九年级数学直线与圆的位置关系同步练习1
- 格式:doc
- 大小:54.50 KB
- 文档页数:5
直线和圆的位置关系练习题
一、判断题
1、直线与圆最多有两个公共点()
2、若直线与圆相交,则直线上的点都在圆内 ( )
3 、若A、B是⊙O外两点,则直线AB与⊙O相离 ( )
4 、若C为⊙O内与O点不重合的一点,则直线CO与⊙O相交()
5、若线段和圆没有公共点,该圆圆心到线段的距离大于半径()
二、选择题
1.⊙O的半径为3 ,圆心O到直线l的距离为d,若直线l与⊙O没有公共点,则d为():
A.d >3 B.d<3 C.d ≤3 D.d =3
2.圆心O到直线的距离等于⊙O的半径,则直线和⊙O的位置关系是(): A.相离 B.相交 C.相切 D.相切或相交
三、填空题
1、已知⊙O的直径为12cm.
(1)若圆心O到直线l的距离为12cm,则直线l与⊙O 的位关系为________;
(2)若圆心O到直线l的距离为6cm,则直线l与⊙O 的位置关系为________;
(3)若圆心O到直线l的距离为3cm,则直线l与⊙O 的位置关系为________.2、已知⊙O的直径为10cm.
(1)若直线l与⊙O相交,则圆心O到直线l的距离为______;
(2)若直线l与⊙O相切,则圆心O到直线l的距离为______;
(3)若直线l与⊙O相离,则圆心O到直线l的距离为______。
2022-2023学年北师大版九年级数学下册《3.6直线和圆的位置关系关系》同步练习题(附答案)一.选择题1.下列说法正确的是()A.三点确定一个圆B.任何三角形有且只有一个内切圆C.相等的圆心角所对的弧相等D.正多边形一定是中心对称图形2.如图,半⊙O的半径为2,点P是⊙O直径AB延长线上的一点,PT切⊙O于点T,M 是OP的中点,射线TM与半⊙O交于点C.若∠P=20°,则图中阴影部分面积为()A.1+B.1+C.2sin20°+D.3.如图,△ABC中,∠A=90°,AC=3,AB=4,半圆的圆心O在BC上,半圆与AB、AC分别相切于点D、E,则半圆的半径为()A.B.C.D.4.在Rt△ABC中,AB=6,BC=8,则这个三角形的内切圆的半径是()A.5B.2C.5或2D.2或﹣1 5.如图,⊙O的半径为4,A、B、C、D是⊙O上的四点,过点C,D的切线CH,DG相交于点M,点P在弦AB上,PE∥BC交AC于点E,PF∥AD于点F,当∠ADG=∠BCH =30°时,PE+PF的值是()A.4B.2C.4D.值不确定6.如图,P A,PB分别与⊙O相切于点A,B,连接OP,则下列判断错误的是()A.∠P AO=∠PBO=90°B.OP平分∠APBC.P A=PB D.∠AOB=7.如图,在Rt△ABC中,AC⊥BC,过C作CD⊥AB,垂足为D,若AD=3,BC=2,则△ABC的内切圆的面积为()A.πB.(4﹣2)πC.()πD.2π8.已知:如图,AB是⊙O的直径,点P在BA的延长线上,弦CD交AB于E,连接OD、PC、BC,∠AOD=2∠ABC,∠P=∠D,过E作弦GF⊥BC交圆与G、F两点,连接CF、BG.则下列结论:①CD⊥AB;②PC是⊙O的切线;③OD∥GF;④弦CF的弦心距等于BG.则其中正确的是()A.①②④B.③④C.①②③D.①②③④9.如图将△ABC沿着直线DE折叠,点A恰好与△ABC的内心I重合,若∠DIB+∠EIC=195°,则∠BAC的大小是()A.40°B.50°C.60°D.70°10.如图:P A切⊙O于A,PB切⊙O于B,OP交⊙O于C,下列结论中错误的是()A.∠APO=∠BPO B.P A=PBC.AB⊥OP D.C是PO的中点二.填空题11.如图,P A,PB是⊙O的两条切线,切点分别为A,B.连接OA,OB,AB,PO,PO与AB交于点C.若∠APB=60°,OC=1,则△P AB的周长为.12.如图,正方形ABCD的边长为4,M为AB的中点,P是BC边上的动点,连接PM,以点P为圆心,PM长为半径作圆P,当圆P与正方形ABCD的边相切时,CP的长为.13.如图,AB是⊙O的直径,AD、BC是⊙O的切线,P是⊙O上一动点,若AD=3,AB =4,BC=6,则△PDC的面积的最小值是.14.已知正方形ABCD边长为2,DE与以AB的中点为圆心的圆相切交BC于点E,求三角形DEC的面积.15.平面直角坐标系xOy中,以O为圆心,1为半径画圆,平面内任意点P(m,n2﹣9),且实数m,n满足m﹣n2+5=0,过点P作⊙O的切线,切点为A,当P A长最小时,点P 到原点O的距离为.16.如图,I为△ABC的内心,有一直线经过点I且分别与AB、AC相交于点D、点E.若AD=DE=5,AE=6,则点I到BC的距离为.三.解答题17.如图,在四边形ABCD中,AB=AD,CB=CD,圆心在四边形对角线AC上的⊙O与CD边相切于点E.(1)求证:BC是ʘO的切线;(2)若O是AC的中点,点E是CD的中点,∠CAD=30°,⊙O的半径R=3,求CD 的长.18.已知:如图,AB是⊙O的直径,AB⊥AC,BC交⊙O于点D,点E是AC的中点,ED 与AB的延长线交于点F.(1)求证:DE是⊙O的切线;(2)若∠F=30°,BF=2,求△ABC外接圆的半径.19.如图,△ABC内接于⊙O,AB是⊙O的直径,过⊙O外一点D作DG∥BC,DG交线段AC于点G,交AB于点E,交⊙O于点F,连接DB,CF,∠A=∠D.(1)求证:BD与⊙O相切;(2)若AE=OE,CF平分∠ACB,BD=12,求DE的长.20.△ABC内接于⊙O,∠BAC的平分线交⊙O于D,交BC于E(BE>EC),过点D作⊙O 的切线DF,交AB的延长线于F.(1)求证:DF∥BC;(2)连接OF,若tan∠BAC=,BD=,DF=8,求OF的长.21.如图,在Rt△ABC中,∠C=90°,在AC上取一点D,以AD为直径作⊙O,与AB 相交于点E,作线段BE的垂直平分线MN交BC于点N,连接EN.(1)求证:EN是⊙O的切线;(2)若AC=3,BC=4,⊙O的半径为1.求线段EN与线段AE的长.22.如图,AB、AC分别是半⊙O的直径和弦,OD⊥AC于点D,过点A作半⊙O的切线AP,AP与OD的延长线交于点P,连接PC并延长与AB的延长线交于点F.(1)求证:PC是半⊙O的切线;(2)若∠CAB=30°,AB=6,求由劣弧AC、线段AC所围成图形的面积S.23.如图,AB是⊙O的直径,四边形ABCD内接于⊙O,D是的中点,DE⊥BC交BC 的延长线于点E.(1)求证:DE是⊙O的切线;(2)若AB=10,BC=8,求BD的长.参考答案一.选择题1.解:A.不在同一条直线上的三个点确定一个圆,故A不符合题意;B.任何三角形有且只有一个内切圆,故B符合题意;C.在同圆或等圆中,相等的圆心角所对的弧相等,故C不符合题意;D.正多边形一定是轴对称图形,不一定是中心对称图形,故D不符合题意;故选:B.2.解:连接OT、OC,∵PT切⊙O于点T,∴∠OTP=90°,∵∠P=20°,∴∠POT=70°,∵M是OP的中点,∴TM=OM=PM,∴∠MTO=∠POT=70°,∵OT=OC,∴∠MTO=∠OCT=70°,∴∠TOC=180°﹣2×70°=40°,∴∠COM=30°,作CH⊥AP,垂足为H,则CH=OC=1,S阴影=S△AOC+S扇形OCB=+=1+,故选:A.3.解:连接OE,OD,∵圆O切AC于E,圆O切AB于D,∴∠OEA=∠ODA=90°,∵∠A=90°,∴∠A=∠ODA=∠OEA=90°,∵OE=OD,∴四边形ADOE是正方形,∴AD=AE=OD=OE,设OE=AD=AE=OD=R,∵∠A=90°,∠OEC=90°,∴OE∥AB,∴△CEO∽△CAB,同理△BDO∽△BAC,∴△CEO∽△ODB,∴=,即=,解得:R=,故选:A.4.解:设直角三角形ABC内切圆的圆心为点I,半径为r,三边上的切点分别为D、E、F,连接ID、IE、IF,得正方形,则正方形的边长即为r,如图所示:当BC为直角边时,AC==10,根据切线长定理,得AD=AF=AB﹣BD=6﹣r,CE=CF=BC﹣BE=8﹣r,∴AF+FC=AC=10,即6﹣r+8﹣r=10,解得r=2;当BC为斜边时,AC==2,根据切线长定理,得BD=BF=6﹣r,CE=CF=2﹣r,∴BC=BF+CF=6﹣r+2﹣r=8,解得r=﹣1.答:这个三角形的内切圆的半径是2或﹣1.故选:D.5.解:当∠ADG=∠BCH=30°时,PE+PF是定值.理由:连接OA、OB、OC、OD,如图:∵DG与⊙O相切,∴∠GDA=∠ABD.∵∠ADG=30°,∴∠ABD=30°.∴∠AOD=2∠ABD=60°.∵OA=OD,∴△AOD是等边三角形.∴AD=OA=4.同理可得:BC=4.∵PE∥BC,PF∥AD,∴△AEP∽△ACB,△BFP∽△BDA.∴=,=.∴+=+=1.∴+=1.∴PE+PF=4.∴当∠ADG=∠BCH=30°时,PE+PF=4.故选:A.6.解:∵P A,PB分别与⊙O相切于点A,B,∴∠P AO=∠PBO=90°,OP平分∠APB,P A=PB,则A、B、C正确,不符合题意;∠AOB的度数与的度数相等,D错误,符合题意;故选:D.7.解:∵在Rt△ABC中,AC⊥BC,过C作CD⊥AB ∴△ADC∽△CDB∴CD2=AD•DB∴CD2=3DBRt△CDB中,CB2=CD2+DB2∴4=3DB+DB2解得DB=1或DB=﹣4(舍去)∴CB=2∴AC=2设△ABC内切圆半径为r,内心为O,连OA、OB、OC由面积法可知S△ABC=S△AOC+S△BOC+S△AOB∴∴r==∴内切圆半径为π()2=(4﹣2)π故选:B.8.解:连接BD、OC、AG,过O作OQ⊥CF于Q,OZ⊥BG于Z,∵OD=OB,∴∠ABD=∠ODB,∵∠AOD=∠OBD+∠ODB=2∠OBD,∵∠AOD=2∠ABC,∴∠ABC=∠ABD,∴弧AC=弧AD,∵AB是直径,∴CD⊥AB,∴①正确;∵CD⊥AB,∴∠P+∠PCD=90°,∵OD=OC,∴∠OCD=∠ODC=∠P,∴∠PCD+∠OCD=90°,∴∠PCO=90°,∴PC是切线,∴②正确;假设OD∥GF,则∠AOD=∠FEB=2∠ABC,∴3∠ABC=90°,∴∠ABC=30°,已知没有给出∠B=30°,∴③错误;∵AB是直径,∴∠ACB=90°,∵EF⊥BC,∴AC∥EF,∴弧CF=弧AG,∴AG=CF,∵OQ⊥CF,OZ⊥BG,∴CQ=AG,OZ=AG,BZ=BG,∴OZ=CQ,∵OC=OB,∠OQC=∠OZB=90°,∴△OCQ≌△BOZ,∴OQ=BZ=BG,∴④正确.故选:A.9.解:∵I是△ABC的内心,∴∠IBC=∠ABC,∠ICB=∠BCA,∵∠DIB+∠EIC=195°,∴∠DIE+∠BIC=165°,由折叠过程知∠BAC=∠DIE,∴∠BAC+∠BIC=165°∵∠BAC+∠ABC+∠ACB=180°,∴∠ABC+∠ACB=180°﹣∠BAC,∴∠IBC+∠ICB=90°﹣∠BAC,又∵∠BIC+(∠IBC+∠ICB)=180°,∠BIC+(90°﹣∠BAC)=180°,∴∠BIC=90°+∠BAC,∴∠BAC+90°+∠BAC=165°,∴∠BAC=50°故选:B.10.解:∵P A、PB是⊙O的切线,切点是A、B,∴P A=PB,∠BPO=∠APO,∴选项A、B错误;∵P A=PB,∠BPO=∠APO,∴OP⊥AB,∴选项C错误;根据已知不能得出C是PO的中点,故选项D正确;故选:D.二.填空题11.解:∵P A、PB是⊙O的两条切线,∴OA⊥P A,OB⊥PB,OP平分∠APB,P A=PB,∵∠APB=60°,∴△P AB是等边三角形,AB=2AC,PO⊥AB,∴∠P AB=60°,∴∠OAC=∠P AO﹣∠P AB=90°﹣60°=30°,∴AO=2OC,∵OC=1,∴AO=2,∴AC=,∴AB=2AC=2,∴△P AB的周长=6.故答案为:6.12.解:如图1中,当⊙P与直线CD相切时,设PC=PM=x.在Rt△PBM中,∵PM2=BM2+PB2,∴x2=22+(4﹣x)2,∴x=2.5,∴CP=2.5;如图2中当⊙P与直线AD相切时.设切点为K,连接PK,则PK⊥AD,四边形PKDC 是矩形.∴PM=PK=CD=2BM,∴BM=2,PM=4,在Rt△PBM中,PB==2,∴CP=BC﹣PB=4﹣2.综上所述,CP的长为2.5或4﹣2.故答案是:2.5或4﹣2.13.解:由CD是固定的,所以当P到CD的距离最小时△PCD的面积最小,如图,过P 作EF∥CD,交AD于点E,交BC于点F,当EF与⊙O相切时,P到CD的距离最短,连接OP并延长交CD于点Q,过O作OH∥BC,交EF于点G,交CD于点H,则可知OH为梯形ABCD的中位线,OG为梯形ABFE的中位线,∴OH=(AD+BC)=4.5,过D作DM⊥BC于点M,则DM=AB=4,MC=BC﹣AD=3,∴CD=EF=5,由切线长定理可知AE=EP,BF=PF,∴AE+BF=EF=5,∴OG=(AE+BF)=2.5,∴GH=OH﹣OG=4.5﹣2.5=2,又∵OP=2,且=,∴=,∴PQ=1.6,∴S△PCD=PQ•CD=×1.6×5=4,故答案为:4.14.解:设∴DE与圆O相切于点F,∵四边形ABCD是正方形,∴∠OAD=∠OBC=∠C=90°,AB=BC=AD=CD=2,∵OA、OB是圆O的半径,∴DA与圆O相切于点A,EB与圆O相切于点B,∵DE与圆O相切于点F,∴DA=DF=2,EB=EF,设EB=EF=x,则EC=BC﹣EB=2﹣x,DE=DF+EF=2+x,在Rt△DEC中,DC2+CE2=DE2,∴22+(2﹣x)2=(2+x)2,解得:x=,∴EC=BC﹣EB=2﹣x=,∴三角形DEC的面积=EC•DC=××2=1.5,故答案为:1.5.15.解:如图,连接OA,∵m﹣n2+5=0,∴n2=m+5,∴n2﹣9=m+5﹣9=m﹣4,∴点P的坐标为(m,m﹣4),即点P在直线y=x﹣4上,当x=0时,y=﹣4,当y=0时,x=4,∴OB=OC=4,∴BC=4,∵P A与⊙O相切于点A,∴OA⊥AP,∵OA=1,∴当OP最小时,P A最小,当OP⊥BC时,OP最小,此时OP=BC=2,答:当P A长最小时,点P到原点O的距离为2.故答案为:2.16.解:根据题意点I在DE上,连接AI,作IG⊥AB于点G,IJ⊥BC于点J,作IH⊥AC 于点H,作DF⊥AE于点F,如右图所示:∵AD=DE=5,AE=6,DF⊥AE,∴AF=3,∠AFD=90°,∴DF===4,设IH=x,∵I为△ABC的内心,∴IG=IJ=IH=x,∵S△ADE=S△ADI+S△AEI,∴=+,解得x=,∴IJ=,即I点到BC的距离是.故答案为:.三.解答题17.(1)证明:连接OE,过点O作OF⊥BC,垂足为F,∵CD与⊙O相切于点E,∴OE⊥CD,∵AB=AD,CB=CD,AC=AC,∴△ABC≌△ADC(SSS),∴∠BCA=∠DCA,∴OF=OE,∵OE是⊙O的半径,∴BC是ʘO的切线;(2)解:∵O是AC的中点,点E是CD的中点,∴OE是△ACD的中位线,∴OE∥AD,∴∠COE=∠CAD=30°,在Rt△OCE中,OE=3,∴CE=OE tan30°=3×=,∴CD=2CE=2.18.(1)证明:连接OD,∵AB⊥AC,∴∠CAB=90°,∴∠CAD+∠DAO=90°,∵AB是⊙O的直径,∴∠ADB=90°,∴∠ADC=180°﹣∠ADB=90°,∵点E是AC的中点,∴EA=ED=AC,∴∠EAD=∠EDA,∵OA=OD,∴∠OAD=∠ODA,∴∠EDA+∠ODA=90°,∴∠ODE=90°,∵OD是⊙O的半径,∴DE是⊙O的切线;(2)解:∵∠F=30°,BF=2,∠ODF=90°,∴OF=2OD,∴OB+2=2OD,∵OD=OB,∴OD=OB=2,∵∠DOF=90°﹣∠F=60°,∴△DOB是等边三角形,∴∠OBD=60°,在Rt△ABC中,AB=2OB=4,∴BC===8,∵△ABC外接圆的半径=BC=4,∴△ABC外接圆的半径为:4.19.(1)证明:如图1,延长DB至H,∵DG∥BC,∴∠CBH=∠D,∵∠A=∠D,∴∠A=∠CBH,∵AB是⊙O的直径∴∠ACB=90°,∴∠A+∠ABC=90°,∴∠CBH+∠ABC=90°,∴∠ABD=90°,∴BD与⊙O相切;(2)解:解法一:如图2,连接OF,∵CF平分∠ACB,∴∠ACF=∠BCF,∴,∴OF⊥AB,∵BD⊥AB,∴OF∥BD,∴△EFO∽△EDB,∴,∵AE=OE,∴,∴=,∴OF=4,∴BE=OE+OB=2+4=6,∴DE===6.解法二:如图2,连接OF,∵AE=OE,∴OA=OF=2OE,Rt△OEF中,tan∠OEF==2,Rt△BED中,tan∠OEF===2,∴BE=6,由勾股定理得:DE===6.20.(1)证明:连接OD,∵DF是⊙O的切线,∴OD⊥DF,∵AD平分∠BAC,∴∠BAD=∠CAD,∴,∴OD⊥BC,∴DF∥BC;(2)解:连接OB,∵,∴∠BOD=∠BAC,由(1)知OD⊥BC,∴tan∠BOD=,∵tan∠BAC=2,∴,设ON=x,BN=2x,由勾股定理得:OB=3x,∴OD=3x,∴DN=3x﹣x=2x,Rt△BDN中,BN2+DN2=BD2,∴,x=2或﹣2(舍),∴OB=OD=3x=6,Rt△OFD中,由勾股定理得:OF===10.21.解:(1)证明:如图,连接OE,∵NM是BE的垂直平分线,BN=EN,∴∠B=∠NEB,∵OA=OE∴∠A=∠OEA,∵∠C=90°,∴∠A+∠B=90°,∴∠OEN=90°,即OE⊥EN,∵OE是半径,∴EN是⊙O的切线;(2)如图,连接ON,设EN长为x,则BN=EN=x∵AC=3,BC=4,⊙O的半径为1,∴CN=4﹣x,OC=AC﹣OA=3﹣1=2,∴OE2+EN2=OC2+CN2,∴12+x2=22+(4﹣x)2,解得x=,∴EN=.连接ED,DB,设AE=y,∵AC=3,BC=4,∴AB=5,∵⊙O的半径为1.∴AD=2,则DE2=AD2﹣AE2=22﹣y2,∵CD=AC﹣AD=3﹣2=1,∴DB2=CD2+BC2=17,∵AD为直径,∴∠AED=∠DEB=90°,∴DE2+EB2=DB2,即22﹣y2+(5﹣y)2=17,解得y=,∴EN=,AE=.22.(1)证明:连接OC,∵P A是半⊙O的切线,A为切点,∴∠OAP=90°,∵OD⊥AC,OD经过圆心O,∴CD=AD,∴OP是AC的垂直平分线,∴PC=P A,∵OC=OA,OP=OP,∴△OCP≌△OAP(SSS),∴∠OCP=∠OAP=90°,∵OC是⊙O的半径,∴PC是⊙O的切线;(2)解:∵AB是⊙O的直径,AB=6,∴OA=OB=3,∵∠ADO=90°,∠CAB=30°,∴OD=OA=,∴AC=2AD=,∴S△AOC=AC•OD=,∵∠CAB=30°,∴∠COB=2∠CAB=60°,∴∠AOC=180°﹣60°=120°,∴S扇形AOC=,∴S=S扇形AOC﹣S△AOC=.23.(1)证明:连接OD,∵DE⊥BC,∴∠DEC=90°,∵D是的中点,∴=,∴∠ABD=∠CBD,∵OD=OB,∴∠ODB=∠OBD,∴∠ODB=∠CBD,∴OD∥BC,∴∠ODE=180°﹣∠DEC=90°,∴OD⊥DE,∵OD是⊙O的半径,∴DE是⊙O的切线;(2)解:过点D作DF⊥AB,垂足为F,由(1)得:∠ABD=∠CBD,∴BD平分∠ABC,∵DF⊥AB,DE⊥BC,∴DF=DE,∵四边形ABCD内接于⊙O,∴∠A+∠DCB=180°,∵∠DCB+∠DCE=180°,∴∠A=∠DCE,∵∠DF A=∠DEC=90°,∴△ADF≌△CDE(AAS),∴AF=EC,∵∠DFB=∠DEC=90°,BD=BD,∴△BDF≌△BDE(AAS),∴BF=BE,设AF=EC=x,则BE=BF=8+x,∵AB=10,∴AF+BF=10,∴x+8+x=10,∴x=1,∴BF=9,∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABD=∠DBF,∴△BFD∽△BDA,∴BD2=BF•BA,∴BD2=90,∴BD=3.。
直线与圆的位置关系练习(含答案)一.选择题(共19小题)1.如图,已知PA、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P=40°,则∠BAC的大小是()A.70°B.40°C.50°D.20°2.已知⊙O的半径为4cm,如果圆心O到直线l的距离为3.5cm,那么直线l与⊙O的位置关系是()A.相交B.相切C.相离D.不确定3.如图,PA、PB切⊙O于点A、B,PA=10,CD切⊙O于点E,交PA、PB于C、D两点,则△PCD的周长是()A.10 B.18 C.20 D.224.已知⊙O的半径为3,圆心O到直线L的距离为2,则直线L与⊙O的位置关系是()A.相交B.相切C.相离D.不能确定5.如图,AB是⊙O的直径,PA切⊙O于点A,OP交⊙O于点C,连接BC.若∠P=20°,则∠B的度数是()A.20°B.25°C.30°D.35°6.如图,⊙O过正方形ABCD的顶点A、B,且与CD相切,若正方形ABCD的边长为2,则⊙O的半径为()A.1 B.C.D.7.如图,已知⊙O的直径AB与弦AC的夹角为35°,过C点的切线PC与AB的延长线交于点P,则∠P等于()A.15°B.20°C.25°D.30°8.如图,PA和PB是⊙O的切线,点A和B是切点,AC是⊙O的直径,已知∠P=40°,则∠ACB的大小是()A.60°B.65°C.70°D.75°9.如图,P为⊙O外一点,PA、PB分别切⊙O于A、B,CD切⊙O于点E,分别交PA、PB于点C、D,若PA=5,则△PCD的周长为()A.5 B.7 C.8 D.1010.如图,⊙C与∠AOB的两边分别相切,其中OA边与⊙C相切于点P.若∠AOB=90°,OP=6,则OC的长为()A.12 B.C.D.11.如图,已知直线AD是⊙O的切线,点A为切点,OD交⊙O于点B,点C在⊙O上,且∠ODA=36°,则∠ACB的度数为()A.54°B.36°C.30°D.27°12.AB是⊙O的直径,PA切⊙O于点A,PO交⊙O于点C;连接BC,若∠P=40°,则∠B等于()A.20°B.25°C.30°D.40°13.把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB=60°,若量出AD=6cm,则圆形螺母的外直径是()A.12cm B.24cm C.6cm D.12cm14.如图,AB是⊙O的直径,PA切⊙O于点A,连结PO并延长交⊙O于点C,连结AC,AB=10,∠P=30°,则AC的长度是()A.B.C.5 D.15.已知⊙O的半径是5,直线l是⊙O的切线,P是l上的任一点,那么()A.0<OP<5 B.OP=5 C.OP>5 D.OP≥516.如图,△ABC的边AC与⊙O相交于C,D两点,且经过圆心O,边AB与⊙O相切,切点为B.如果∠A=34°,那么∠C等于()A.28°B.33°C.34°D.56°17.如图,AB是⊙O的直径,点C在⊙O上,过点C作⊙O的切线交AB的延长线于点D,连接OC,AC.若∠D=50°,则∠A的度数是()A.20°B.25°C.40°D.50°18.如图,PA、PB是⊙O的切线,切点分别是A,B,如果∠P=60°,那么∠AOB 等于()A.60°B.90°C.120° D.150°19.如图,AB、AC是⊙O的两条弦,∠A=25°,过点C的切线与OB的延长线交于点D,则∠D的度数()A.25°B.30°C.40°D.50°二.填空题(共16小题)20.如图,⊙M与x轴相切于原点,平行于y轴的直线交⊙M于P、Q两点,P 点在Q点的下方.若点P的坐标是(2,1),则圆心M的坐标是.21.如图,Rt△ABC中,∠C=90°,若AC=4,BC=3,则△ABC的内切圆半径r=.22.如图,AB与⊙O相切于点C,∠A=∠B,⊙O的半径为6,AB=16,则OA的长为.23.如图,PA、PB分别与⊙O相切于A、B两点,若∠C=65°,则∠P的度数为.24.如图,平面直角坐标系中,⊙P与x轴分别交于A、B两点,点P的坐标为(3,﹣1),AB=2.若将⊙P向上平移,则⊙P与x轴相切时点P的坐标为.25.一直角三角形的两条直角边长分别为6和8,则它的内切圆半径为.26.若⊙O的直径是4,圆心O到直线l的距离为3,则直线l与⊙O的位置关系是.27.如图,在平面直角坐标系中,⊙M与x轴相切于点A(8,0),与y轴分别交于点B(0,4)和点C(0,16),则圆心M的坐标为.28.如图,线段AB与⊙O相切于点B,线段AO与⊙O相交于点C,AB=12,AC=8,则⊙O的半径长为.29.如图,AC是⊙O的切线,切点为C,BC是⊙O的直径,AB交⊙O于点D,连接OD,若∠A=50°,则∠COD的度数为.30.在平面直角坐标系中,O是坐标原点,A、B两点的坐标分别为(3,0)、(0,4),则△AOB的内心与外心之间的距离是.31.P是⊙O的直径AB的延长线上一点,PC与⊙O相切于点C,∠APC的平分线交AC于Q,则∠PQC=.32.如图,AB、AC、BD是⊙O的切线,P、C、D为切点,如果AB=5,AC=3,则BD的长为.33.如图,PA、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P=50°,则∠BAC=.34.如图,AB是⊙O的直径,直线PA与⊙O相切于点A,PO交⊙O于点C,连接BC,∠P=40°,则∠ABC的度数为.35.如图,已知⊙O的外切△PCD切⊙O于A、B、E三点,(1)若PA=5,则PB=;(2)若∠P=40°,则∠COD=度.三.解答题(共15小题)36.如图,CD是⊙O的直径,并且AC=BC,AD=BD.求证:直线AB是⊙O的切线.37.如图,已知三角形ABC的边AB是⊙O的切线,切点为B.AC经过圆心O并与圆相交于点D、C,过C作直线CE丄AB,交AB的延长线于点E.(1)求证:CB平分∠ACE;(2)若BE=3,CE=4,求⊙O的半径.38.在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是边AB上一点,以BD为直径的⊙O经过点E,且交BC于点F.(1)求证:AC是⊙O的切线;(2)若BF=6,⊙O的半径为5,求CE的长.39.如图,在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O与AC边交于点D,过点D作⊙O的切线交BC于点E,连接OE(1)证明OE∥AD;(2)①当∠BAC=°时,四边形ODEB是正方形.②当∠BAC=°时,AD=3DE.40.如图所示,AB是⊙O的直径,AD与⊙O相切于点A,DE与⊙O相切于点E,点C为DE延长线上一点,且CE=CB.(1)求证:BC为⊙O的切线;(2)若AB=4,AD=1,求线段CE的长.41.如图△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若PD=,求⊙O的直径.42.如图,四边形ABCD 内接于⊙O,BD是⊙O的直径,过点A作⊙O的切线AE交CD的延长线于点E,DA平分∠BDE.(1)求证:AE⊥CD;(2)已知AE=4cm,CD=6cm,求⊙O的半径.43.如图,已知AB为⊙O的弦,C为⊙O上一点,∠C=∠BAD,且BD⊥AB于B.(1)求证:AD是⊙O的切线;(2)若⊙O的半径为3,AB=4,求AD的长.44.如图所示,以Rt△ABC的直角边AB为直径作圆O,与斜边交于点D,E为BC边上的中点,连接DE.(1)求证:DE是⊙O的切线;(2)连接OE,AE,当∠CAB为何值时,四边形AOED是平行四边形?并在此条件下求sin∠CAE的值.45.已知:如图,△ABC中,AC=BC,以BC为直径的⊙O交AB于点D,过点D 作DE⊥AC于点E,交BC的延长线于点F.求证:(1)AD=BD;(2)DF是⊙O的切线.46.如图,AC是⊙O的直径,PA切⊙O于点A,点B是⊙O上的一点,且∠BAC=30°,∠APB=60°.(1)求证:PB是⊙O的切线;(2)若⊙O的半径为2,求弦AB及PA,PB的长.47.如图,AB为⊙O的直径,D为的中点,连接OD交弦AC于点F,过点D 作DE∥AC,交BA的延长线于点E.(1)求证:DE是⊙O的切线;(2)连接CD,若OA=AE=4,求四边形ACDE的面积.48.如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,切线DE 交AC于点E.(1)求证:∠A=∠ADE;(2)若AD=16,DE=10,求BC的长.49.如图,已知AB是⊙O的直径,CD与⊙O相切于C,BE∥CO.(1)求证:BC是∠ABE的平分线;(2)若DC=8,⊙O的半径OA=6,求CE的长.50.如图,AB是⊙O的直径,点D在AB的延长线上,点C在⊙O上,CA=CD,∠CDA=30°.(1)试判断直线CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径为4,求点A到CD所在直线的距离.直线与圆的位置关系练习参考答案一.选择题(共19小题)1.D;2.A;3.C;4.A;5.D;6.D;7.B;8.C;9.D;10.C;11.D;12.B;13.D;14.A;15.D;16.A;17.A;18.C;19.C;二.填空题(共16小题)20.(0,2.5);21.1;22.10;23.50°;24.(3,2);25.2;26.相离;27.(8,10);28.5;29.80°;30.;31.45°;32.2;33.25°;34.25°;35.5;110;三.解答题(共15小题)36.;37.;38.;39.45;30;40.;41.;42.;43.;44.;45.;46.;47.;48.;49.;50.;。
点、直线、圆与圆的位置关系_知识点+例题+练习1.点和圆的位置关系2.(1)点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:3.①点P在圆外⇔d>r4.②点P在圆上⇔d=r5.①点P在圆内⇔d<r6.(2)点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.7.(3)符号“⇔”读作“等价于”,它表示从符号“⇔”的左端可以得到右端,从右端也可以得到左端.2.确定圆的条件不在同一直线上的三点确定一个圆.注意:这里的“三个点”不是任意的三点,而是不在同一条直线上的三个点,而在同一直线上的三个点不能画一个圆.“确定”一词应理解为“有且只有”,即过不在同一条直线上的三个点有且只有一个圆,过一点可画无数个圆,过两点也能画无数个圆,过不在同一条直线上的三点能画且只能画一个圆.3.三角形的外接圆与外心(1)外接圆:经过三角形的三个顶点的圆,叫做三角形的外接圆.(2)(2)外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.(3)(3)概念说明:(4)①“接”是说明三角形的顶点在圆上,或者经过三角形的三个顶点.(5)②锐角三角形的外心在三角形的内部;直角三角形的外心为直角三角形斜边的中点;钝角三角形的外心在三角形的外部.(6)③找一个三角形的外心,就是找一个三角形的两条边的垂直平分线的交点,三角形的外接圆只有一个,而一个圆的内接三角形却有无数个.4.反证法(了解)(1)对于一个命题,当使用直接证法比较困难时,可以采用间接证法,反证法就是一个间接证法.反证法主要适合的证明类型有:①命题的结论是否定型的.②命题的结论是无限型的.③命题的结论是“至多”或“至少”型的.(2)(2)反证法的一般步骤是:(3)①假设命题的结论不成立;(4)②从这个假设出发,经过推理论证,得出矛盾;(5)③由矛盾判定假设不正确,从而肯定原命题的结论正确.5.直线和圆的位置关系(1)直线和圆的三种位置关系:①相离:一条直线和圆没有公共点.②相切:一条直线和圆只有一个公共点,叫做这条直线和圆相切,这条直线叫圆的切线,唯一的公共点叫切点.③相交:一条直线和圆有两个公共点,此时叫做这条直线和圆相交,这条直线叫圆的割线.(2)判断直线和圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d.①直线l和⊙O相交⇔d<r②直线l和⊙O相切⇔d=r③直线l和⊙O相离⇔d>r.6.切线的性质(1)切线的性质(2)①圆的切线垂直于经过切点的半径.(3)②经过圆心且垂直于切线的直线必经过切点.(4)③经过切点且垂直于切线的直线必经过圆心.(5)(2)切线的性质可总结如下:(6)如果一条直线符合下列三个条件中的任意两个,那么它一定满足第三个条件,这三个条件是:①直线过圆心;②直线过切点;③直线与圆的切线垂直.(7)(3)切线性质的运用(8)由定理可知,若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.7.切线的判定8.(1)切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.9.(2)在应用判定定理时注意:10.①切线必须满足两个条件:a、经过半径的外端;b、垂直于这条半径,否则就不是圆的切线.11.②切线的判定定理实际上是从”圆心到直线的距离等于半径时,直线和圆相切“这个结论直接得出来的.12.③在判定一条直线为圆的切线时,当已知条件中未明确指出直线和圆是否有公共点时,常过圆心作该直线的垂线段,证明该线段的长等于半径,可简单的说成“无交点,作垂线段,证半径”;当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线,可简单地说成“有交点,作半径,证垂直”.8.切线的判定与性质(1)切线的性质①圆的切线垂直于经过切点的半径.②经过圆心且垂直于切线的直线必经过切点.③经过切点且垂直于切线的直线必经过圆心.(2)切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.(3)常见的辅助线的:①判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;②有切线时,常常“遇到切点连圆心得半径”.9.切线长定理(1)圆的切线定义:经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.(2)(2)切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角.(3)(3)注意:切线和切线长是两个不同的概念,切线是直线,不能度量;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量.(4)(4)切线长定理包含着一些隐含结论:(5)①垂直关系三处;(6)②全等关系三对;(7)③弧相等关系两对,在一些证明求解问题中经常用到.10.三角形的内切圆与内心(1)内切圆的有关概念:与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心就是三角形三个内角角平分线的交点.(2)任何一个三角形有且仅有一个内切圆,而任一个圆都有无数个外切三角形.(3)三角形内心的性质:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.11.圆与圆的五种位置关系(1)圆与圆的五种位置关系:①外离;②外切;③相交;④内切;⑤内含.如果两个圆没有公共点,叫两圆相离.当每个圆上的点在另一个圆的外部时,叫两个圆外离,当一个圆上的点都在另一圆的内部时,叫两个圆内含,两圆同心是内含的一个特例;如果两个圆有一个公共点,叫两个圆相切,相切分为内切、外切两种;如果两个圆有两个公共点叫两个圆相交.(2)圆和圆的位置与两圆的圆心距、半径的数量之间的关系:①两圆外离⇔d>R+r;②两圆外切⇔d=R+r;③两圆相交⇔R-r<d<R+r(R≥r);④两圆内切⇔d=R-r(R>r);⑤两圆内含⇔d<R-r(R>r).12.相切两圆的性质相切两圆的性质:如果两圆相切,那么连心线必经过切点.这说明两圆的圆心和切点三点共线,为证明带来了很大方便.13.相交两圆的性质(1)相交两圆的性质:(2)相交两圆的连心线(经过两个圆心的直线),垂直平分两圆的公共弦.(3)注意:在习题中常常通过公共弦在两圆之间建立联系.(4)(2)两圆的公切线性质:(5)两圆的两条外公切线的长相等;两圆的两条内公切线的长也相等.(6)两个圆如果有两条(内)公切线,则它们的交点一定在连心线上.4. 判断圆的切线的方法及应用判断圆的切线的方法有三种:(1)与圆有惟一公共点的直线是圆的切线;(2)若圆心到一条直线的距离等于圆的半径,则该直线是圆的切线;(3)经过半径外端,并且垂直于这条半径的直线是圆的切线.【例4】如图,⊙O的直径AB=4,∠ABC=30°,BC=34,D是线段BC的中点.(1)试判断点D与⊙O的位置关系,并说明理由.(2)过点D作DE⊥AC,垂足为点E,求证:直线DE是⊙O的切线.【例5】如图,已知O为正方形ABCD对角线上一点,以O为圆心,OA的长为半径的⊙O与BC相切于M,与AB、AD分别相交于E、F,求证CD与⊙O相切.【例6】如图,半圆O为△ABC的外接半圆,AC为直径,D为劣弧上一动点,P在CB 的延长线上,且有∠BAP=∠BDA.求证:AP 是半圆O 的切线.【知识梳理】1. 直线与圆的位置关系:2. 切线的定义和性质:3.三角形与圆的特殊位置关系:4. 圆与圆的位置关系:(两圆圆心距为d ,半径分别为21,r r )相交⇔2121r r d r r +<<-; 外切⇔21r r d +=;内切⇔21r r d -=; 外离⇔21r r d +>; 内含⇔210r r d -<<【注意点】与圆的切线长有关的计算.【例题精讲】例1.⊙O 的半径是6,点O 到直线a 的距离为5,则直线a 与⊙O 的位置关系为( )A .相离B .相切C .相交D .内含例 2. 如图1,⊙O 内切于ABC △,切点分别为D E F ,,.50B ∠=°,60C ∠=°,连结OE OF DE DF ,,,,则EDF ∠等于( )A .40°B .55°C .65°D .70°例3. 如图,已知直线L 和直线L 外两定点A 、B ,且A 、B 到直线L 的距离相等,则经过A 、B 两点且圆心在L 上的圆有( )A .0个B .1个C .无数个D .0个或1个或无数个例4.已知⊙O 1半径为3cm ,⊙O 2半径为4cm ,并且⊙O 1与⊙O 2相切,则这两个圆的圆心距为( ) A.1cm B.7cm C.10cm D. 1cm 或7cm例5.两圆内切,圆心距为3,一个圆的半径为5,另一个圆的半径为 例6.两圆半径R=5,r=3,则当两圆的圆心距d 满足___ ___•时,•两圆相交;•当d•满足___ ___时,两圆不外离.例7.⊙O 半径为6.5cm ,点P 为直线L 上一点,且OP=6.5cm ,则直线与⊙O•的位置关系是____例8.如图,PA 、PB 分别与⊙O 相切于点A 、B ,⊙O 的切线EF 分别交PA 、PB 于点E 、F ,切点C 在弧AB 上,若PA 长为2,则△PEF 的周长是 _.例9. 如图,⊙M 与x 轴相交于点(20)A ,,(80)B ,,与y 轴切于点C ,则圆心M 的坐标是例10. 如图,四边形ABCD 内接于⊙A ,AC 为⊙O 的直径,弦DB ⊥AC ,垂足为M ,过点D 作⊙O 的切线交BA 的延长线于点E ,若AC=10,tan ∠DAE=43,求DB 的长.【当堂检测】1.如果两圆半径分别为3和4,圆心距为7,那么两圆位置关系是( )A .相离B .外切C .内切D .相交2.⊙A 和⊙B 相切,半径分别为8cm 和2cm ,则圆心距AB 为( )A .10cmB .6cmC .10cm 或6cmD .以上答案均不对3.如图,P 是⊙O 的直径CB 延长线上一点,PA 切⊙O 于点A ,如果PA =3,PB =1,那么∠APC 等于( )A. 15B. 30C. 45D. 60O O2O14. 如图,⊙O 半径为5,PC 切⊙O 于点C ,PO 交⊙O 于点A ,PA =4,那么PC 的长等于( ) A )6 (B )25 (C )210 (D )2145.如图,在10×6的网格图中(每个小正方形的边长均为1个单位长).⊙A 半径为2,⊙B 半径为1,需使⊙A 与静止的⊙B 相切,那么⊙A 由图示的位置向左平移 个单位长.6. 如图,⊙O 为△ABC 的内切圆,∠C = 90,AO 的延长线交BC 于点D ,AC =4,DC =1,,则⊙O 的半径等于( )A. 45B. 54C. 43D. 657.⊙O 的半径为6,⊙O 的一条弦AB 长63,以3为半径⊙O 的同心圆与直线AB 的位置关系是( )A.相离B.相交C.相切D.不能确定8.如图,在ABC △中,12023AB AC A BC =∠==,°,,A ⊙与BC 相切于点D ,且交AB AC 、于M N 、两点,则图中阴影部分的面积是 (保留π).9.如图,B 是线段AC 上的一点,且AB :AC=2:5,分别以AB 、AC 为直径画圆,则小圆的面积与大圆的面积之比为_______.10. 如图,从一块直径为a+b 的圆形纸板上挖去直径分别为a 和b 的两个圆,则剩下的纸板面积是___.11. 如图,两等圆外切,并且都与一个大圆内切.若此三个圆的圆心围成的三角形的周长为18cm .则大圆的半径是______cm .12.如图,直线AB 切⊙O 于C 点,D 是⊙O 上一点,∠EDC=30º,弦EF ∥AB ,连结OC 交EF 于H 点,连结CF ,且CF=2,则HE 的长为_________.13. 如图,PA 、PB 是⊙O 的两条切线,切点分别为A 、B ,若直径AC=12cm ,∠P=60°.求弦AB 的长. 【中考连接】 一、选择题 1. 正三角形的内切圆半径为1,那么三角形的边长为( )A.2B.32C.3D.3 2.⊙O 是等边ABC △的外接圆,⊙O 的半径为2,则ABC △的边长为( )A .3B .5C .23D .253. 已知⊙O 的直径AB 与弦AC 的夹角为 30,过C 点的切线PC 与AB 延长线交于P 点.PC =5,则⊙O 的半径为 ( )A. 335 B. 635 C. 10 D. 54. AB 是⊙O 的直径,点P 在BA 的延长线上,PC 是⊙O 的切线,C 为切点,PC =26,PA =4,则⊙O 的半径等于( )A. 1B. 2C. 23D. 265.某同学制做了三个半径分别为1、2、3的圆,在某一平面内,让它们两两外O D C B ABPA OC 第3题图 第4题图 第5题图 第6题图 第8题图 第9题图 第11题图 第10题图 第12题图切,该同学把此时三个圆的圆心用线连接成三角形.你认为该三角形的形状为( )A.钝角三角形B.等边三角形C.直角三角形D.等腰三角形6.关于下列四种说法中,你认为正确的有( )①圆心距小于两圆半径之和的两圆必相交 ②两个同心圆的圆心距为零③没有公共点的两圆必外离 ④两圆连心线的长必大于两圆半径之差A.1个B.2个C.3个D.4个二、填空题 6. 如图,AB 、AC 是⊙O 的两条切线,切点分别为B 、C ,D 是优弧BC 上的一点,已知∠BAC =80°,那么∠BDC =__________度.7. 如图,AB 是⊙O 的直径,四边形ABCD 内接于⊙O ,,,的度数比为3∶2∶4,MN 是⊙O 的切线,C 是切点,则∠BCM 的度数为________.8.如图,在△ABC 中,5cm AB AC ==,cos B 35=.如果⊙O 的半径为10cm ,且经过点B 、C ,那么线段AO = cm .9.两个等圆⊙O 与⊙O ′外切,过点O 作⊙O ′的两条切线OA 、OB ,A 、B 是切点,则∠AOB = .10.如图6,直线AB 与⊙O 相切于点B ,BC 是⊙O 的直径,AC 交⊙O 于点D ,连结BD ,则图中直角三角形有 个.11.如图,60ACB ∠=°,半径为1cm 的O ⊙切BC 于点C ,若将O ⊙在CB 上向右滚动,则当滚动到O ⊙与CA 也相切时,圆心O 移动的水平距离是__________cm .12.如图, AB 与⊙O 相切于点B ,线段OA 与弦BC 垂直于点D ,∠AOB =60°,B C=4cm ,则切线AB = cm.13.如图,⊙A 和⊙B 与x 轴和y 轴相切,圆心A 和圆心B 都在反比例函数1y x =图象上,则阴影部分面积等于 .14. Rt △ABC 中,9068C AC BC ∠===°,,.则△ABC的内切圆半径r =______.15.⊙O 的圆心到直线l 的距离为d ,⊙O 的半径为r ,当d 、r 是关于x 的方程x 2-4x+m=0的两根,且直线l 与⊙O 相切时,则m 的值为_____.16.已知:⊙A 、⊙B 、⊙C 的半径分别为2、3、5,且两两相切,则AB 、BC 、CA 分别为 .17.⊙O 的圆心到直线l 的距离为d ,⊙O 的半径为r ,当d 、r 是关于x 的方程x 2-4x+m=0的两根,且直线l 与⊙O 相切时,则m 的值为_____.三、解答题18. 如图,AB 是⊙O 的弦,OA OC ⊥交AB 于点C ,过B 的直线交OC 的延长线于点E ,当BE CE =时,直线BE 与⊙O 有怎样的位置关系?请说明理由. 第3题图 第6题图 第7题图 第8题图 第10题图 第11题图 第12题图 第13题图19.如图1,在⊙O 中,AB 为⊙O 的直径,AC 是弦,4OC =,60OAC ∠=. (1)求∠AOC 的度数;(2)在图1中,P 为直径BA 延长线上的一点,当CP 与⊙O 相切时,求PO 的长;(3)如图2,一动点M 从A 点出发,在⊙O 上按A 照逆时针的方向运动,当MAO CAO S S =△△时,求动点M 所经过的弧长.第18题图。
2024-2025学年苏科版数学九年级上册同步专题热点难点专项练习专题2.3 直线与圆的位置关系(专项拔高卷)考试时间:90分钟试卷满分:100分难度:0.52姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2022秋•金华期末)AB为⊙O的直径,延长AB到点P,过点P作⊙O的切线,切点为C,连接AC,∠P=40°,D为圆上一点,则∠D的度数为()A.20°B.25°C.30°D.40°2.(2分)(2022秋•阳谷县期末)如图是“光盘行动”的宣传海报,图中餐盘与筷子可看成直线和圆的位置关系是()A.相切B.相交C.相离D.平行3.(2分)(2022秋•河西区校级期末)如图,AB是⊙O的切线,B为切点,AO与⊙O交于点C,若∠BAO=35°,则∠OCB的度数为()A.42.5°B.55.5°C.62.5°D.75°4.(2分)(2023春•青山区校级月考)如图,不等边△ABC内接于⊙O,I是其内心,BI⊥OI,AC=14,BC =13,△ABC内切圆半径为()A.4 B.C.D.5.(2分)(2022秋•大荔县期末)如图,点O是△ABC的内心,也是△DBC的外心.若∠A=84°,则∠D的度数为()A.42°B.66°C.76°D.82°6.(2分)(2023•沙坪坝区校级模拟)如图,AB是⊙O的直径,E为⊙O上一点,BD垂直平分OE交⊙O于点D,过点D的切线与BE的延长线交于点C.若,则AB的长为()A.4 B.2 C.D.7.(2分)(2023•哈尔滨)如图,AB是⊙O的切线,A为切点,连接OA,点C在⊙O上,OC⊥OA,连接BC并延长,交⊙O于点D,连接OD,若∠B=65°,则∠DOC的度数为()A.45°B.50°C.65°D.75°8.(2分)(2023•遵义一模)如图,AB是半圆O的直径,点P为BA延长线上一点,PC是⊙O的切线,切点为C,过点B作BD⊥PC交PC的延长线于点D,连接BC.若CD=2,BD=4,则⊙O的半径为()A.3 B.2 C.2.5 D.29.(2分)(2023•江岸区模拟)如图,AB为⊙O直径,C为圆上一点,I为△ABC内心,AI交⊙O于D,OI ⊥AD于I,若CD=4,则AC为()A.B.C.D.510.(2分)(2022•成县校级模拟)如图,⊙O与∠A=90的Rt△ABC的三边AB、BC、AC分别相切于点D、E、F,若BE=10,CF=3,则⊙O的半径为()A.5 B.4 C.3 D.2评卷人得分二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2023•柯桥区校级模拟)如图AB、AC、BD是圆O的切线,切点分别为P、C、D,若AB=5,BD =2,则AC的长是.12.(2分)(2022秋•启东市校级期末)如图,AB为⊙O的直径,CB为⊙O的切线,AC交⊙O于D,∠C=38°.点E在AB右侧的半圆上运动(不与A、B重合),则∠AED的大小是.13.(2分)(2022秋•河西区校级期末)如图,在Rt△OAB中,∠AOB=90°,OA=8,AB=10,⊙O的半径为4,点P是AB上的一动点,过点P作⊙O的一条切线PQ,Q为切点,则PQ的最小值为.14.(2分)(2023•青海)如图,MN是⊙O的切线,M是切点,连接OM,ON.若∠N=37°,则∠MON的度数是.15.(2分)(2022秋•建昌县期末)如图,点O是△ABC的内心,∠A=60°,OB=3,OC=6,,则⊙O的半径为.16.(2分)(2023•西陵区模拟)木工师傅可以用角尺测量并计算出圆的半径.如图,用角尺的较短边紧靠⊙O于点A,并使较长边与⊙O相切于点C.记角尺的直角顶点为B,量得AB=8cm,BC=16cm,则⊙O的半径等于cm.17.(2分)(2023•安岳县二模)如图,AB、CD是⊙O的两条直径,EA切⊙O于点A,交CD的延长线于点E.若∠ABC=75°,则∠E的度数为.18.(2分)(2022•宜宾)我国古代数学家赵爽的“弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形(如图所示).若直角三角形的内切圆半径为3,小正方形的面积为49,则大正方形的面积为.19.(2分)(2022秋•鼓楼区校级月考)在Rt△ABC中,∠ACB=90°,BC=6,AC=8,直线l经过△ABC的内心O,过点C作CD⊥l,垂足为D,连接AD,则AD的最小值是.20.(2分)(2022秋•滨湖区校级期中)如图,AC是矩形ABCD的对角线,⊙O是△ABC的内切圆,现将矩形ABCD按如图所示的方式折叠,使点D与点O重合,折痕为FG,点F、G分别在AD、BC上,连结OG、DG,若OG⊥DG,且⊙O的半径长为1,则BC﹣AB的值,CD+DF的值.评卷人得分三.解答题(共8小题,满分60分)21.(6分)(2023•鞍山二模)如图,在△ABC中,以AB为直径作⊙O,⊙O恰好经过点C,点D为半圆AB 中点,连接CD,过D作DE∥AB交AC延长线于点E.(1)求证:DE为⊙O切线:(2)若AC=4,,求⊙O的半径长.22.(6分)(2023•槐荫区模拟)如图,AB为⊙O的直径,C为⊙O上一点,⊙O的切线BD交OC的延长线于点D.(1)求证:∠DBC=∠OCA;(2)若∠BAC=30°,AC=2.求CD的长.23.(8分)(2022秋•嘉祥县校级期末)已知BC是⊙O的直径,点D是BC延长线上一点,AB=AD,AE是⊙O的弦,∠AEC=30°.(1)求证:直线AD是⊙O的切线;(2)若AE⊥BC,垂足为M,⊙O的半径为10,求AE的长.24.(8分)(2022秋•平阴县期末)如图,AB为⊙O的直径,PQ切⊙O于E,AC⊥PQ于C,交⊙O于D.(1)求证:AE平分∠BAC;(2)若,∠BAC=60°,求⊙O的半径.25.(8分)(2023•宛城区二模)如图①,中国古代的马车已经涉及很复杂的机械设计(相对当时的生产力),包含大量零部件和工艺,所彰显的智慧让人拜服.如图②是马车的侧面示意图,AB为车轮⊙O的直径,过圆心O的车架AC一端点C着地时,地面CD与车轮⊙O相切于点D,连接AD,BD.(1)徽徽猜想∠C+2∠BDC=90°,徽徽的猜想正确吗?请说明理由;(2)若,BC=2米,求车轮的直径AB的长.26.(8分)(2023•晋安区校级模拟)如图,以AB边为直径的⊙O经过点P,C是⊙O上一点,连接PC交AB 于点E,且∠ACP=60°,PA=PD.(1)证明:PD是⊙O的切线.(2)若点C是弧AB的中点,已知AB=2,求CE•CP的值.27.(8分)(2022秋•惠阳区校级期末)(1)如图1,在菱形ABCD中,点E,F分别为边CD,AD的中点,连接AE,CF.求证:AE=CF.(2)如图2,AB是⊙O的直径,CA与⊙O相切于点A,连接CO交⊙O于点D,CO的延长线交⊙O于点E,连接BE,BD,∠ABD=25°,求∠C的度数.28.(8分)(2023•绥江县二模)如图1,在四边形ABCD中,AD=CD=6,∠B=60°,以AB为直径所作的⊙O经过点C,且与AD相切于A点,连接AC.(1)求证:CD是⊙O的切线;(2)⊙E是△ACD的外接圆,不与A、D重合的点F在⊙E的劣弧AD上运动(如图2所示).若点P、Q 分别为线段AC、CD上的动点(不与端点重合),当点F运动到每一个确定的位置时,△FPQ的周长有最小值m,随着点F的运动,m的值也随之变化,求m的最大值.。
人教版九年级数学上册《24.2 点和圆直线和圆的位置关系》同步练习题-附答案学校:___________班级:___________姓名:___________考号:___________考点1点与圆的位置关系1. 点与圆的位置关系:设⊙O的半径为r点P到圆心的距离为OP=d点P在⇔d>r点P在⇔d=r点P在⇔d<r。
2.三点圆:不在直线上的三个点一个圆。
3.三角形的外接圆:经过三角形的三个顶点可以作一个圆这个圆叫做三角形的圆.外接圆的圆心是三角形三条边的的交点叫做这个三角形的外心。
考点2直线和圆的位置关系1.直线与圆的位置关系:(1)直线和圆有两个公共点时我们说这条直线和圆.这条直线叫做圆的线。
(2)直线和圆只有一个公共点时我们说这条直线和圆.这条直线叫做圆的线这个点叫做点。
(3)直线和圆没有公共点时我们说这条直线和圆。
(4)设⊙O的半径为r圆心O到直线l的距离d直线l和⊙O⇔d<r直线l和⊙O⇔d=r直线l和⊙O⇔d>r。
2.切线的判定定理和性质定理(1)切线的判定定理:经过半径的外端并且于这条半径的直线是圆的切线。
(2)切线的性质定理:圆的切线于过切点的半径。
3.切线长定理:(1)切线长:经过圆外一点的圆的切线上这点和点之间线段的长叫做这点到圆的切线长。
(2)切线长定理:从圆外一点可以引圆的两条切线它们的切线长这一点和圆心的连线两条切线的夹角。
4.内切圆:与三角形各边都相切的圆叫做三角形的.内切圆的圆心是三角形三条的交点叫做三角形的内心。
限时训练:一选择题:在每小题给出的选项中只有一项是符合题目要求的。
1.(2024·全国·同步练习)以点P(1,2)为圆心r为半径画圆与坐标轴恰好有三个交点则r应满足( )A. r=2或√ 5B. r=2C. r=√ 5D. 2≤r≤√ 52.(2024·全国·同步练习)如图在△ABC中O是AB边上的点以O为圆心OB为半径的⊙O与AC相切于点D BD平分∠ABC AD=√ 3OD AB=12CD的长是( )A. 2√ 3B. 2C. 3√ 3D. 4√ 33.(2024·江苏省·同步练习)下列命题中真命题的个数是( ) ①经过三点可以作一个圆②一个圆有且只有一个内接三角形③一个三角形有且只有一个外接圆④三角形的外心到三角形的三个顶点的距离相等⑤直角三角形的外心是三角形斜边的中点。
九年级数学直线与圆的位置关系练习题及答案一、单选题1. 给定直线l :3x-4y=12,圆C:(x-1)^2+(y+3)^2=25,则l与C的位置关系是:A. 相切B. 相离C. 相交于两点D. 相交于一个点2. 若直线l的方程为x-2y+1=0,圆C的方程为(x-3)^2+(y+4)^2=16,则l与C的位置关系是:A. 相切B. 相离C. 相交于两点D. 相交于一个点3. 在直角坐标系中,直线l:y=2x+1与圆C:(x-4)^2+(y+2)^2=36的位置关系是:A. 相切B. 相离C. 相交于两点D. 相交于一个点二、填空题1. 直线y=3x+2与圆(x-1)^2+(y-3)^2=16的位置关系可以用___________表示。
2. 若直线l :2x+3y=6与圆C:(x-2)^2+(y-3)^2=9相交于点A(1,2),则点A到直线l的距离为_________。
三、解答题1. 已知直线l的方程为y=2x-1,圆C的方程为(x-2)^2+(y-1)^2=r^2,求当r=3时,l与C的位置关系。
2. 某圆C的圆心坐标为(3,-2),半径为4,直线l的方程为2x-y=5,则求l与C的位置关系并证明。
答案:一、单选题1. C2. A3. D二、填空题1. 相交于两点2. 3三、解答题1. 当r=3时,圆C的方程为(x-2)^2+(y-1)^2=9。
将直线l的方程代入圆C的方程,得到4x^2-4x+1+4x-4+y^2-2y+1=9,简化后为4x^2+y^2-2y-3=0。
该方程与圆C相交于两个点,故位置关系为相交于两点。
2. 圆C的圆心坐标为(3,-2),半径为4。
直线l的斜率为2,l的方程可以改写为y=2x-5,将直线l的方程代入圆C的方程,得到(x-3)^2+(2x-5+2)^2=16。
化简后得到5x^2-35x+60=0,解得x=2和x=6。
将x的值代入直线l的方程,得到相应的y值,分别为y=-1和y=7。
点、直线与圆的位置关系(填空题:较难)1、已知一个点到圆上的最大距离是5,最小距离是1,则这个圆的半径是_______2、如图,直线AB,AD与⊙O分别相切于点B、D两点,C为⊙O上一点,且∠BCD=140°,则∠A的度数是__________3、如图,正方形ABCD的边长为6,点E是AB上的一点,将△BCE沿CE折叠至△FCE,若CF,CE恰好与以正方形ABCD的中心为圆心的⊙O相切,则折痕CE= ________.4、如图,直线y=x-2与x轴、y轴分别交于M、N两点,现有半径为1的动圆圆心位于原点处,并以每秒1个单位的速度向右作平移运动.已知动圆在移动过程中与直线MN有公共点产生,当第一次出现公共点到最后一次出现公共点,这样一次过程中该动圆一共移动秒.5、如图,AB、CD是⊙O的两条互相垂直的直径,P为⊙O上一动点,过点P分别作PE⊥AB、PF⊥CD,垂足分别为E、F,M为EF的中点.若点P从点B出发,以每秒15°的速度按逆时针方向旋转一周,当∠MAB取得最大值时,点P运动的时间为______秒.6、已知⊙和⊙的半径分别是一元二次方程的两根,且,则⊙和⊙的位置关系是________.7、已知P是边长为2的正方形ABCD内的一点,且∠BPC=60°,当∠BAP最大时,AP2的值为_______.8、已知P是边长为2的正方形ABCD内的一点,且∠BPC=60°,当∠BAP最大时,AP2的值为_______.9、如图,平面直角坐标系中,⊙A的圆心在x轴上,坐标为(a,0),半径为1,直线l为y=2x﹣2,若⊙A沿x轴向右运动,当⊙A与直线l有公共点时,点A横坐标a的取值范围是____.10、如图,四边形ABCD是⊙O的内接四边形,∠CBE是它的一个外角,若∠D=80°,则∠CBE的度数是_________°.11、如图,在等边△ABC中,AC=9,点O在AC上,且AO=3,点P是AB上一动点,连接OP,以O 为圆心,OP长为半径画弧交BC于点D,连接PD,如果PO=PD,那么AP的长是_______.12、如图,四边形ABCD是⊙O的内接四边形,∠CBE是它的一个外角,若∠D=80°,则∠CBE的度数是_________°.13、如图,四边形ABCD是⊙O的内接四边形,∠CBE是它的一个外角,若∠D=80°,则∠CBE的度数是_________°.14、如图,正方形ABCD的中心为O,面积为1856cm2,P为正方形内的一点,且∠OPB=45,连结PA、PB,若PA∶PB=3∶7,则PB=_________cm.15、如图,在平面直角坐标系中,Q(3,4),P是在以Q为圆心,2为半径的⊙Q上一动点,A(1,0)、B(﹣1,0),连接PA、PB,则PA2+PB2的最小值是__.16、如图,AB为⊙O的直径,其长度为2cm,点C为半圆弧的中点,若⊙O的另一条弦AD长等于,∠CAD的度数为_______。
与直线有关的位置关系一知识点:点与圆的位置关系:三点定圆:三角形外接圆画法:外心:圆内接四边形性质:直线与圆的位置关系:直线和圆_________时,叫做直线和圆相交,这条直线叫做____________.直线和圆_________时,叫做直线和圆相切,这条直线叫做_________.这个公共点叫做_______.直线和圆_________时,叫做直线和圆相离.设⊙O的半径为r,圆心O到直线l的距离为d,_________⇔直线l和圆O相离;_________⇔直线l和圆O相切;_________⇔直线l和圆O相交.4.圆的切线的性质定理是__________________________________________.5.圆的切线的判定定理是__________________________________________.三角形内切圆画法:切线长定理:从圆外一点可以引圆的____条切线,它们的________相等.这一点和______平分_______.直角三角形内切圆半径与三边关系公式:任意三角形面积、周长与内切圆半径关系公式:例1.如图,在Rt△ABC中,∠C=900,AB=8cm,BC=6cm。
若要以C为圆心,r为半径画圆C,请根据下列条件,求半径r的值或取值范围:(1)直线AB与圆C相离;(2)直线AB与圆C相切;(3)直线AB与圆C相交。
例2.如图,已知直线AB经过⊙O上的点A,并且AB=OA,∠OBA=45︒,直线AB是⊙O的切线吗?为什么?例3.如图,△ABC内接于⊙O,AB是⊙O的直径,∠CAD=∠ABC,判断直线AD与⊙O的位置关系,并说明理由。
例4.已知:如图,⊙O内切于△ABC,∠BOC=1050,∠ACB=900,AB=20cm.求BC、AC的长.例5.如图,∠PAQ是直角,半径为5的⊙O与AP相切于点T,与AQ相交于两点B、C.(1)BT是否平分∠OBA?证明你的结论; (2)若已知AT=4,试求AB的长.例6.如图,P为⊙O外一点,PO交⊙O于C,过⊙O上一点A作弦AB⊥PO于E,若∠EAC=∠CAP,求证:PA是⊙O的切线.例7.已知:如图,△ABC内接于⊙O,过A点作直线DE,当∠BAE=∠C时,试确定直线DE与⊙O的位置关系,并证明你的结论.课堂同步:1.若⊙A 的半径是5,圆心A 的坐标是(3,4),点P 的坐标是(5,8),则点P ( )A.在⊙A 内B.在⊙A 上C.在⊙A 外D.无法确定2.⊙O 的半径为5,圆心O 的坐标为(0,0),点P 的坐标为(4,2),则点P 与⊙O 的位置关系是( )A.点P 在⊙O 内B.点P 在⊙O 上C.点P 在⊙O 外D.点P 在⊙O 上或⊙O 外3.如图,AB 为⊙O 的直径,BC 为⊙O 的切线,AC 交⊙O 于点D 。
直线与圆的位置关系专项训练[A 组]1.如图,已知直线CD 与⊙O 相切于点C ,AB 为直径,若∠BCD=︒40,则ABC ∠的度数是_____________.2.如图,⊙M 与x 轴相交于点A (2,0),B (8,0),与y 轴相切于点C ,则圆心M 的坐标是___________.3.如图,在同心圆O 中,大圆的弦AB 与小圆相切,若大圆的半径是13cm,弦AB =24cm,则小圆的半径是_______.4.如图,已知⊙O 的直径AB 与弦AC 的夹角为︒35,过C 的切线PC 与AB 的延长线交于P ,那么P ∠等于( )A.︒15B.︒20C.︒25D.︒305.如图,P A 、PB 是⊙O 的切线,切点分别为A 、B ,点C 在⊙O 上,如果︒=∠50P ,那么ACB ∠等于( )A.︒40B.︒50C.︒65D.︒1306.如图,ABC ∆是等腰直角三角形,AC=BC=a ,以斜边AB 上的点O 为圆心的圆分别与AC 、BC 相切于点E 、F ,与AB 分别相交于点G 、H ,且EH 的延长线与CB 的延长线交于点D ,则CD 的长为( )A.a 2122- B.a 212+ C.a 2 D.a )412(-7.如图,以等腰三角形ABC 的一腰AB 为直径的⊙O 交BC 于点D ,交AC 于点G ,过点D 作DE ⊥AC ,垂足为E 。
根据以上条件写出三个正确结论(除AB=AC 、AO=BO 、ACB ABC ∠=∠外),并选择其中一个加以证明。
(允许添加辅助线)8.如图,P 为正比例函数x y 23=上的一个动点,⊙P 的半径为3,设点P 的坐标为(x ,y )。
(1)求⊙P 与直线x=2相切时点P 的坐标;(2)请直接写出⊙P 与直线x =2相交、相离时x 的取值范围。
9.如图,形如量角器的半圆O 的直径DE=12cm ,形如三角板的ABC ∆中,︒=∠90ACB ,︒=∠30ABC ,BC =12cm 。
3.1 直线与圆的位置关系 同步练习
◆基础训练 1.填表:
2.若直线a 与⊙O 交于A ,B 两点,O 到直线a•的距离为6,•AB=•16,•则⊙O•的半径为_____.
3.在△ABC 中,已知∠ACB=90°,BC=AC=10,以C 为圆心,分别以5,8为半径作图,那么直线AB 与圆的位置关系分别是______,_______,_______.
4.⊙O 的半径是6,点O 到直线a 的距离为5,则直线a 与⊙O 的位置关系为( )
A .相离
B .相切
C .相交
D .内含 5.下列判断正确的是( )
①直线上一点到圆心的距离大于半径,则直线与圆相离;②直线
上一点到圆心的距离等于半径,则直线与圆相切;③直线上一点到圆心的距离小于半径,•则直线与圆相交.
A.①②③ B.①② C.②③ D.③
6.OA平分∠BOC,P是OA上任一点(O除外),若以P为圆心的⊙P 与OC相离,•那么⊙P与OB的位置关系是()
A.相离 B.相切 C.相交 D.相交或相切7.如图所示,Rt△ABC中,∠ACB=90°,CA=6,CB=8,以C为圆心,r为半径作⊙C,当r为多少时,⊙C与AB相切?
8.如图,⊙O的半径为3cm,弦,AB=4cm,若以O为圆心,•再作一个圆与AC相切,则这个圆的半径为多少?这个圆与AB的位置关系如何?
◆提高训练
9.如图所示,在直角坐标系中,⊙M的圆心坐标为(m,0),半径为2,•如果⊙M与y轴所在直线相切,那么m=______,如果⊙M与y
轴所在直线相交,那么m•的取值范围是_______.
10.如图,△ABC中,AB=AC=5cm,BC=8cm,以A为圆心,3cm•长为半径的圆与直线BC的位置关系是_______.
11.如图,正方形ABCD的边长为2,AC和BD相交于点O,过O作EF
∥AB,交BC于E,交AD于F,则以点B
圆与直线AC,EF,CD的位置关系分别是什么?
12.已知⊙O的半径为5cm,点O到直线L的距离OP为7cm,如图所示.
(1)怎样平移直线L,才能使L与⊙O相切?
(2)要使直线L与⊙O相交,应把直线L向上平移多少cm?
13.如图,Rt△ABC中,∠C=90°,AC=3,AB=5,若以C为圆心,r 为半径作圆,•那么:
(1)当直线AB与⊙C相切时,求r的取值范围;
(2)当直线AB与⊙C相离时,求r的取值范围;
(3)当直线AB与⊙C相交时,求r的取值范围.
14.在南部沿海某气象站A测得一热带风暴从A的南偏东30•°的方向迎着气象站袭来,已知该风暴速度为每小时20千米,风暴周围50千米范围内将受到影响,•若该风暴不改变速度与方向,问气象站正南方60千米处的沿海城市B是否会受这次风暴的影响?若不受影响,请说明理由;若受影响,请求出受影响的时间.
答案:
1.略 2.10 3.相离,相切,相交 4.C 5.C 6.A 7.r=24
5 8.r=1cm,•这个圆与AB相离 9.±2,-2<m<2 10.相切 11.相切,相交,相离
12.(1)直线L向上平移2cm或12cm (2)大于2cm且小于12cm 13.(1)r=2.4 (2)r<2.4 (3)r>2.4 14.B•市受影响,影响时间为4时
15.(1)2 (2)8
(3)①0<r<2时,没有;②r=2时,一个;③2<•r<8时,2个;
④r=8时,3个;⑤r>8时,4个。