省长沙高考数学最后一卷(答案在最后)一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合{}|2M x x =≤,{|ln 1}N x x =<,则M N = ()A .[)2,e B .[]2,1-C .[)0,2D .(]0,22.若复数z 满足i z z =⋅,则z 可以为()A .1i-B .1i+C .12i+D .12i-3.已知随机变量X 服从正态分布()2,N μσ,且()()220.3P X k P X k <-=>+=,0k >,则()22P X k <≤+=()A .0.2B .0.3C .0.7D .0.84.已知直线l :0kx y -+=,圆O :221x y +=,则“1k <”是“直线l 上存在点P ,使点P 在圆O 内”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.在平行四边形ABCD 中,24AC BD ==,点P 为该平行四边形所在平面内的任意一点,则2222PA PB PC PD +++ 的最小值为()A .6B .8C .10D .126.地震震级通常是用来衡量地震释放能量大小的数值,里氏震级最早是由查尔斯·里克特提出的,其计算基于地震波的振幅,计算公式为0lg lg M A A =-,其中M 表示某地地震的里氏震级,A 表示该地地震台测振仪记录的地震波的最大振幅,0A 表示这次地震中的标准地震振幅.假设在一次地震中,某地地震台测振仪记录的地震波的最大振幅为5000,且这次地震的标准地震振幅为0.002,则该地这次地震的里氏震级约为()(参考数据:lg 20.3≈)A .6.3级B .6.4级C .7.4级D .7.6级7.已知双曲线C :()222210,0x y a b a b -=>>的左、右焦点分别为()1,0F c -,()2,0F c ,P 为C 的渐近线上一点.若12PF F △2,2123PF PF c ⋅= ,则C 的离心率为()A B .2C .D 8.已知正方体1111ABCD A B C D -的棱长为2,M 是棱1CC 的中点,空间中的动点P 满足DP BM ⊥,且11D P =,则动点P 的轨迹长度为()A .5B .3C .2πD .5二、多选题:本题共3小题,共18分。
合肥2024届高三最后一卷数学试题(答案在最后)本试卷共4页,19题。
全卷满分150分。
考试用时120分钟。
注意事项:1.答题前,先将自己的姓名、准考证号填写在答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接写在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知抛物线方程2:4C y x =,则其焦点坐标为()A .()0,1B .()0,2C .10,8⎛⎫ ⎪⎝⎭D .10,16⎛⎫⎪⎝⎭2.2024届高三某次联考中对尖端生采用屏蔽措施,某校历史方向有A B C D E 、、、、五名屏蔽生总分在前9名,现在确定第一、二、五名是A B C 、、三位同学,但A 不是第一名,D E 、两名同学只知道在6至9名,且D 的成绩比E 好,则这5位同学总分名次有多少种可能()A .6B .12C .24D .483.已知“正项数列{}n a 满足14nn n a a +⋅=”,则“212a a =”是“数列{}n a 为等比数列”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件4.函数()()2e cos 2e e 1x x x f x =-(e 为自然函数的底数)的图像大致为()A .B .C .D .5.已知角A B C 、、的对边分别为a b c 、、满足2sin sin sin b A Ca c B+=-,则角B 的最大值为()A .π6B .π4C .π3D .2π36.已知事件,A B 满足:()()()241,,355P B P A B P B A ===,则()P A =()A .34B .29C .13D .237.某停车场在统计停车数量时数据不小心丢失一个,其余六个数据分别是10,8,8,11,16,8,若这组数据的平均数、中位数、众数成等差数列,则丢失数据的所有可能值的和为()A .21B .24C .27D .328.已知函数()f x (()f x 不恒为零),其明()f x '为()f x 的异函数,对于任羍的,x y ∈R ,满足()()()()22f x y f x y fx f y +-=-,且()()11,20f f ==,则()A .()01f =B .()f x 是偶函数C .()1f x '+龹于直线1x =对称D .81()1k f k =-=-∑二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法正确的是()A .复数1ii iz +=-(i 为虚数单位)的虚部为2-B .已知复数12,z z ,若22120z z +=,则120z z ==C .若1,z z =∈C ,则2z -的最小值为1D .已知复数12,z z ,复数2z 的虚部不为0,则1122z z z z =10.如图,在边长为1的正方体1111ABCD A B C D -中,点P 为线段1AC 上的动点,则()A .不存在点P ,使得1AP CD ⊥B .1D P AP ⋅的最小值为13-C .当1123A P AC = 时,1D P AP ⊥ D .若平面ABCD 上的动点M 满足1π6MD C ∠=,则点M 的轨迹是直线的一部分11.已知函数()()πsin 0,0,2f x x ωϕωϕ⎛⎫⎛⎫=+>∈ ⎪ ⎪⎝⎭⎝⎭在[]0,2π上有且仅有5个零点,则()A .()f x 在()0,2π上有且仅有3个极大值点B .()f x 在()0,2π上有且仅有2个极小值点C .当π5ϕ=时,ω的取值范围是1229,510⎡⎫⎪⎢⎣⎭D .当π5ϕ=时,()f x 图像可能关于直线π2x =对称三、填空题:本题共3小题,每小题5分,共15分.12.在四边形ABCD 中,2BC AD =,且1,AD CD AD CD ==⊥,则AA BD ⋅= ______.13.设()f x 是定义在()0,+∞上的函数,()f x '为其导函数,且满足()()()252210,13x f x xf x f -+-==⎡⎤⎣⎦',则函数在)3,3f处的切线方程为______.14.如图,已知圆222:O x y a +=和椭圆四2222:1(0)x y C a b a b +-=>>,点()()0,,0,A a B b -,()()1,0,,0,0,2a D H a B b ⎛⎫- ⎪⎝⎭,直线AP 交x 轴于D ,直线PQ 平行y 轴交C 于Q (点Q 在x 轴上方),TK KH =,直线BK 交C 于多一点于M ,直线1B M 交x 轴于点(3,0)N ,则椭圆的长轴长为______.四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.15.(本小题满分13分)某高校强基计划入围有3道面试题目,若每位面试者共有三次机会,一旦某次答对抽到的题目,则面试通过,否则就一直抽题到第3次为止.李想同学答对每道题目的概率都是0.6,假设对抽到的不同题目能否答对是独立的.(1)求李想第二次答题通过面试的概率;(2)求李想最终通过面试的概率。
清华大学附中2025届高考冲刺押题(最后一卷)数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知是球的球面上两点,,为该球面上的动点.若三棱锥体积的最大值为36,则球的表面积为()A.36πB.64πC.144πD.256π2.函数()3sin 3xf x xπ=+的图象的大致形状是()A.B.C.D.3.231+=-ii()A.15i22-+B.1522i--C.5522i+D.5122i-4.如图所示的茎叶图为高三某班50名学生的化学考试成绩,算法框图中输入的1a,2a,3a,,50a为茎叶图中的学生成绩,则输出的m,n分别是()A .38m =,12n =B .26m =,12n =C .12m =,12n =D .24m =,10n =5.执行如图所示的程序框图,若输入ln10a =,lg b e =,则输出的值为( )A .0B .1C .2lg eD .2lg106.设复数z 满足|3|2z -=,z 在复平面内对应的点为(,)M a b ,则M 不可能为( ) A .(2,3) B .(3,2)C .(5,0)D .(4,1)7.已知集合(){}*,|4,M x y x y x y N =+<∈、,则集合M 的非空子集个数是( )A .2B .3C .7D .88.如图,这是某校高三年级甲、乙两班在上学期的5次数学测试的班级平均分的茎叶图,则下列说法不正确的是( )A .甲班的数学成绩平均分的平均水平高于乙班B .甲班的数学成绩的平均分比乙班稳定C .甲班的数学成绩平均分的中位数高于乙班D .甲、乙两班这5次数学测试的总平均分是103 9.i 是虚数单位,21iz i=-则||z =( )A .1B .2C .2D .2210.已知双曲线2222:1(0,0)x y C a b a b-=>>的焦距为2c ,过左焦点1F 作斜率为1的直线交双曲线C 的右支于点P ,若线段1PF 的中点在圆222:O x y c +=上,则该双曲线的离心率为( ) A .2B .22C .21+D .221+11.已知函数3sin ()(1)()x xx xf x x m x e e-+=+-++为奇函数,则m =( ) A .12B .1C .2D .312.已知向量()22cos ,3m x =,()1,sin2n x =,设函数()f x m n =⋅,则下列关于函数()y f x =的性质的描述正确的是( )A .关于直线12x π=对称B .关于点5,012π⎛⎫⎪⎝⎭对称 C .周期为2πD .()y f x =在,03π⎛⎫-⎪⎝⎭上是增函数 二、填空题:本题共4小题,每小题5分,共20分。
2023届高三最后一卷数学试题(考试时间:120分钟满分:150分)注意事项:1.答题前,务必在答题卡和答题卷规定的地方填写自己的姓名、准考证号和座位号后两位。
2.答题时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡 皮擦干净后,再选涂其他答案标号。
3.答题时,必须使用0.5毫米的黑色墨水签字笔在答题卷上书写,要求字体工整、笔迹清晰。
作 图题可先用铅笔在答题卷规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚。
必 须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在试题卷、草稿纸上答题无效。
4.考试结束,务必将答题卡和答题卷一并上交。
一 、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={xeR|x-1|≤1},B={y|p=-x²,-√2≤x≤1},则Ca(A∩B)=()A.⊗B.{0} c.{x ∈R|x≠0} D.R2.若复数z 满足z(cos60°+isin60°)=-1+√3i,则z 的共轭复数的虚部是()A.-√3B.-√3iC.√3D.√3i3.2017年国家提出乡村振兴战略目标:2020年取得重要进展,制度框架和政策体系基本形成;2035年 取得决定性进展,农业农村现代化基本实现;2050年乡村全面振兴,农业强、农村美、农民富全面 实现.全面推进乡村振兴是继脱贫攻坚取得全面胜利后三农工作重心历史性转移重要时刻.某地为实 年份 2014 2015 2016 2017 2018 2019 2020 2021 2022 年份代码x 123456789盈利y(百万)6.0 6.1 6.2 6.0 6.9 6.87.1 7.0已知由9组数据利用最小二乘法求得的V 与x 的经验回归方程为y=0.15x+5.75,现由于工作失误, 第五组数据被污损,则被污损的数据为() B.6.4 则下面结论正确的是( );A.把 C 上各点的横坐标伸长到原来的倍,纵坐标不变,再把得到的曲线向右平移 个单位长 度,得到曲线C ₂A.6.3 4.已知曲线D.6.6C.6.5B.把C 上各点的横坐标伸长到原来的倍,纵坐标不变,再把得到的曲线向左平移 个单位长度,得到曲线C ₂C.把 C 上各点的横坐标缩短到原来的 得到曲线C ₂D.把 C 上各点的横坐标缩短到原来的 事纵坐标不变,再把得到的曲线向左平移纵坐标不变,再把得到的曲线向右平移个单位长度,个单位长度,得到曲线C ₂5.设O 为坐标原点,F 为抛物线C:x²=2py(p>0) 的焦点,直线y=1 与抛物线C 交于A,B 两点,若∠AFB=120°,则抛物线C 的准线方程为( )B.y=-3或y=-3或y=-66.已知A,B,C 是三个随机事件,“A,B,C 两两独立”是“P(ABC)=P(A)p(B)p(c)” 的 ( )条件 .A.充分不必要B.必要不充分C. 充要D.既不充分也不必要 7.过原点的直线l 与曲线交于A,B 两点,现以x 轴为折痕将上下两个半平面折成60°的二面角,则 A |B 的最小值为( )A.2B.2√3C.4D.128.已知函数f(x) 与g(x) 的定义域均为R,f(x+1) 为偶函数,且f(3-x)+g(x)=1,f(x)-g(1-x)=1, 则下面判断错误的是( )A.f(x) 的图象关于点(2,1)中心对称B.f(x) 与g(x) 均为周期为4的周期函数二 、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.如图,已知正六边形ABCDEF 的边长为1,记BC=e, 则 ( ) A.AD=2(AF+DE)B.AB.(EA+2FA)=|AB² c.BC(CD·FE)=(BC.CD)FED.AE 在 CB 方向上的投影向量为10.已知半径为R 的球与圆台的上下底面和侧面都相切.若圆台上下底面半径分别为r 和 r ₂, 母线长为1,球的表面积与体积分别为S ₁和V ₁, 圆台的表面积与体积分别为S ₂ 和V ₂.则下列说法正确的是 ( )A.I=r+r ₂B.R=√rr ₂口的最大值为。
广东佛山市禅城区2025届高三最后一模数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.函数sin ln ||2y x x π⎛⎫=-⋅ ⎪⎝⎭图像可能是( )A .B .C .D .2.5(12)(1)x x ++的展开式中2x 的系数为( ) A .5B .10C .20D .303.已知平面向量,a b ,满足1,13a b ==,且2a b a b +=+,则a 与b 的夹角为( ) A .6πB .3π C .23π D .56π 4.已知函数,其中04?,?04b c ≤≤≤≤,记函数满足条件:(2)12{(2)4f f ≤-≤为事件A ,则事件A发生的概率为 A .14B .58C .38D .1222x y290ABF ∠=︒,且2ABF 的三边长2BF ,AB ,2AF 成等差数列,则C 的离心率为( )A .12B .33C .22D .326.已知函数2ln(2),1,()1,1,x x f x x x -⎧=⎨-+>⎩若()0f x ax a -+恒成立,则实数a 的取值范围是( ) A .1,12⎡⎤-⎢⎥⎣⎦B .[0,1]C .[1,)+∞D .[0,2]7.函数()()23ln 1x f x x+=的大致图象是A .B .C .D .8.已知等比数列{}n a 的前n 项和为n S ,若11a =,且公比为2,则n S 与n a 的关系正确的是( ) A .41n n S a =- B .21n n S a =+ C .21n n S a =-D .43n n S a =-9.已知||3a =,||2b =,若()a ab ⊥-,则向量a b +在向量b 方向的投影为( ) A .12B .72C .12-D .72-10.已知整数,x y 满足2210x y +≤,记点M 的坐标为(,)x y ,则点M 满足5x y +≥ )A .935B .635C .537D .73711.已知01021:1,log ;:,2x p x x q x R e x ∃>>∀∈>,则下列说法中正确的是( ) A .p q ∨是假命题 B .p q ∧是真命题 C .()p q ∨⌝是真命题D .()p q ∧⌝是假命题12.设i 是虚数单位,若复数103m i++(m R ∈)是纯虚数,则m 的值为( ) A .3-B .1-C .1D .313.522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 项的系数为_______. 14.某班星期一共八节课(上午、下午各四节,其中下午最后两节为社团活动),排课要求为:语文、数学、外语、物理、化学各排一节,从生物、历史、地理、政治四科中选排一节.若数学必须安排在上午且与外语不相邻(上午第四节和下午第一节不算相邻),则不同的排法有__________种. 15.在平面直角坐标系中,已知,若圆上有且仅有四个不同的点C ,使得△ABC 的面积为5,则实数a 的取值范围是____.16.点P 在双曲线()222210,0x y a b a b-=>>的右支上,其左、右焦点分别为1F 、2F ,直线1PF 与以坐标原点O 为圆心、a 为半径的圆相切于点A ,线段1PF 的垂直平分线恰好过点2F ,则该双曲线的渐近线的斜率为__________. 三、解答题:共70分。
北京市2025届高三最后一卷数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若i 为虚数单位,则复数112iz i+=+在复平面上对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限2.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,用现代式子表示即为:在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,则ABC ∆的面积S =根据此公式,若()cos 3cos 0a B b c A ++=,且2222a b c --=,则ABC ∆的面积为( )AB .CD .3.已知,m n 表示两条不同的直线,αβ,表示两个不同的平面,且,m n αβ⊥⊂,则“αβ⊥”是“//m n ”的( )条件.A .充分不必要B .必要不充分C .充要D .既不充分也不必要4.若复数z 满足1zi i =-(i 为虚数单位),则其共轭复数z 的虚部为( ) A .i -B .iC .1-D .15.记等差数列{}n a 的公差为d ,前n 项和为n S .若1040S =,65a =,则( ) A .3d =B .1012a =C .20280S =D .14a =-6.已知函数()f x 是定义在R 上的偶函数,且在(0,)+∞上单调递增,则( ) A .()()0.63(3)log 132f f f -<-<B .()()0.63(3)2log 13f f f -<<-C .()()0.632log 13(3)ff f <-<-D .()()0.632(3)log 13ff f <-<-7.已知函数()xf x e b =+的一条切线为(1)y a x =+,则ab 的最小值为( ) A .12e-B .14e-C .1e- D .2e-8.执行如图所示的程序框图,输出的结果为( )A .193B .4C .254D .1329.设复数z 满足12z zz +=+,z 在复平面内对应的点的坐标为(),x y 则( ) A .221x y =+ B .221y x =+ C .221x y =- D .221y x =-10.设,则"是""的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件11.要得到函数312y x π⎛⎫=-⎪⎝⎭的图象,只需将函数323y x π⎛⎫=- ⎪⎝⎭图象上所有点的横坐标( )A .伸长到原来的2倍(纵坐标不变),再将得到的图象向右平移4π个单位长度 B .伸长到原来的2倍(纵坐标不变),再将得到的图像向左平移4π个单位长度 C .缩短到原来的12倍(纵坐标不变),再将得到的图象向左平移524π个单位长度 D .缩短到原来的12倍(纵坐标不变),再将得到的图象向右平移1124π个单位长度12.在区间[]1,1-上随机取一个实数k ,使直线()3y k x =+与圆221x y +=相交的概率为( )A .12B .14C 2D 2 二、填空题:本题共4小题,每小题5分,共20分。
安徽省合肥一六八中学2023届高三最后一卷数学试题学校:___________姓名:___________班级:___________考号:___________二、多选题9.某学校高三年级学生有500人,其中男生320人,女生180人.为了获得该校全体高三学生的身高信息,现采用分层抽样的方法抽取样本,并观测样本的指标值(单位:(1)已知()80,1,1,1,0,1,1,1a S =Î,则a 的深度为__________.(2)n S 中深度为()*N ,d d d n Σ的数组个数为__________.(1)求数列{}na 的通项公式;(2)求证:1211a a +++L 18.法国著名军事家拿破仑边为边向外构造三个等(1)若点G 为半圆弧CD 的中点,(2)是否存在G点,使得直线若不存在,请说明理由.20.已知双曲线2222:x y C a b-=上一点,点A 关于原点O 的对称点为骰子向上的面出现的点数X 的平均信息量()222log 3 1.59,log 5 2.32,log 7 2.81»»»;(2)设某信道的输入变量X 与输出变量Y 均取值0,1.满足:()()()0,1001(01,01)P X p Y X p Y X p p w w ========<<<<∣∣.试回答以下问题:①求()0P Y =的值;②求该信道的信道疑义度()H Y X ∣的最大值.若点G为半圆弧CD的中点,则所以90Ð=°,即EC^ECG因为//BF EC,所以BF CG^^,又BF BC所以BF^平面,BCG BFÌ20.(1)3(2)2=±±或210y x=±±y x【分析】(1)充分理解题意,利用随机变量X的平均信息量定义解决本小题;(2)由全概率和条件概率公式解决本小题.【详解】(1)设X表示扔一非均匀股子点数,则。
河北省各地2025届高三最后一卷数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知数列{}n a 满足11a =,1n n a a n --=(2n ≥),则数列{}n a 的通项公式n a =( )A .()112n n +B .()1312n n -C .2n n 1-+D .222n n -+2.已知椭圆C 的中心为原点O ,(F -为C 的左焦点,P 为C 上一点,满足||||OP OF =且||4PF =,则椭圆C 的方程为( )A .221255x y += B .2213616x y += C .2213010x y += D .2214525x y += 3.已知双曲线()2222:10,0x y C a b a b -=>>的一条渐近线经过圆22:240E x y x y ++-=的圆心,则双曲线C 的离心率为( )A B C D .24.设i 是虚数单位,则()()2332i i +-=( )A .125i +B .66i -C .5iD .13 5.已知函数()ln 1f x x =+,()122x g x e -=,若()()f m g n =成立,则m n -的最小值是( )A .1ln 22+B .2e -C .1ln 22-D 126.若复数z 满足)1z z i +=,复数z 的共轭复数是z ,则z z +=( )A .1B .0C .1-D .12-+ 7.德国数学家莱布尼兹(1646年-1716年)于1674年得到了第一个关于π的级数展开式,该公式于明朝初年传入我国.在我国科技水平业已落后的情况下,我国数学家、天文学家明安图(1692年-1765年)为提高我国的数学研究水平,从乾隆初年(1736年)开始,历时近30年,证明了包括这个公式在内的三个公式,同时求得了展开三角函数和反三角函数的6个新级数公式,著有《割圆密率捷法》一书,为我国用级数计算π开创了先河.如图所示的程序框图可以用莱布尼兹“关于π的级数展开式”计算π的近似值(其中P 表示π的近似值),若输入10n =,则输出的结果是( )A .11114(1)35717P =-+-+⋅⋅⋅+B .11114(1)35719P =-+-+⋅⋅⋅- C .11114(1)35721P =-+-+⋅⋅⋅+ D .11114(1)35721P =-+-+⋅⋅⋅- 8.已知复数11i z i +=-,则z 的虚部是( ) A .i B .i - C .1- D .19.已知点P 是双曲线222222:1(0,0,)x y C a b c a b a b-=>>=+上一点,若点P 到双曲线C 的两条渐近线的距离之积为214c ,则双曲线C 的离心率为( ) A .2 B .52 C .3 D .210.已知平面向量a ,b 满足()1,2a =-,()3,b t =-,且()a ab ⊥+,则b =( )A .3B .10C .23D .5 11.设集合{}2{|22,},|log 1A x x x Z B x x =-<∈=<,则AB =( ) A .(0,2)B .(2,2]-C .{1}D .{1,0,1,2}-12.为得到的图象,只需要将的图象( ) A .向左平移个单位 B .向左平移个单位C .向右平移个单位D .向右平移个单位二、填空题:本题共4小题,每小题5分,共20分。
合肥一中2024届高三最后一卷数学试题(考试时间:150分钟 满分:120分)注意事项:1.答题前,务必在答题卡和答题卷规定的地方填写自己的姓名、准考证号和座位号后两位。
2.答题时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
3.答题时,必须使用0.5毫米的黑色墨水签字笔在答题卷上书写,要求字体工整、笔迹清晰。
作图题可先用铅笔在答题卷...规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚。
必须在题号所指示的答题区域作答,超出答题区域书写的答案无效.............,在试题卷....、草稿纸上答题无效........。
4.考试结束,务必将答题卡和答题卷一并上交。
第I 卷(选择题)一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知向量(2,3)a = ,(1,3)b −,则2a b −= ( )A .2B .3C .4D .52.已知复数z 满足(1)2z i i ⋅+=−,则=z ( ) A .i 2321+ B .i 2321− C .i 2321−−D .i 2321+−3.已知焦点在x,焦距为 ) A .2213x y += B .2219x y += C .22197x y +=D .2213628x y += 4.已知等比数列{}n a 的前n 项和为n S ,且314S =,32a =,则4a =( )A .1B .23或-1C .23− D .23−或15.已知α为三角形的内角,且cos α=, 则sin 2α=( )A C D6.甲乙丙丁戊5名同学坐成一排参加高考调研,若甲不在两端且甲乙不相邻的不同排列方式的个数为( ) A .36种 B .48种 C .54种 D .64种 7.已知四棱锥P ABCD −的各顶点在同一球面上,若2224AD AB BC CD ====,PAB ∆为正三角形,且面PAB ⊥面ABCD ,则该球的表面积为( ) A .133π B .16πC .523π D .20π8.过(0,)M p 且倾斜角为((,))2πααπ∈的直线l 与曲线2:2C x py =交于,A B 两点,分别过,A B作曲线C 的两条切线12,l l ,若12,l l 交于N ,直线MN 的倾斜角为β,则tan()αβ−的最小值为( ) ABC.D.二、多选题:本题共3小题,共18分。
第Ⅱ卷(共90分)一、填空题(每题5分,满分20分,将答案填在答题纸上)1. 如图,已知圆锥的高是底面半径的倍,侧面积为,若正方形内接于底面圆,则四棱锥侧面积为__________.【答案】.【解析】分析:设圆锥底面半径为,则高为,母线长为,由圆锥侧面积为,可得,结合,利用三角形面积公式可得结果.详解:设圆锥底面半径为,则高为,母线长为,因为圆锥侧面积为,,,设正方形边长为,则,正四棱锥的斜高为,正四棱锥的侧面积为,故答案为.点睛:本题主要考查圆锥的性质、正四棱锥的性质,以及圆锥的侧面积、正四棱锥的侧面积,属于中档题,解答本题的关键是求得正四棱锥底面棱长与圆锥底面半径之间的关系.2. 已知实数满足,且恒成立,则实数的最小值是__________.【答案】.【解析】分析:若恒成立,满足的可行域在直线下面,结合图形可得结果.详解:画出表示的可行域,如图,直线过定点,若恒成立,可行域在直线下面,当直线过时,有最小值,最小值为,故答案为.点睛:本题主要考查可行域、含参数目标函数最优解,属于难题.含参变量的线性规划问题是近年来高考命题的热点,由于参数的引入,提高了思维的技巧、增加了解题的难度,此类问题的存在增加了探索问题的动态性和开放性,此类问题一般从目标函数的结论入手,对目标函数变化过程进行详细分析,对变化过程中的相关量的准确定位,是求最优解的关键.3. 函数在上的部分图象如图所示,则的值为__________.【答案】.【解析】分析:由函数的最值求出,由周期求出,由五点法作图求出的值,从而可得函数的解析式,再利用诱导公式得.详解:,时,,又,,,故答案为.点睛:本题主要通过已知三角函数的图象求解析式考查三角函数的性质,属于中档题.利用最值求出 ,利用图象先求出周期,用周期公式求出,利用特殊点求出,正确求是解题的关键.求解析时求参数是确定函数解析式的关键,由特殊点求时,一定要分清特殊点是“五点法”的第几个点,用五点法求值时,往往以寻找“五点法”中的第一个点为突破口,“第一点”(即图象上升时与轴的交点) 时;“第二点”(即图象的“峰点”) 时;“第三点”(即图象下降时与轴的交点) 时;“第四点”(即图象的“谷点”) 时;“第五点”时.4. 已知数列的首项,且,则数列的前项的和为__________.【答案】.【解析】分析:先证明为等比数列,求得,,利用等比数列求和公式可得结果.详解:由,得,为等比数列,,,,故答案为.点睛:本题主要考查等比数列的定义以及已知数列的递推公式求通项,属于中档题.由数列的递推公式求通项常用的方法有:(1)等差数列、等比数列(先根据条件判定出数列是等差、等比数列);(2)累加法,相邻两项的差成等求和的数列可利用累加求通项公式;(3)累乘法,相邻两项的商是能求出积的特殊数列时用累乘法求通项;(4)构造法,形如的递推数列求通项往往用构造法,即将利用待定系数法构造成的形式,再根据等比数例求出的通项,进而得出的通项公式.5. 甲、乙两种食物的维生素含量如下表:维生素/分别取这两种食物若干并混合,且使混合物中维生素的含量分别不低于单位,则混合物重量的最小值为__________.【答案】.【解析】分析:设甲食物重,乙两食物重,则,混合物重,利用线性规划可得结果.详解:设甲食物重,乙两食物重,的含量分别不低于单位,,由,得,,混合物重,平移直线,由图知,当直线过时,最小值为,故答案为.点睛:本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的定点就是最优解);(3)将最优解坐标代入目标函数求出最值.6. 在中,且,设是平面上的一点,则的最小值是__________.【答案】.【解析】分析:以为坐标原点,为轴建立直角坐标系,则,设点的坐标为,可得,从而可得结果.详解:由,且,得,如图,以为坐标原点,为轴建立直角坐标系,则,设点的坐标为,则,即的最小值是,故答案为.点睛:向量的运算有两种方法,一是几何运算往往结合平面几何知识和三角函数知识解答,运算法则是:(1)平行四边形法则(平行四边形的对角线分别是两向量的和与差);(2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和);二是坐标运算:建立坐标系转化为解析几何问题解答(求最值与范围问题,往往利用坐标运算比较简单).7. 已知边长为2的等边三角形中,、分别为、边上的点,且,将沿折成,使平面平面,则几何体的体积的最大值为__________.【答案】.【解析】分析:设当平面平面时,由面面垂直的性质定理,得平面,以几何体的体积,利用导数研究函数的单调性,可得时体积最大,从而可得结果.详解:设的高为,的高为,当平面平面时,由面面垂直的性质定理得平面,以几何体的体积,,当,在时,取得最大值,,故选B.点睛:求最值问题往往先将所求问题转化为函数问题,然后根据:配方法、换元法、不等式法、三角函数法、图象法、函数单调性法求解,利用函数的单调性求最值,首先确定函数的定义域,然后准确地找出其单调区间,最后再根据其单调性求凼数的最值即可.8. 已知函数满足,当时,,若函数恰有个零点,则的取值范围是__________.【答案】.【解析】分析:函数恰有个零点,等价于与有个交点,画出图象,结合图象列不等式求解即可.详解:函数恰有个零点,等价于与有个交点,满足,当时,,时,,在两图象有一个交点,在上有两个交点,只需在有一个交点即可,画出两函数图象,如图,由图可得,,故答案为.点睛:本题主要考查函数的图象与性质以及数形结合思想的应用,属于难题. 数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,.函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有:1、确定方程根的个数;2、求参数的取值范围;3、求不等式的解集;4、研究函数性质.9. 已知为坐标原点,过点作两条直线与抛物线:相切于,两点,则面积的最小值为__________.【答案】.【解析】分析:求出以为切点的切线方程为,为切点的切线方程为,代入,可得,过的直线方程为,利用韦达定理、弦长公式以及点到直线距离公式,可得.详解:设,,以为切点的切线方程为,即,同理为切点的切线方程为,代入,可得,过的直线方程为,联立,可得,,又到直线的距离为,,当时,等号成立,故答案为.点睛:解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法求解.10. 在斜中,若,则的最大值是__________.【答案】.【解析】分析:在斜中,,结合可得,利用基本不等式可得结果.详解:在斜中,,,又,,所以,与同号,又在中,,所以,当且仅当时“=”成立,的最大值为,故答案为.点睛:本题主要考查诱导公式、两角差的正切公式的应用以及基本不等式求最值,属于中档题. 利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用或时等号能否同时成立).二、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)11. 如图,已知圆的方程为,过点的直线与圆交于点,与轴交于点,设,求证:为定值.【答案】证明见解析.【解析】分析:设直线的方程为,,,则, 将代入,得,利用韦达定理,.详解:当与轴垂直时,此时点与点重合,从而,,.当点与点不重合时,直线的斜率存在.设直线的方程为,,,则.由题设,得,即.所以将代入,得,则,,,所以综上,为定值.点睛:探索定值问题常见方法有两种:① 从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;② 直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.12. 秸秆还田是当今世界上普通重视的一项培肥地力的增产措施,在杜绝了秸秆焚烧所造成的大气污染的同时还有增肥增产作用.某农机户为了达到在收割的同时让秸秆还田,花元购买了一台新型联合收割机,每年用于收割可以收入万元(已减去所用柴油费);该收割机每年都要定期进行维修保养,第一年由厂方免费维修保养,第二年及以后由该农机户付费维修保养,所付费用(元)与使用年数的关系为:,已知第二年付费元,第五年付费元.(1)试求出该农机户用于维修保养的费用(元)与使用年数的函数关系;(2)这台收割机使用多少年,可使平均收益最大?(收益=收入-维修保养费用-购买机械费用)【答案】(1) .(2) 这台收割机使用年,可使年均收益最大.【解析】试题分析:根据第二年付费元,第五年付费元可得关于的方程组,解出即可得到函数关系记使用年,年均收益为(元),利用基本不等式求最值即可解析:(Ⅰ)依题意,当,;,,即,解得,所以.(Ⅱ)记使用年,年均收益为(元),则依题意,,,当且仅当,即时取等号.所以这台收割机使用14年,可使年均收益最大.13. 如图,某机械厂欲从米,米的矩形铁皮中裁剪出一个四边形加工成某仪器的零件,裁剪要求如下:点分别在边上,且,.设,四边形的面积为(单位:平方米).(1)求关于的函数关系式,求出定义域;(2)当的长为何值时,裁剪出的四边形的面积最小,并求出最小值.【答案】(1) 函数的定义域为.(2) 当的长度分别为米,米时,裁剪出的四边形的面积最小,最小值为平方米.【解析】分析:(1)过点作,可得,所以故,利用梯形的面积公式可得结果;(2)由(1)可知,,利用基本不等式可得结果.当且仅当时,不等号取等号详解:(1)过点作,垂足为.在中,所以故所以据题意,,所以且当点重合于点时,所以函数的定义域为.(2)由(1)可知,当且仅当时,不等号取等号又故答:当的长度分别为米,米时,裁剪出的四边形的面积最小,最小值为平方米.点睛:本题主要考查阅读能力、数学建模能力和化归思想以及二倍角公式、基本不等式求最值的应用,属于中档题.与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.14. 已知椭圆的左顶点,右焦点分别为,右准线为,(1)若直线上不存在点,使为等腰三角形,求椭圆离心率的取值范围;(2)在(1)的条件下,当取最大值时,点坐标为,设是椭圆上的三点,且,求:以线段的中心为原点,过两点的圆方程.【答案】(1) .(2) .【解析】试题分析:(1) 设直线与轴的交点是,依题意,把条件代数化,即可解得范围;(2)由题意易得椭圆方程是:,设,则,.由,得.因为是椭圆C上一点,所以,得到,因为圆过两点,所以线段的中点的坐标为又,从而求得圆的方程.试题解析:(1)设直线与轴的交点是,依题意,即,,,,(2)当且时,,故,所以,椭圆方程是:设,则,.由,得.因为是椭圆C上一点,所以即………①因为圆过两点,所以线段的中点的坐标为又………②由①和②得,所以圆心坐标为故所求圆方程为15. 已知函数,其中.(1)当时,求函数在处的切线方程;(2)若函数存在两个极值点,求的取值范围;(3)若不等式对任意的实数恒成立,求实数的取值范围.【答案】(1) .(2) .(3) .【解析】分析:(1)求出,由的值可得切点坐标,求出的值,可得切线斜率,利用点斜式可得曲线在点处的切线方程;(2)是方程的两个正根,可得,则可化为,令,可得在上单调递增,所以;(3)对任意的实数恒成立,即对任意的实数恒成立,令,利用导数研究函数的单调性,讨论的范围,令的最小值不小于零,可得到实数的取值范围. 详解:(1)当时,,故,且,故所以函数在处的切线方程为(2)由,可得因为函数存在两个极值点,所以是方程的两个正根,即的两个正根为所以,即所以令,故,在上单调递增,所以故得取值范围是(3)据题意,对任意的实数恒成立,即对任意的实数恒成立.令,则①若,当时,,故符合题意;②若,(i)若,即,则,在上单调赠所以当时,,故符合题意;(ii)若,即,令,得(舍去),,当时,,在上单调减;当时,,在上单调递增,所以存在,使得,与题意矛盾,所以不符题意.③若,令,得当时,,在上单调增;当时,,在上单调减.首先证明:要证:,即要证:,只要证:因为,所以,故所以其次证明,当时,对任意的都成立令,则,故在上单调递增,所以,则所以当时,对任意的都成立所以当时,即,与题意矛盾,故不符题意,综上所述,实数的取值范围是.点睛:本题是以导数的运用为背景的函数综合题,主要考查了函数思想,化归思想,抽象概括能力,综合分析问题和解决问题的能力,属于较难题,近来高考在逐年加大对导数问题的考查力度,不仅题型在变化,而且问题的难度、深度与广度也在不断加大,本部分的要求一定有三个层次:第一层次主要考查求导公式,求导法则与导数的几何意义;第二层次是导数的简单应用,包括求函数的单调区间、极值、最值等;第三层次是综合考查,包括解决应用问题,将导数内容和传统内容中有关不等式甚至数列及函数单调性有机结合,设计综合题.16. 已知等差数列与等比数列是非常数的实数列,设.(1)请举出一对数列与,使集合中有三个元素;(2)问集合中最多有多少个元素?并证明你的结论;【答案】(1) .(2)3个,证明见解析.【解析】分析:(1),则;(2)不妨设,由,令,原问题转化为关于的方程最多有多少个解,可以证明当时,方程①最多有个解:时,方程①最多有个解,从而可得结果.详解:(1),则(2)不妨设,由令,原问题转化为关于的方程①最多有多少个解.下面我们证明:当时,方程①最多有个解:时,方程①最多有个解当时,考虑函数,则如果,则为单调函数,故方程①最多只有一个解;如果,且不妨设由得由唯一零点,于是当时,恒大于或恒小于,当时,恒小于或恒大于这样在区间与上是单调函数,故方程①最多有个解当时,如果如果为奇数,则方程①变为显然方程最多只有一个解,即最多只有一个奇数满足方程①如果为偶数,则方程①变为,由的情形,上式最多有个解,即满足①的偶数最多有个这样,最多有个正数满足方程①对于,同理可以证明,方程①最多有个解.综上所述,集合中的元素个数最多有个.再由(1)可知集合中的元素个数最多有个.点睛:本题主要考查数列的综合性质以及分类讨论思想的应用.属于难题.分类讨论思想解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决含参数问题发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点. 充分利用分类讨论思想方法能够使问题条理清晰,进而顺利解答,希望同学们能够熟练掌握并应用与解题当中.三、解答题17. 已知正六棱锥的底面边长为,高为.现从该棱锥的个顶点中随机选取个点构成三角形,设随机变量表示所得三角形的面积.(1)求概率的值;(2)求的分布列,并求其数学期望.【答案】(1) .(2)分布列见解析,.【解析】分析:(1)从个顶点中随机选取个点构成三角形,共有种取法,其中面积的三角形有个,由古典概型概率公式可得结果;(2)的可能取值,根据古典概型概率公式可求得随机变量对应的概率,从而可得分布列,进而利用期望公式可得其数学期望.详解:(1)从个顶点中随机选取个点构成三角形,共有种取法,其中的三角形如,这类三角形共有个因此.(2)由题意,的可能取值为其中的三角形如,这类三角形共有个;其中的三角形有两类,,如(个),(个),共有个;其中的三角形如,这类三角形共有个;其中的三角形如,这类三角形共有个;其中的三角形如,这类三角形共有个;因此所以随机变量的概率分布列为:所求数学期望.点睛:在解古典概型概率题时,首先把所求样本空间中基本事件的总数,其次所求概率事件中含有多少个基本事件,然后根据公式求得概率;求解一般的随机变量的期望和方差的基本方法是:先根据随机变量的意义,确定随机变量可以取哪些值,然后根据随机变量取这些值的意义求出取这些值的概率,列出分布列,根据数学期望和方差的公式计算.注意在求离散型随机变量的分布列时不要忽视概率分布列性质的应用,对实际的含义要正确理解.18. 从集合的所有非空子集中,等可能地取出个.(1)若,求所取子集的元素既有奇数又有偶数的概率;(2)若,记所取子集的元素个数之差为,求的分布列及数学期望.【答案】(1) .(2) 分布列见解析,.【解析】分析:(1)集合的非空子集数为,其中非空子集的元素全为奇数的子集数为,全为偶数的子集数为,由古典概型概率公式可得结果;(2)当时,的所有可能取值为,由组合知识,利用古典概型概率公式可得随机变量对应的概率,从而可得分布列,进而利用期望公式可得其数学期望.详解:(1)当时,记事件:“所取子集的元素既有奇数又有偶数”.则集合的非空子集数为,其中非空子集的元素全为奇数的子集数为,全为偶数的子集数为,所以,(2)当时,的所有可能取值为则所以的数学期望.点睛:本题主要考查古典概型概率公式以及离散型随机变量的分布列与数学期望,属于中档题. 求解该类问题,首先正确要理解题意,其次要准确无误的找出随机变量的所以可能值,计算出相应的概率,写出随机变量的分布列,正确运用均值、方差的公式进行计算,也就是要过三关:(1)阅读理解关;(2)概率计算关;(3)公式应用关.19. 如图,已知直三棱柱中,.(1)求的长.(2)若,求二面角的余弦值.【答案】(1) .(2) .【解析】分析:(1)分别以所在直线为轴,建立如图所示的空间直角坐标系,设,可得利用向量垂直数量积为零列方程求解即可;(2)分别利用向量垂直数量积为零列方程可求得平面的法向量,结合为平面的一个法向量,利用空间向量夹角余弦公式可得结果.详解:(1)分别以所在直线为轴,建立如图所示的空间直角坐标系,设,则所以,因为,所以,即,解得所以的长为.(2)因为,所以,又,故设为平面的法向量,则,即取,解得∴为平面的一个法向量,显然,为平面的一个法向量则据图可知,二面角大小的余弦值为.点睛:空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.20. 如图,在平面直角坐标系中,已知点到抛物线焦点的距离为.(1)求的值;(2)设是抛物线上异于的两个不同点,过作轴的垂线,与直线交于点,过作轴的垂线,与直线交于点,过作轴的垂线,与直线分别交于点.求证:①直线的斜率为定值;②是线段的中点.【答案】(1) ,..(2) ①证明见解析. ②证明见解析.【解析】分析:(1)由抛物线定义知,所以,将点代入抛物线得,;(2) 设求得,,利用斜率公式消去、可得直线的斜率为;②设点的横坐标分别为,求得,,根据中点坐标公式化简即可的结果.详解:(1)由抛物线定义知,所以,将点代入抛物线得,(2)设①则直线的方程为:令得,,所以同理所以直线的斜率为(定值)②设点的横坐标分别为由①知,直线的方程为:令得,又直线的方程为:令得,所以所以是线段的中点.点睛:本题主要考查直线与圆锥曲线的位置关系的相关问题,意在考查学生理解力、分析判断能力以及综合利用所学知识解决问题能力和较强的运算求解能力,其常规思路是先把直线方程与圆锥曲线方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.。