一元二次方程应用题(面积问题)1
- 格式:ppt
- 大小:408.50 KB
- 文档页数:21
一元二次方程面积问题例1:将一块长18米,宽15米的矩形荒地修建成一个花园(阴影部分)所占的面积为原来荒地面积的三分之二.(精确到0.1m)(1)设计方案1(如图2)花园中修两条互相垂直且宽度相等的小路.(2)设计方案2(如图3)花园中每个角的扇形都相同.以上两种方案是否都能符合条件?若能,请计算出图2中的小路的宽和图3中扇形的半径;若不能符合条件,请说明理由.分析:(1)设出小路的宽度为x米,表示出两条小路的面积,而小路的面积为原来荒地面积的三分之一,列出方程解答即可;(2)设出扇形的半径为y米,则四个扇形的面积和恰好等于一个圆的面积,而四个扇形的面积和为原来荒地面积的三分之一,列出方程解答即可.:解答:解:(1)设小路的宽度为x米,根据题意列方程得,18x+15x-x2=18×15×13,解得x1=3,x2=30(不合题意,舍去);答:图①中小路的宽为3米.(2)设扇形的半径为y米,根据题意列方程得,πy2=18×15×13,解得y1≈5.4,y2≈-5.4(不合题意,舍去);答:扇形的半径约为5.4米.点评:此题主要考查长方形和扇形面积的计算方法,解答时注意题目中蕴含的数量关系例2:如图1—1所示,某小区规划在一个长为40m,宽为26m的矩矩形场地ABCD上修建三条同样宽的道路,使其中两条与AB平行,另一条与AD平行,其余部分种草,若使每一块草坪的面积都是144㎡,则道路的宽是多少米?分析:(1)设路的宽为x m,那么道路所在的面积(40x+26x×2-2x2)㎡,于是六块草坪的面积为[40×26-(40x+26x×2-2x2)]㎡,根据题意,得40×26-(40x+26x×2-2x2)=144×6(2)将图1—1所示中的三条道路分别向上和向左、向右平移图1—2的位置,若设宽为x m,则草坪的总面积为(40-2x)(26-x)㎡所列方程为(40-2x)(26-x)=144×6解法1:设道路的宽为x m,则根据题意,得40×26-(40x+26x×2-2x2)=144×6整理,得x2-46x+88=0,解得x1=44(舍去),x2=2解法2:设道路的宽为x m,则根据题意,得(40-2x)(26-x)=144×6 解得,x1=44(舍去),x2=2 答:略练习1、如图,在长为10cm,宽为8cm的矩形的四个角上截去四个全等的正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,所截去的小正方形的边长是多少。
一、选择题1. (2009 甘肃省庆阳市)如图,在宽为20米、长为30米的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要551米2,则修建的路宽应为()A.1米B.1.5米C.2米D.2.5米2. (2009 甘肃省白银九市) 如图,小东用长为3。
2m的竹竿做测量工具测量学校旗杆的高度,移动竹竿,使竹竿、旗杆顶端的影子恰好落在地面的同一点.此时,竹竿与这一点相距8m、与旗杆相距22m,则旗杆的高为()A.12m B.10m C.8m D.7m3. (2010 四川省乐山市) 某校数学兴趣小组为测量学校旗杆AC的高度,在点F处竖立一根长为1。
5米的标杆DF,如图所示,量出DF的影子EF的长度为1米,再量出旗杆AC的影子BC的长度为6米,那么旗杆AC的高度为( )(A)6米(B)7米(C)8。
5米(D)9米14。
(2012 湖北省孝感市)几个棱长为1的正方体组成的几何体的三视图如下图所示,则这个几何体的体积是().(A)4(B)5 (C)6 (D)75. (2012 湖北省黄冈市)如图,水平放置的圆柱体的三视图是()。
6。
(2012 新疆乌鲁木齐)如图是某几何体的三视图,其侧面积是()(A)8π(B)4π(C)2π(D)47. (2012 广西贺州市)由一些相同的小正方体搭成的几何体的三视图如图所示,则搭成该几何体的小正方体有()23(A )3个 (B )4个(C )5个 (D )6个8。
(2013 新疆乌鲁木齐) 右图是某几何体的三视图,则该几何体的体积是( ).(A )π (B )2π (C )3π (D )4π9。
(2013 云南省红河州市) 右图是某个几何体的三视图,该几何体是()A .正方体B .圆柱C .圆锥D .球10。
(2013 浙江省杭州市) 如图是某几何体的三视图,则该几何体的体积是(A )318 (B )354 (C )3108 (D)321611. (2013 宁夏回族自治区) 如图是某几何体的三视图,其侧面积( )主视图俯视图左视图4(A)6(B)π4 (C)π6 (D )π1212。
一元二次方程应用题专题训练一、面积问题1. 题目- 一个矩形的长比宽多2cm,面积是100cm²,求这个矩形的长和宽。
- 解析:设矩形的宽为x cm,因为长比宽多2cm,所以长为(x + 2)cm。
根据矩形面积公式:面积=长×宽,可得到方程x(x + 2)=100。
展开方程得到x²+2x - 100 = 0。
对于一元二次方程ax²+bx + c = 0(这里a = 1,b = 2,c=-100),根据求根公式x=frac{-b±√(b^2)-4ac}{2a},先计算判别式Δ=b^2-4ac = 2^2-4×1×(- 100)=4 + 400=404。
则x=(-2±√(404))/(2)=(-2±2√(101))/(2)=-1±√(101)。
因为矩形的宽不能为负数,所以取x=-1+√(101)≈ - 1+10 = 9(这里√(101)≈10),长为x + 2=9+2 = 11cm。
2. 题目- 有一块正方形铁皮,从四个角各剪掉一个边长为2分米的正方形后,所剩部分正好围成一个无盖的正方体盒子,这个盒子的容积是27立方分米,求原来正方形铁皮的边长。
- 解析:设原来正方形铁皮的边长为x分米。
那么围成无盖正方体盒子底面的边长为(x - 2×2)=(x - 4)分米,盒子的高为2分米。
根据正方体容积公式V=a^3(这里a为正方体棱长),可得方程(x - 4)^2×2 = 27,即(x - 4)^2=(27)/(2),展开得到x^2-8x + 16=(27)/(2),整理为2x^2-16x+32 - 27 = 0,即2x^2-16x + 5 = 0。
这里a = 2,b=-16,c = 5,判别式Δ=b^2-4ac=(-16)^2-4×2×5=256 - 40 = 216,x=(16±√(216))/(4)=(16±6√(6))/(4) = 4±(3√(6))/(2),因为边长不能为负,所以x =4+(3√(6))/(2)分米。