第六章材料的电学性质教材课程
- 格式:ppt
- 大小:779.50 KB
- 文档页数:41
电学材料的性质和应用电学材料是一类能够在电磁场中传输电荷的材料。
这类材料具有许多特殊的性质,使其在电子器件和电力领域中得到了广泛的应用。
本文将介绍电学材料的性质和应用,让读者了解这些材料的重要性。
1. 电学材料的性质电学材料的主要性质包括导电性、电阻性、介电性、磁性和光学性。
下面分别介绍这些性质的作用和意义。
1.1 导电性导电性是电学材料最基本的性质之一。
导电性指的是材料中电子的可移动性,也就是说,在外电场的作用下,电子能够进行移动,并在材料中建立电流。
导电性不同的材料具有不同的电导率,电导率高的材料通常被用作电纳米器件的金属导线和接触电极等,以确保其良好的电阻性。
1.2 电阻性电阻性是指材料对电流的阻碍程度。
电导率和电阻率是相互关联的,电导率高的材料电阻率相对较低。
电学材料的电阻性质在电子器件和电路的设计中起着重要的作用。
例如,电阻性材料常用于制作电阻、电阻网络和电阻器等器件。
1.3 介电性介电性是指材料中电子对外电场的响应程度。
介电常数是定义材料的介电性的数量。
介电性材料通常可以用作电容器和电介质,以储存电能和隔离电路中的电信号。
1.4 磁性磁性是指电学材料在外磁场的作用下产生的磁感应强度。
磁性材料在电子器件中扮演重要的角色,例如电感和变压器等。
1.5 光学性光学性是指电学材料与光的交互作用。
光学性材料的应用涵盖了光波导、光传感器和光速现象研究等。
2. 电学材料的应用2.1 电子器件和电路电子器件和电路是电学材料最显著的应用领域。
电子器件包括电阻器、电容器、电感器、晶体管、二极管和集成电路等。
电路是由这些器件设计出来的电子元器件系统。
电学材料对电子器件和电路的功能、稳定性、可靠性以及寿命等具有重要的影响。
利用电学材料,可以不断地开发和提高电子器件的专业性,从而应用于更广泛的领域。
2.2 能源领域电学材料在能源领域的应用在不断地拓展。
电池和太阳能电池等能源装置是电学材料的处境。
通过电学材料的设计和制造,可以提高能源装置的输出和效率,从而更好地支持未来的可持续能源技术。
第六节 高分子材料的电学性能高分子材料的电学性能是指在外加电场作用下材料所表现出来的介电性能、导电性能、电击穿性质以及与其他材料接触、摩擦时所引起的表面静电性质等。
种类繁多的高分子材料的电学性能是丰富多彩的。
就导电性而言,高分子材料可以是绝缘体、半导体、导体和超导体。
多数聚合物材料具有卓越的电绝缘性能,其电阻率高、介电损耗小,电击穿强度高,加之又具有良好的力学性能、耐化学腐蚀性及易成型加工性能,使它比其他绝缘材料具有更大实用价值,已成为电气工业不可或缺的材料。
另一方面,导电高分子的研究和应用近年来取得突飞猛进的发展。
以MacDiarmid 、Heeger 、白川英树等人为代表高分子科学家发现,一大批分子链具有共轭π-电子结构的聚合物,如聚乙炔、聚噻吩、聚吡咯、聚苯胺等,通过不同的方式掺杂,可以具有半导体(电导率σ=10-10-102 S •cm -1)甚至导体(σ=102-106 S •cm -1)的电导率。
通过结构修饰(衍生物、接枝、共聚)、掺杂诱导、乳液聚合、化学复合等方法人们又克服了导电高分子不溶不熔的缺点,获得可溶性或水分散性导电高分子,大大改善了加工性,使导电高分子进入实用领域。
白川英树等人因其开创性和富有成效的工作获得2000年度诺贝尔化学奖。
研究聚合物电学性能的另一缘由是因为聚合物的电学性质非常灵敏地反映材料内部的结构特征和分子运动状况,因此如同力学性质的测量一样,电学性质的测量也成为研究聚合物结构与分子运动的一种有效手段。
一、聚合物的极化和介电性能(一)聚合物电介质在外电场中的极化在外电场作用下,电介质分子中电荷分布发生变化,使材料出现宏观偶极矩,这种现象称电介质的极化。
极化方式有两种:感应极化和取向极化。
根据分子本身是否具有永久偶极矩,物质分子可分为极性分子和非极性分子两大类,其极化方式不同。
非极性分子本身无偶极矩,在外电场作用下,原子内部价电子云相对于原子核发生位移,使正负电荷中心分离,分子带上偶极矩;或者在外电场作用下,电负性不同的原子之间发生相对位移,使分子带上偶极矩。
材料的电化学性质和应用材料的电化学性质是指材料表面与电解质之间的电荷转移反应和电流传导特性。
这些性质对于材料的应用具有重要的影响。
本文将介绍材料的电化学性质以及相关的应用。
一、电化学性质1. 氧化还原反应氧化还原反应是指材料通过释放或吸收电子以改变其氧化态的过程。
这种反应在电池、电解和电化学传感器等领域广泛应用。
举例来说,锂离子电池中的正极材料在充电过程中发生氧化反应,而在放电过程中发生还原反应。
2. 电化学腐蚀电化学腐蚀是指材料在电解质溶液中受到电流作用导致的腐蚀现象。
金属材料的电化学腐蚀产生的电流可以通过合适的处理方式用于电化学能源的收集或电化学传感器的传感。
例如,锌电池中的锌作为负极,在电池工作时发生电化学腐蚀反应。
3. 电化学活性材料的电化学活性是指在电解质中观察到的电化学反应的程度。
一些金属氧化物和金属氢氧化物材料具有优良的电化学活性,可以作为电极催化剂用于电池和电解过程中。
此外,电解质用于电池和超级电容器等电化学设备时也需要考虑材料的电化学活性。
二、应用1. 锂离子电池锂离子电池是一种常见的可充电电池,广泛应用于移动电子设备和电动汽车等领域。
材料的电化学性质对锂离子电池的性能和循环寿命具有重要影响。
正极和负极材料需要具有较高的电化学活性,以实现高放电容量和长循环寿命。
2. 电解水产氢电解水产氢是一种清洁能源技术,该过程通过将水分解为氢气和氧气,以实现能源的转化和储存。
在电解过程中,使用材料具有较好的电导率和化学稳定性非常重要。
电解水产氢技术有望在未来能源领域发挥重要作用。
3. 电化学传感器电化学传感器可以通过监测电流、电压和电化学反应来检测分析样品中的物质浓度。
这些传感器广泛应用于环境监测、生物医学诊断和食品安全等领域。
电化学传感器使用特定的材料作为感测元件,该材料对目标物质具有较高的选择性和灵敏性。
4. 腐蚀防护电化学腐蚀是一种常见的材料损坏方式,因此对于一些重要设备和结构物来说,腐蚀防护非常重要。
第六章高聚物的电学性能¾交变电场¾弱电场¾强电场¾发生在聚合表面¾光导电¾压电¾热电(焦电)¾热释电¾驻极体等在外电场F 作用下,诱导偶极矩µ1为由取向极化引起的偶极矩µ2在外电场作用下所产生的偶极矩µ为αe ——电子极化率αa ——原子极化率αo ——取向极化率µ0——永久(固有)偶极矩E ——材料内部的场强,又称为局域场强E ≠F高聚物的有效偶极矩(单体单元偶极矩)与所带基团的偶极矩不完全一致,结构对称性会导致偶极矩部分或全部相互抵消介电系数:表征材料介电性能的主要参数(ε)含有该材料的电容器之电容C 与其在真空下的电容C 0之比值物理意义是电介质电容器储电能力的大小,在微观上则是电介质的极化能力式中,ε0为直流电场中的静电介电常数;M为高聚物的相对分子质量;ρ为密度;P为摩尔极化度;为阿伏加德罗常数。
克劳修斯-莫索提(Clausius-Mossotti)公式宏观的介电系数(ε)和微观的分子极化率(α)均反映了电介质材料的极化能力对于极性高聚物德拜(Debye)方程N~在高频电场下(>1014Hz),即极化时间为10-14s时,取向极化和原子极化都不容易发生,记这时的介电系数为ε(光频介电系数)∞对于非极性介质,介电系数ε与介质的光折射率n的平方相等介电损耗一个理想电容器的外电场作用下能储存电能,当外电场移去时,所储存的电能又全部释放出来,形成电源,没有能量损耗对于交变电压V=V 0e iwt ,理想电容器的电流I 理想和电压有90º相位差,ε1为介电系数,ε2为介电损耗因子,决定电介质内电能转变成热能的损耗程度对于高聚物电介质,在每一周期内所放出的能量就不等于所储存的能量,因为完成高聚物电介质偶极取向需要克服分子间相互作用而消耗一部分电能,这时,介电损耗介电损耗:电介质在交变电场中,由于消耗一部分电能使介质本身发热的现象产生介电损耗的原因:1. 电导损耗:电介质中含有能导电的载流子在外加电场的作用下,产生电导电流,消耗一部分电能转化为热能。