二元一次方程组的解法一代入消元法教学设计
- 格式:doc
- 大小:157.50 KB
- 文档页数:7
消元——解二元一次方程组(第1课时)——代入消元法一、教学目标:1、能较熟练地用代入消元法解二元一次方程组;2、理解解二元一次方程组时的“消元”思想,和“化未知为已知、化复杂为简单”的化归思想;3、引导学生自由讨论,养成检查的习惯,培养联想旧知识解决新知识的能力。
二、教学重、难点:1、用代入消元法解二元一次方程组的基本步骤;2、解二元一次方程组过程中“二元”转化为“一元”的消元思想。
三、教学方法:讨论法、归纳法四、教学工具:教案、多媒体五、教学过程:1、知识回顾:什么叫二元一次方程?什么叫二元一次方程组?什么叫二元一次方程组的解?2、新课讲解:问题一:有一个矩形草坪,周长是36米,已知长是宽的两倍,求长、宽各多少米?如果用之前一元一次方程的知识,我们可以设宽为x米,而长为2x米,由题目已知可得一元一次方程:2(2x+x)=36按解一元一次方程的步骤,解得x=6,所以草坪的长为12米,宽为6米。
但是,如果用二元一次方程组的知识,我们可以假设长为y米,宽为x米,由题目两个等量关系,我们可以得到一个二元一次方程组:y=2x (1)2(x+y)=36 (2)讨论一:应该怎么解这个二元一次方程组?它跟上面的一元一次方程有什么关系?对比上面的一元一次方程和二元一次方程组,我们发现,如果把二元一次方程组里的方程(1)代入到方程(2)中,我们就得到了一模一样的一元一次方程: 2(2x+x )=36按照一元一次方程的解法,我们解得x=6,再把x=6代入到方程(1)中,得到y=12。
经过检验, 就是原二元一次方程组的解。
这样,我们运用了代入、 消元的方法,就把一个二元一次方程组解出来了。
讨论二:在解上面的二元一次方程组的过程中,非常关键的一步是把方程(1)代入到方程(2)中,把二元一次方程组化归为一元一次方程,从而把复杂的问题化为简单化。
那么这种代入、消元的方法能否适合其它二元一次方程组呢?问题二:一个班级总人数有52人,需要佩戴眼镜的有20人,其中男生x 人,女生y 人,又有3x+2y=52,求x ,y 各为多少?讲解:根据题目的两个等量关系,我们可以得到一个二元一次方程组:首先,我们可以把方程(1)进行移项变换,得到:y=20-x (3)接着,把方程(3)代入到方程(2),得到:3x+2(20-x )=52这样,就把二元一次方程组化归为一元一次方程,解这个一元一次方程,得到x=12。
代入消元法解二元一次方程组教案一、教学目标1.掌握代入消元法的基本思想和步骤;2.能够熟练地运用代入消元法解二元一次方程组;3.能够将数学知识应用到实际问题中。
二、教学内容1.代入消元法的基本思想和步骤;2.例题练习。
三、教学重难点1.代入消元法的基本思想和步骤;2.如何将数学知识应用到实际问题中。
四、教学方法1.讲授法;2.示范法;3.讨论法。
五、教学步骤Step1引入课题教师通过实例引入学生进入学习状态。
Step2代入消元法的基本思想和步骤1.代入消元法的基本思想:根据一个未知量的值,消去方程组中这个未知量的系数,然后将求得的值代入另一个方程中,从而求出另一个未知量的值。
2.代入消元法的步骤:(1)用其中一个方程式先求出一个未知量的值;(2)将求得的未知量的值代入另一个方程式中;(3)解此方程式;(4)求得另一个未知量的值。
Step3举例说明1.例题:求解方程组x+y=10x-y=6(1)用第一个方程求出x:x=10-y;(2)将x=10-y代入第二个方程:10-y-y=6,解得y=2;(3)将y=2代入x=10-y中,解得x=8;(4)所以x=8,y=2.2.例题:到某商店买饮料,木薯球1元一件,火腿肠2元一件,还要花费8元,买了8件饮料,求买了几件木薯球,几件火腿肠?设木薯球x件,火腿肠y件。
则某小商店饮料的总价为:1·x+2·y=8又买了8件饮料,则x+y=8然后,将x+y=8代入1·x+2·y=8,即可求得x和y.Step4练习和反思1、练习:选择集中范围内代入消元法解法例题,让学生反复练习。
2、反思:让学生谈谈代入消元法的适用范围及其不适用范围,以及在代入消元法中常见的问题和解决方法。
六、教学后记1、为了更好地提高学生的学习兴趣和参与度,在授课过程中,可以让学生自己设定实际问题,用代入消元法求解;2、教学过程中要让学生不断思考问题,启发他们多角度、多思路解题的能力;3、要让学生对代入消元法有一个更加深刻的理解,才能更好地应用到解决实际问题中。
用代入消元法解二元一次方程组教案用代入消元法解二元一次方程组教案利用代入消元法解二元一次方程教案〔北师大版新课标实验教材八年级上册〕一、教学目的1、知识与技能会用代入消元法解二元一次方程组;理解解二元一次方程时的“消元”思想、“化未知为”的化归思想。
2、过程与方法运用代入消元法解二元一次方程;理解解二元一次方程时的“消元”思想,初步体会“化未知为”的化归思想。
3、情感、态度、价值观在学生理解解二元一次方程时的“消元”思想,从而初步理解化“未知”为“”和化复杂问题为简单问题的化归思想。
感受学习数学的乐趣,进步学习数学的热情;培养学生合作交流,自主探究的`好习惯。
二、教学重、难点1、教学重点会用代入消元法解二元一次方程组;理解解二元一次方程时的“消元”思想、“化未知为”的化归思想。
2、教学难点“消元”的思想;“化未知为”的化归思想。
三、教学设计1、复习,引入新课上次课我们学习了二元一次方程、二元一次方程组,以及二元一次方程、二元一次方程组的解的定义。
下面请同学们回忆一下它们分别是怎样定义的?〔同学们说,说不完的老师利用ppt进展展示〕我们知道:合适一个二元一次方程组的一组未知数的值叫做这个二元一次方程组的解。
那么,我们能不能求出它的解呢?要怎样求呢?2、新课讲解〔1〕来看我们课本上的例子:上次课我们设老牛驮了x包,小马驮了y包,并建立如下的方程组。
...........(1)?x?y?1.......... ?x?1?2(y?1)........ ....(2)?如今要求老牛和小马到底各驮几个包裹?就需要我们求出该方程组的解对吧?我们前面已经学习了怎样求解一元一次方程,下面请同学们讨论怎样通过已学的知识解这个方程组?〔学生讨论,老师巡视指导〕通过同学们的讨论我们已经有理解题思想。
首先,由方程〔1〕将x视为数解出y=x-2,由于方程组中一样的字母表示同一未知数,所以可以用x-2代替方程〔2〕中的y,即将y=x-2代入方程〔2〕。
7.2二元一次方程组的解法(代入消元法)教学设计一、教学内容:初中数学华东师大2011课标版七年级下册第七章第二节二元一次方程组的解法。
二、教学目标1、使学生通过探求二元一次方程组的解法,经历把“二元”转化为“一元”的过程,从而初步体会消元的思想;2、了解把“未知”转化为“已知”,把复杂问题转化为简单问题的化归思想。
三、教学重难点:重点:用代入消元法解二元一次方程组的解题步骤;难点:如何正确消元。
四、教具、学具准备:教具:课件、电脑投影、导学案等;学具:签字笔、草稿纸、课本等。
五、设计理念这一堂课的学习目标是“探索二元一次方程组的解法”,通过学生身边熟悉的事情,建构“问题情境”,使学生感受到问题是“现实的、有意义的、富有挑战性的”,让学生在不自觉中走进自己的“最近发展区”,愉悦地接受教学活动.这是我备课时的设计意图。
六、教学流程(一)创设情境上课一开始,我就把学生学过的、熟悉的问题提出来,引导学生解答,说:“同学们,在生活中,我们时常遇到这样的问题,你能用前面我们学过的知识解决这个问题吗?问题1:小明到商店购买签字笔和作业本,签字笔价格是作业本价格的2倍,小明购买一支笔和一个作业本共花了6元钱,请你算一算签字笔和作业本的价格分别是多少元?学生活动:独立完成问题1的解答教师活动:通过巡视,发现问题的解答有可能会出现两种,一种是列一元一次方程解,另一种是列二元一次方程解,分别让学生将两种解法写在黑板上。
师:“同学们,黑板上两位同学用了不同的方法来解决这个问题,你认为哪一种方法是正确的呢?那我想请一位同学来说一说这两种方法分别是用到了前面我们学过的什么知识?那列出来的这个二元一次方程组和这个一元一次方程有没有什么联系呢,我们又该如何求解呢?这就是今天我们要一起探讨的内容,请同学们翻开书27页,并熟悉本节课的学习目标。
设计意图:当学生看到自己所学的知识与“现实世界”息息相关时,学习通常会更主动。
“与其拉马喝水,不如让它口渴”。
解二元一次方程组的代入消元法案例教案一、教学目标1.学生能够掌握代入消元法解二元一次方程组的基本流程和方法。
2.能够运用代入消元法解决实际问题。
二、教学重难点1.学生掌握解二元一次方程组的基本概念和代入消元法的原理。
2.学生能够理解把一个方程中的一个变量用另一个方程的式子表示后带入第一个方程,从而消去某一个变量的方法。
3.学生能够灵活运用代入消元法解决课本和实际应用问题。
三、教学过程1.教师引入请学生回忆一下一元一次方程的解法——消元法和代数法。
介绍本节课将学习的二元一次方程组的解法——代入消元法。
2.课堂讲授2.1.什么是二元一次方程组?二元一次方程组就是两个含有变量的一次方程,例如:$ ax+by=c $$ dx+ey=f $其中,$a,b,c,d,e,f$ 均为常数。
上面的方程可表示为:$$\left\{\begin{array}{lr}ax+by=c\\dx+ey=f\end{array}\right.$$2.2.什么是代入消元法?代入消元法是解二元一次方程组的一种方法,它的基本思想是:将一个方程中的某一个变量用另一个方程的式子表示后带入第一个方程,从而消去这个变量,得到只含有另一个变量的方程,然后解出这个变量的值,再带入到另一个方程中求出另一个变量的值。
例如:$$\left\{\begin{array}{lr}2x+y=5 \text{(1)}\\3x-2y=-1 \text{(2)}\end{array}\right.$$选取第一个方程解出 y:$y=5-2x$将该式子代入第二个方程:$3x-2(5-2x)=-1$解方程得到:$x=-1$,$y=7$因此,方程组的解为:$(-1,7)$。
2.3.代入消元法的步骤代入消元法的具体步骤如下:(1) 选取一个方程,求出某一个变量的值。
(2) 将该变量的值代入到另一个方程中,求出另一个变量的值。
(3) 将两个变量的值代入到方程组中,验证得出的结果是否正确,并写出方程组的解。
湘教版七年级数学下册1.2二元一次方程组的解法1.2.1代入消元法(1)教学设计一. 教材分析湘教版七年级数学下册1.2节主要介绍二元一次方程组的解法,其中1.2.1节是代入消元法。
这部分内容是在学生已经掌握了二元一次方程组的基础上进行讲解,通过代入消元法,让学生学会如何解决更复杂的二元一次方程组问题。
教材通过具体的例子引导学生理解并掌握代入消元法的步骤和原理。
二. 学情分析七年级的学生已经具备了一定的数学基础,对二元一次方程组有一定的了解。
但是,对于代入消元法这种解题方法,他们可能还比较陌生。
因此,在教学过程中,需要通过具体的例子,让学生逐步理解和掌握代入消元法。
三. 教学目标1.让学生理解代入消元法的概念和原理。
2.让学生能够运用代入消元法解决实际的数学问题。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.代入消元法的步骤和原理。
2.如何将实际问题转化为代入消元法可以解决的问题。
五. 教学方法采用讲解法、示范法、练习法、讨论法等多种教学方法,通过具体的例子,引导学生理解并掌握代入消元法。
六. 教学准备1.准备相关的教学PPT。
2.准备一些实际的数学问题,用于让学生进行练习和巩固。
七. 教学过程1.导入(5分钟)通过一个简单的二元一次方程组,引导学生思考如何解决更复杂的方程组问题。
2.呈现(15分钟)讲解代入消元法的步骤和原理,通过具体的例子,让学生理解并掌握代入消元法。
3.操练(15分钟)让学生分组合作,解决一些实际的数学问题,运用代入消元法进行解答。
4.巩固(10分钟)对学生在操练中遇到的问题进行讲解和解答,帮助学生巩固代入消元法的运用。
5.拓展(10分钟)引导学生思考如何将代入消元法应用到更复杂的问题中,让学生进行一些拓展练习。
6.小结(5分钟)对本节课的内容进行小结,让学生明确代入消元法的概念和运用。
7.家庭作业(5分钟)布置一些相关的家庭作业,让学生进一步巩固和掌握代入消元法。
第一篇:《代入法解二元一次方程组》教学设计消元——二元一次方程组的解法(代入消元法)学情分析: 因为学生已经学过一元一次方程的解法,求二元一次方程组的解关键是化二元方程为一元方程,故在求解过程中始终应抓住消元的思想方法。
讲解时以学生为主体,创设恰当的问题情境和铺设合适的台阶,尽可能激发学生通过自己的观察、比较、思考和归纳概括,发现和总结出消元化归的思想方法。
三维目标知识与技能1、会用代入法解二元一次方程组2、初步体会二元一次方程组的基本思想---“消元”过程与方法: 通过对方程组中的未知数特点的观察和分析,明确解二元一次方程组的主要思路是“消元”,从而促成未知向已知的转化,培养学生观察能力,体会化归思想。
情感态度与价值观:通过研究解决问题的方法,培养学生合作交流意识和探究精神。
教学重点:用加减消元法解二元一次方程组。
教学难点:理解加减消元思想和选择适当的消元方法解二元一次方程组。
教学过程(一)创设情境,激趣导入在8.1中我们已经看到,直接设两个未知数(设胜x场,负y场),x y22可以列方程组2x y40 表示本章引言中问题的数量关系。
如果只设一个未知数(设胜x场),这个问题也可以用一元一次方程________________________[1]来解。
分析:[1]2x+(22-x)=40。
观察上面的二元一次方程组和一元一次方程有什么关系?[2] [2]通过观察对照,可以发现,把方程组中第一个方程变形后代入第二个方程,二元一次方程组就转化为一元一次方程。
这正是下面要讨论的内容。
(二)新课教学可以发现,二元一次方程组中第1个方程x+y=22说明y=22-x,将第2个方程2x+y=40的y换为22-x,这个方程就化为一元一次方程2x+(22-x)=40。
解这个方程,得x=18。
把x=18代入y=22-x,得y=4。
从而得到这个方程组的解。
二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先解出一个未知数,然后再设法求另一未知数。
《二元一次方程组的解法—代入消元法》教学设计说课的内容是人教版义务教育课程标准实验教科书《数学》七年级下册,第八章第二节《二元一次方程组的解法》第一课时代入消元法。
下面我从教材分析、教学方法、学法指导、教学过程、教学感想这五个方面汇报我对这节课的教学设想。
一、教材分析1、教材的地位和作用本节主要内容是在上一节已学习了二元一次方程(组)和二元一次方程(组)的解的概念的基础上,来学习解方程组的第一种方法——代入消元法。
并初步体会解二元一次方程组的基本思想----“消元”。
二元一次方程组的求解,用到了前面学过的一元一次方程的解法,是对过去所学知识的一个回顾和提高,同时,也为后面利用方程组来解决实际问题打下了基础。
2、教学目标根据本课教材的特点、课程标准对本节课的教学要求、学生的身心发展的合理需要,我从三个不同的方面确立了以下教学目标:(1)知识技能目标:1)会用代入法解二元一次方程组2)初步体会解二元一次方程组的基本思想----消元(2)能力目标:通过对方程组中未知数特点的观察和分析,明确解二元一次方程组的主要思路是“消元”,由未知向已知的转化,培养观察能力和体会化规思想。
通过用代入消元法解二元一次方程组的训练,培养运算能力。
(3)情感目标:通过研究解决问题的方法,培养学生合作交流意识与探究精神。
3、重点、难点根据学生的认知特点,我确立了本节课的重难点。
重点:用代入消元法解二元一次方程组难点:探索如何用代入法将“二元”转化为“一元”的消元过程。
为了突出重点、突破难点,让学生动手操作,积极参与并主动探索解题方法,我设计并制作了多媒体课件,帮助学生理解代入消元法。
成功的教学必须选择合适的教法和学法,因此我确定如下教法和学法:二、教学方法我采用了探究式教学方法,设疑思考、点拨启发、小组探究、逐步深入。
三、学法指导我采用积极引导学生主动参与,合作交流的方法组织教学,使学生真正成为教学的主体,体会参与的乐趣,成功的喜悦,感知数学的奇妙。
二元一次方程组的解法一(代入消元法)教学设计
————————————————————————————————作者:————————————————————————————————日期:
8.2.1二元一次方程组的解法一(代入消元法)
公开课教案高坝镇六坝九年制学校张礼
教学班级:七年级2班授课类型:新授审核:数学教研组
教学内容:二元一次方程组的解法一 ----代入消元法
教学目标:
1、知识与技能:
(1)用含一个未知数的式子表示另一个未知数;
(2)使学生能够熟练运用代入法解二元一次方程组,掌握代入消元法解二元一次方程组的步骤。
2、过程与方法:(1)通过让学生经历探索二元一次方程组的解法的过程, 初步体会解二元一次方程组的基本思想――“消元”,•理解代入消元法的基本思想体现的化未知数为已知的化归思想,培养学生良好的探索习惯和主动获取知识的方法。
(2)通过对具体实际问题分析,组织学生自主交流、探索,去发现列方程建模的过程,培养学生用数学的意识。
3、情感、态度与价值观:
(1)通过研究解决问题的方法,让学生体会理解消元思想、化归思想。
培养学生合作交流意识与自主探究的良好习惯;让学生享受学习数学的乐趣,增强学习数学的信心。
(2)在用方程组解决实际问题的过程中,体会方程组是刻画现实世界的有效数学模型,体验数学的实用性,培养应用数学的意识,提高学习数学的兴趣。
教学重点:
用代入消元法解二元一次方程组。
教学难点:
体会理解运用代入消元法将二元转化为一元的消元思想、化归思想。
教学关键:掌握代入消元法的关键是化二元方程为一元方程,而转化的关键是将方程组其中一个方程变形为“y=ax+b”或“x=ay+b”(其中a、b为常数)的形式。
教学方法:讲授法、启发引导法。
学法指导:探索、发现、交流、思考、总结归纳。
教学手段:多媒体、电子白板。
教学过程
一、复习引入
1、什么叫二元一次方程组的解?(叫同学回答,老师订正)
2、x=5 y=3是方x+y=8的吗?它是方程5x+3y=34的解吗?所以方程组
x +y =8 ① x=5
的解是
5 x +3y =43 ② y=3
二、情境导入
我校篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,某队为了争取较好的名次,想在全部10场比赛中得到16分,那么这个队胜负场数分别是多少?
在上述问题中,我们可以设出两个未知数,列出二元一次方程组,
解:设胜的场数是x 场,负的场数是y 依题意得
交流 这个题我们能否用一元一次方程来解决?
设这个队胜x 场,根据题意得
16)10(2=-+x x
思考:这个一元一次方程与二元一次方程组在结构上有什么联系?那么怎么样解二元一次方程组呢?,(出示多媒体课件,学生读题,师生共同分析)
三、探究新知
1、二元一次方程组中第1个方程x +y =10说明y = ,将第2个方程2x +y =16的y 换为 ,这个方程就化为一元一次方程 2x +(10-x ) =16。
(老师引导学生思考后完成填空)
2、由此可见二元一次方程组中有两个未知数,如果消去其中一个未知数,就可将二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先解出一个未知数,然后再设法求另一未知数.这种将未知数的个数由多化少、逐一解决的想法,叫做消⎩⎨⎧=+=+16
210y x y x
元思想.
3、归纳:上面的解法,是由二元一次方程组中一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解.这种方法叫做代入消元法,简称代入法.(学生齐读,要求学生记忆。
)二元一次方程组一元一次方程。
4、书写解题过程,规范解题步骤。
(引导学生在课件上共同完成,规范步骤,让学生读,加强印象)
5、关键点---变形:把x+y=10 ,写成y=10-x ,叫做用x含的式子表示y的形式;
把 x+y=10,写成x=10- y ,叫做用含y的式子表示x的形式。
四、新知应用
1、例1、已知方程x-2y=4,先用含x的代数式表示y,再用含y的代数式表示x,并
比较哪一种形式比较简便。
2、例2、用代入法解方程组
x-y=3①
3x-8y=14②
先用多媒体展示这个题的的分析示意图。
解:由①得x=③
将③代入②得
解得y=
将y=代入③中得x=
原方程组的解为:
(设计成填空题,避免简单板书解题过程,而是增加一个让学生思考的过程。
教师引导学生思考,共同完成填空)
3、引导学生:观察发现,相互交流:用代入消元法解二元一次方程组的步骤:(在课件上以填空形式完成)
4、最后,师生归纳出代入法解二元一次方程组的一般步骤:
①变形(选择其中一个方程,把它变形为用一个未知数的代数式表示另一个未知数); ②代入(把变形好的方程代入到另一个方程,即可消元)
③求解(解一元一次方程,得一个未知数的值;再把求得的未知数代入到变形的方程,求出另一个未知数的值—即回代;)
④写解(用 x=a 的形式写出方程组的解)。
y=b
简记:变形→代入→求解→写解。
(多媒体展示,学生齐读。
)
五、练习提高
1、把下列方程写成用含x 的式子表示y 的形式:
;32)1(=-y x (2)013=-+y x
2、.用代入法解下列方程组:
(1)⎩⎨⎧=+-=;823,32y x x y (2)⎩⎨⎧=+=-.
243,52y x y x
设计意图:第1题体现了难点突破中的“关键”即二元一次方程变形的关键,第二题能让学生通过解决问题,注意解题的一般步骤和解题技巧.
教法学法:1.让学生自由练习,可以独立完成,也可合作完成。
可以写出不同解法,最后师生共同订正;
2.老师评讲:对于一般形式的二元一次方程组用代入法求解的关键是选择哪一个方程变形,消什么元,选取的恰当往往会使计算简单,而且不易出错,选取的原则是:
(1)、选择未知数的系数是1或-1的方程;
(2)、若未知数的系数都不是1或-1,选系数的绝对值较小的方程,将要消的元用含另一个未知数的代数式表示,再把它代入没有变形的方程中去。
这样就把二元一次方程组转化为一元一次方程了。
六、小结归纳
引导:(1)通过这节课的学习活动,你有什么收获?
(2)代入法解二元一次方程组的步骤是什么?
(3)用代入法解二元一次方程组的技巧:①变形的技巧; ②代入的技巧.
(4)解二元一次方程组的基本思想是什么?
(先由小组讨论,推荐一位同学作最后总结。
)
解二元一次方程组的一般步骤:(由多媒体再现)
简记:变形→代入→求解→写解。
七、作业布置
1.(必做题)教材P97页习题8.2复习巩固第1、(1)(2)题、第2题(1)(2)题。
2.(选做题) 教材P97页习题8.2复习巩固第1、(3)(4)题、第2题(3)(4)。
八、板书设计
二元一次方程组的解法一 ----代入消元法
1、 16)10(2=-+x x
2、二元一次方程组 一元一次方程。
3、1中方程组的解题过程。
4、例1、例2.
5、二元一次方程组的解题步骤。
、
九、课后反思:
⎩⎨⎧=+=+16
210y x y x。