2016江苏高考数学最热6题(预测)
- 格式:docx
- 大小:289.86 KB
- 文档页数:5
2016届江苏省高考原创押题卷 数学(解析版)一、填空题:(本大题共14个小题,每小题5分,共70分,将答案填在答题纸上)1.设集合{}1,0,1A =-,{}0,1,2,3B =,则A B I =_______.【命题意图】本题考查集合交集的概念等基础知识,意在考查学生的基本运算能力. 【答案】{}0,1【解析】A B I {}1,0,1=-I {}0,1,2,3={}0,1.2. 已知23(,,ia bi ab R i i+=+∈为虚数单位),则a b +=_______. 【命题意图】本题考查复数的运算,复数概念等基础知识,意在考查学生的基本运算能力. 【答案】1【解析】23323,2, 1.ia bi i a bi ab a b i+=+⇒-=+⇒==-+= 3. 已知一个圆锥的母线长为2,侧面展开是半圆,则该圆锥的体积为_______.【命题意图】本题考查圆锥体积、圆锥展开图等基础知识,意在考查基本运算能力. 【答案】3π4. 袋子里有两个不同的红球和两个不同的白球,从中任取两个球,则这两个球颜色相同的概率为_______.【命题意图】本题考查古典概型概率基础知识,意在考查学生的基本运算能力和逻辑推理能力. 【答案】13【解析】从中4个球中任取两个球共有6种基本事件,其中两个球颜色相同包含两种基本事件,故概率为21=63. 5. 下图是一个算法流程图,则输出的x 的值是_______.【命题意图】本题考查算法流程图、简单的不等式运算基础知识,意在考查基本概念,以及基本运算能力. 【答案】59.【解析】第一次循环:3,7x y ==,第二次循环:13,33x y ==,第三次循环:59,151x y ==,结束循环,输出59.x =6. 已知双曲线22221(0)x y a b a b-=>>的一个焦点为(3,0),直线10x y --=与双曲线右支有交点,则当双曲线离心率最小时双曲线方程为_______.【命题意图】本小题主要考查双曲线的离心率,双曲线标准方程等基础知识,意在考查分析问题的能力、基本运算能力.【答案】22154x y -=7. 若实数,x y 满足约束条件22,1,1,x y x y x y -⎧⎪--⎨⎪+⎩≤≥≥则目标函数2z x y =+的最小值为_______.【命题意图】本题考查线性规划求最值基础知识,意在考查学生的基本运算能力. 【答案】1【解析】可行域为ABC ∆及其内部,其中(3,4),(1,0),(0,1),A B C 直线2z x y =+过点(0,1)C 时取最小值1.8. 设等比数列{}n a 的前n 项和为n S ,若,63,763==S S 则=++987a a a _______. 【命题意图】本题考查等比数列的性质及求和等基础知识,意在考查分析能力及基本运算能力. 【答案】448.【解析】由题意得1237a a a ++=,45663756a a a ++=-=,所以789568448a a a ++=⨯=9. 将函数()3sin y x x x =+?¡的图像向左平移()0m m >个单位长度后,所得的图像关于y 轴对称,则m 的最小值是_______.【命题意图】本题考查三角函数图像与性质等基础知识,意在考查基本运算能力.【答案】6π10. 若实数,x y 满足0x y >>,且22log log 1x y +=,则22x y x y+-的最小值为_______.【命题意图】本题考查基本不等式求最值基础知识,意在考查分析问题和解决问题能力以及运算求解能力. 【答案】4【解析】因为22log log 12x y xy +=⇒=,所以222()24()4,x y x y xy x y x y x y x y+-+==-+≥---当且仅当时2,2x y xy -==,即13,13x y =+=-取等号,因此22x y x y+-的最小值为4. 11. 若函数()ln |31|f x x =-在定义域的某个子区间(1,1)k k -+上不具有单调性,则实数k 的取值范围为_______.【命题意图】本题考查函数的图象和性质的综合运用等基础知识,意在考查分析问题的能力、基本运算能力及推理能力. 【答案】)35,34[]32,1(Y --.【解析】函数()y f x =的图象如图, 11013k k -<<+≤或121133k k ≤-<<+,解得213k -<≤-或4533k ≤<.12. 已知实数,,a b c 满足222a b c +=,0c ≠,则2ba c-的取值范围为_______. 【命题意图】本题考查三角函数最值等基础知识,意在考查学生分析能力及基本运算能力. 【答案】33[,]-13. 已知圆22:2C x y +=,直线:240l x y +-=,点00(,)P x y 在直线l 上.若存在圆C 上的点Q ,使得45OPQ ∠=o(O 为坐标原点),则0x 的取值范围为_______.【命题意图】本题考查正弦定理、直线与圆的位置关系基础知识,意在考查运用数形结合思想、分析问题和解决问题的能力、基本运算能力及推理能力. 【答案】8[0,]5【解析】在OPQ ∆中,设α=∠OQP ,由正弦定理,得αsin 45sin 0OPOQ =,即αsin 222OP=,得2sin 2≤=αOP ,即2)22(2020≤-+x x ,解得5800≤≤x .14. 已知函数2()f x ax =,若存在两条过点(1,2)P -且相互垂直的直线与函数()f x 的图像都没有公共点,则实数a 的取值范围为_______.【命题意图】本题考查函数与方程、函数图像与性质基础知识,意在考查分析问题、解决问题的能力、基本运算能力及推理能力. 【答案】1(,)8+∞二、解答题 (本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤.)15. (本小题满分14分)已知(cos ,sin ),(cos ,sin )a b ααββ==r r.(1)若67πβα=-,求a b ⋅r r 的值; (2)若4,58a b πα⋅==r r ,且⎪⎭⎫⎝⎛-∈-0,2πβα,求tan()αβ+的值.【命题意图】本题考查平面向量的数量积、两角和与差的三角函数、同角三角函数关系式等基础知识,意在考查分析问题和解决问题的能力、基本运算能力.16. (本小题满分14分)如图,在正三棱锥111ABC A B C -中,E ,F 分别为1BB ,AC 的中点.(1)求证://BF 平面1A EC ; (2)求证:平面1A EC ⊥平面11ACC A .【命题意图】本题考查线面平行及面面垂直的判定定理等基础知识,意在考查空间想象能力、分析问题和解决问题的能力、推理论证能力.【解析】(1)连接1AC 交1A C 于点O ,连接OF ,Q F 为AC 中点,∴111//=2OF CC OF CC 且,Q E 为1BB 中点,∴111//=2BE CC BE CC 且,∴//=BE OF BE OF 且,∴四边形BEOF 是平行四边形, (4)分∴//BF OE ,又BF ⊄平面1A EC ,OE ⊂平面1A EC ,∴//BF 平面1A EC .……7分17. (本小题满分14分)如图,两座建筑物AB ,CD 的底部都在同一个水平面上,且均与水平面垂直,它们的高度分别是9m 和15m ,从建筑物AB 的顶部A 看建筑物CD 的张角45CAD ∠=o .(1)求BC 的长度;(2)在线段BC 上取一点P (点P 与点B ,C 不重合),从点P 看这两座建筑物的张角分别为APB α∠=,DPC β∠=,问点P 在何处时,tan()αβ+最小?【命题意图】本题考查解三角形、两角和的正切公式、基本不等式的应用等基础知识,意在考查学生转化与化归能力,分析问题和解决问题的能力,以及运算推理能力.【解析】(1)如图作AN CD ⊥ 于N .因为m CD m AB CD AB 15,9,//==, 所以m NC m DN 9,6==.设AN x DAN θ∠=,= ,因为ο45=∠CAD ,所以θ-=∠ο45CAN . 在Rt ANC ∆ 和Rt AND∆ 中,因为069tan ,tan(45-)=x x θθ=, ………………………4分所以()91tan 451tan tan x θθθ-∴︒+=-= ,化简整理得215540x x --= , 解之得12)183(x x =,=-舍去 .所以BC的长度是18 m . ………………………7分(2)设BP t = ,所以915PC=18-t,tan =,tan =18t tαβ- ………………………9分 则tan tan 66135013501tan t 9151(an 14527722789127)518t t t tan t t t t t αβαβαβ++----+++--+++===-=- ………14分63013502)27(1350)27(=≥+++t t ,当且仅当1350t+27=27t + ,即时,()tan αβ+ 取最小值. ……15分BCAD(第17题图)答: P 在距离B 点m )27615(- 时,()tan αβ+ 最小. ………………………16分18. (本小题满分16分)已知椭圆C :22221(0)x y a b a b+=>> , 经过点P (1,2,离(1)求椭圆C 的方程;(2) 设直线l 与椭圆C 交于,A B 两点,且以AB 为直径的圆过椭圆右顶点M ,求证:直线l 恒过定点.【命题意图】本题考查椭圆的标准方程与简单几何性质,直线与圆锥曲线的位置关系等基础知识,意在考查基本的运算能力、分析问题和解决问题的能力.将①②代入③,得 225161204m m k -+=+, 解得65m =或2m =(舍). 综上,直线l 经过定点6(,0).5…………………14分 19. (本小题满分16分)已知函数()x f x e =,2()1(,)g x ax bx a b R =++∈.(1)若0a ≠,则a ,b 满足什么条件时,曲线()y f x =与()y g x =在0x =处总有相同的切线?(2)当1a =时,求函数()()()g x h x f x =的单调减区间; (3)当0a =时,若()()f x g x ≥对任意的x R ∈恒成立,求b 的取值的集合.【命题意图】本小题主要考查利用导数求切线方程,利用导数求单调区间及最值,不等式恒成立等基础知识,考查学生转化与化归能力、综合分析问题和解决问题的能力以及运算求解能力.(2)由1a =,21()x x bx h x e ++=,∴2(2)1()xx b x b h x e -+-+-'=, ∴2(2)1(1)((1))()x x x b x b x x b h x e e-+-+----'==-, ………7分 由()0h x '=,得11x =,21x b =-,∴当0b >时,函数()y h x =的减区间为(,1)b -∞-,(1,)+∞;当0b =时,函数()y h x =的减区间为(,)-∞+∞;当0b <时,函数()y h x =的减区间为(,1)-∞,(1,)b -+∞. ………10分(3)由1a =,则()()()1x x f x g x e bx ϕ=-=--,∴()xx e b ϕ'=-,①当0b ≤时,()0x ϕ'≥,函数()x ϕ在R 上单调递增,又(0)0ϕ=,∴ (,0)x ∈-∞时,()0x ϕ<,与函数()()f x g x ≥矛盾,………12分 ②当0b >时,()0x ϕ'>,ln x b >;()0x ϕ'<,ln x b <,∴函数()x ϕ在(,ln )b -∞单调递减;(ln ,)b +∞单调递增,20. (本小题满分16分)等差数列{}n a 的前n 项和为n S ,已知12a =,622S =.(1)求n S ;(2)若从{}n a 中抽取一个公比为q 的等比数列{}n k a ,其中11k =,且12n k k k <<<L L ,*n k N ∈.①当q 取最小值时,求{}n k 的通项公式;②若关于*()n n N ∈的不等式16n n S k +>有解,试求q 的值.【命题意图】本题考查等差数列和等比数列综合应用,等差数列前n 项和公式,数列单调性等基础知识,意在考查学生灵活运用基本量进行探索求解、推理分析能力.【解析】(1)设等差数列的公差为d ,则611665222S a d =+⋅⋅=,解得23d =,……2分 所以(5)3n n n S +=. ………4分(2)①因为数列}{n a 是正项递增等差数列,所以数列}{n k a 的公比1>q ,若22=k ,则由382=a ,得3412==a a q ,此时932)34(223=⋅=k a ,由)2(32932+=n , 解得*310N n ∉=,所以22>k ,同理32>k ; ……6分 若42=k ,则由44=a ,得2=q ,此时122-⋅=n k n a , 另一方面,2(2)3n k n a k =+,所以2(2)23n n k +=,即1322n n k -=⨯-, ………8分 所以对任何正整数n ,n k a 是数列}{n a 的第2231-⋅-n 项.所以最小的公比2=q . 所以2231-⋅=-n n k . ………10分附加题部分21.【选做题】(本题包括A、B、C、D四小题,请选定其中两题................,并在相应的答题区域内作答....若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.)A.【选修4—1几何证明选讲】(本小题满分10分)如图,△ABC内接于⊙O,点D在OC的延长线上,AD与⊙O相切,割线DM与⊙O相交于点M,N,若∠B=30°,AC=1,求DM⋅DN【命题意图】本题主要考查切割线定理等基础知识,意在考查学生平面几何推理证明和逻辑思维能力.xy=,若矩阵B.【选修4—2:矩阵与变换】(本小题满分10分)已知曲线C:1M ⎥=⎥⎥⎦对应的变换将曲线C 变为曲线C ',求曲线C '的方程. 【命题意图】本题考查矩阵与向量乘积、相关点法求轨迹方程等基础知识,意在考查运算求解能力.【解析】设曲线C 一点(,)x y ''对应于曲线C '上一点(,)x y ,∴2222x x y y '⎡⎤⎡⎤-⎢⎥⎢⎥⎢⎥⎢⎥⎥=⎢⎥⎢⎥⎥⎢⎥⎢⎥⎥'⎣⎦⎣⎦⎣⎦,∴22x y x ''-=,22x y y ''+=,……5分∴x '=,y '=,∴1x y ''==,∴曲线C '的方程为222y x -=. …10分C.【选修4—4:坐标系与参数方程】(本小题满分10分)在极坐标系下,已知圆O :cos sin ρθθ=+和直线:sin()42l πρθ-=, (1)求圆O 和直线l 的直角坐标方程;(2)当()0,θπ∈时,求直线l 与圆O 公共点的一个极坐标.【命题意图】本题主要考查极坐标方程转化为直角坐标方程,直线与曲线位置关系等基本内容. 意在考查转化与化归能力、基本运算能力,方程思想与数形结合思想.D .【选修4—5:不等式选讲】(本小题满分10分)已知,,a b c 均为正数,证明:2222111()63a b c a b c+++++≥ 【命题意图】本题考查利用均值不等式证明不等式等基础知识,意在考查综合分析问题解决问题以及运算求解能力,逻辑思维能力.【解析】因为a b c ,,均为正数,由均值不等式得22223()a b c abc ++≥3,………………2分 因为13111()abc a b c-++≥3,所以223111(()abc a b c-++)≥9 .…………………………………5分 故22222233111(()()a b c abc abc a b c -++++++)≥39. (当且仅当c b a ==时取等号) 又32233()9()22763abc abc -+=≥(当且仅当433=abc 时取等号),所以原不等式成立.…………………………………10分【必做题】(第22题、第23题,每题10分,共20分.解答时应写出文字说明、证明过程或演算步骤)22.如图,在空间直角坐标系O-xyz中,正四棱锥P-ABCD的侧棱长与底边长都为32,点M,N分别在P A,BD上,且13 PM BNPA BD==.(1)求证:MN⊥AD;(2)求MN与平面P AD所成角的正弦值.【命题意图】本题考查向量数量积,向量垂直,直线与平面所成角等基础知识,意在考查运算求解能力,逻辑思维能力.(2)设平面PAD 的法向量为(,,),n x y z =r(3,3,0),(3,0,3),AD AP =--=-u u u r u u u r Q由0,0,n AD n AP ⎧⋅=⎪⎨⋅=⎪⎩r u u u r r u u u r 得330,330.x y x z --=⎧⎨-+=⎩ 取1,z =得1, 1.x y ==-23. 设集合{}5,4,3,2,1=S ,从S 的所有非空子集中,等可能地取出一个. (1)设S A ⊆,若A x ∈,则A x ∈-6,就称子集A 满足性质p ,求所取出的非空子集满足性质p 的概率;(2)所取出的非空子集的最大元素为ξ,求ξ的分布列和数学期望()ξE .【命题意图】本题考查子集定义及性质、古典概型及离散型随机变量分布列和期望等基础知识,意在考查分析问题和解决问题能力,运算求解能力,逻辑思维能力.【解析】可列举出集合S 的非空子集的个数为:31125=-个.(2分)(1)满足性质p 的非空子集为:{}3,{}5,1,{}4,2,{}5,3,1,{}4,3,2,{}5,4,2,1,{}5,4,3,2,1共7个,所以所取出的非空子集满足性质p 的概率为: 317=p .(6分) (2)ξ的可能值为1,2,3,4,5.(9分)()31129311653184314331223111=⨯+⨯+⨯+⨯+⨯=ξE .(10分)。
2016年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1. 已知集合{}1,2,3,6A =-,{}|23B x x =-<<,则A B = . 【答案】{}1,2-;【解析】由交集的定义可得{}1,2A B =- .2. 复数()()12i 3i z =+-,其中i 为虚数单位,则z 的实部是 . 【答案】5;【解析】由复数乘法可得55i z =+,则则z 的实部是5.3. 在平面直角坐标系xOy 中,双曲线22173x y -=的焦距是 .【答案】【解析】c ==,因此焦距为2c =4. 已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是 . 【答案】0.1; 【解析】 5.1x =,()22222210.40.300.30.40.15s =++++=. 5.函数y =的定义域是 . 【答案】[]3,1-;【解析】2320x x --≥,解得31x -≤≤,因此定义域为[]3,1-. 6. 如图是一个算法的流程图,则输出a 的值是 .【答案】9;【解析】,a b 的变化如下表:则输出时9a =.7. 将一个质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点为正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是 . 【答案】56; 【解析】将先后两次点数记为(),x y ,则共有6636⨯=个等可能基本事件,其中点数之和大于等于10有()()()()()()4,6,5,5,5,6,6,4,6,5,6,6六种,则点数之和小于10共有30种,概率为305366=. 8. 已知{}n a 是等差数列,n S 是其前n 项和.若2123a a +=-,510S =,则9a 的值是 . 【答案】20;【解析】设公差为d ,则由题意可得()2113a a d ++=-,151010a d +=,解得14a =-,3d =,则948320a =-+⨯=.9. 定义在区间[]0,3π上的函数sin 2y x =的图象与cos y x =的图象的交点个数是. 【答案】7;【解析】画出函数图象草图,共7个交点.10. 如图,在平面直角坐标系xOy 中,F 是椭圆()222210x y a b a b +=>>的右焦点,直线2by =与椭圆交于,B C两点,且90BFC ∠=︒,则该椭圆的离心率是 .FC BOyx【解析】由题意得(),0F c ,直线2by =与椭圆方程联立可得2b B ⎛⎫ ⎪ ⎪⎝⎭,2b C ⎫⎪⎪⎭, 由90BFC ∠=︒可得0BF CF ⋅=,2b BF c ⎛⎫=+- ⎪ ⎪⎝⎭,2b CF c ⎛⎫=-- ⎪ ⎪⎝⎭ , 则22231044c a b -+=,由222b a c =-可得223142c a =,则c e a ===. 11. 设()f x 是定义在R 上且周期为2的函数,在区间[)1,1-上(),10,2,01,5x a x f x x x +-≤<⎧⎪=⎨-≤<⎪⎩其中a ∈R ,若5922f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,则()5f a 的值是 . 【答案】25-;【解析】由题意得511222f f a ⎛⎫⎛⎫-=-=-+ ⎪ ⎪⎝⎭⎝⎭,91211225210f f ⎛⎫⎛⎫==-= ⎪ ⎪⎝⎭⎝⎭, 由5922f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭可得11210a -+=,则35a =,则()()()325311155f a f f a ==-=-+=-+=-. 12. 已知实数,x y 满足240,220,330,x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩ 则22x y +的取值范围是 .【答案】4,135⎡⎤⎢⎥⎣⎦;【解析】在平面直角坐标系中画出可行域如下xyB A –1–2–3–41234–1–2–3–4123422x y+为可行域内的点到原点距离的平方.可以看出图中A点距离原点最近,此时距离为原点A到直线220x y+-=的距离,d,则()22min45x y+=,图中B点距离原点最远,B点为240x y-+=与330x y--=交点,则()2,3B,则()22max13x y+=.13.如图,在ABC△中,D是BC的中点,,E F是AD上两个三等分点,4BA CA⋅=,1BF CF⋅=-,则BE CE⋅的值是.【答案】78;【解析】令DF a=,DB b=,则DC b=-,2DE a=,3DA a=,则3BA a b=-,3CA a b=+,2BE a b=-,2CE a b=+,BF a b=-,CF a b=+,则229BA CA a b⋅=-,22BF CF a b⋅=-,224BE CE a b⋅=-,由4BA CA⋅=,1BF CF⋅=-可得2294a b-=,221a b-=-,因此22513,88a b==,因此22451374888BE CE a b⨯⋅=-=-=.14.在锐角三角形ABC中,sin2sin sinA B C=,则tan tan tanA B C的最小值是.【答案】8;【解析】由()()sin sinπsin sin cos cos sinA ABC B C B C=-=+=+,sin2sin sinA B C=,可得sin cos cos sin2sin sinB C B C B C+=(*),由三角形ABC为锐角三角形,则cos0,cos0B C>>,在(*)式两侧同时除以cos cosB C可得tan tan2tan tanB C B C+=,又()()tan tantan tanπtan1tan tanB CA AB CB C+=--=-+=--(#),则tan tantan tan tan tan tan1tan tanB CA B C B CB C+=-⨯-,由tan tan2tan tanB C B C+=可得()22tan tantan tan tan1tan tanB CA B CB C=--,令tan tanB C t=,由,,A B C为锐角可得tan0,tan0,tan0A B C>>>,由(#)得1tan tan0B C-<,解得1t>FED CBA2222tan tan tan 111t A B C t t t=-=---, 221111124t t t ⎛⎫-=-- ⎪⎝⎭,由1t >则211104t t >-≥-,因此tan tan tan A B C 最小值为8, 当且仅当2t =时取到等号,此时tan tan 4B C +=,tan tan 2B C =,解得tan 2tan 2tan 4B C A ===(或tan ,tan B C 互换),此时,,A B C 均为锐角.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明,证明过程或演算步骤. 15. (本小题满分14分)在ABC △中,6AC =,4cos 5B =,π4C =. ⑴ 求AB 的长; ⑵ 求πcos 6A ⎛⎫- ⎪⎝⎭的值.【答案】⑴. 【解析】⑴ 4cos 5B =,B 为三角形的内角 3sin 5B ∴= sinC sin AB ACB=635=,即:AB = ⑵ ()cos cos sin sin cos cos A C B B C B C =-+=-cos A ∴=又A 为三角形的内角sin A ∴=π1cos sin 62A A A ⎛⎫∴-=+= ⎪⎝⎭16. (本小题满分14分)如图,在直三棱柱111ABC A B C -中,,D E 分别为,AB BC 的中点,点F 在侧棱1B B 上, 且11B D A F ⊥,1111A C A B ⊥. 求证:⑴ 直线//DE 平面11A C F ;⑵ 平面1B DE ⊥平面11A C F .【答案】见解析;【解析】⑴ ,D E 为中点,DE ∴为ABC ∆的中位线//DE AC ∴又111ABC A B C - 为棱柱,11//AC A C ∴11//DE A C ∴,又11A C ⊂ 平面11A C F ,且11DE A C F ⊄ //DE ∴平面11A C F ;⑵ 111ABC A B C - 为直棱柱,1AA ∴⊥平面111A B C111AA A C ∴⊥,又1111A C A B ⊥且1111AA A B A = ,111,AA A B ⊂平面11AA B B 11A C ∴⊥平面11AA B B ,又11//DE A C ,DE ∴⊥平面11AA B B 又1A F ⊂ 平面11AA B B ,1DE A F ∴⊥又11A F B D ⊥ ,1DE B D D = ,且1,DE B D ⊂平面1B DE 1A F ∴⊥平面1B DE ,又111A F A C F ⊂ ∴平面1B DE ⊥平面11A C F .17. (本小题满分14分)现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥1111P A B C D -,下部分的形状是正四棱柱1111ABCD A B C D -(如图所示),并要求正四棱柱的高1O O 是正四棱锥的高1PO 的4倍. ⑴ 若6m AB =,12m PO =,则仓库的容积是多少;⑵ 若正四棱锥的侧棱长为6m ,当1PO 为多少时,仓库的容积最大?【答案】⑴3312m;⑵m ; 【解析】⑴ 12m PO =,则18m OO =,FEDC BAC 1B 1A 11A1111231116224m 33P A B C D ABCD V S PO -⋅=⨯⨯==,111123168288m ABCD A B C D ABCD V S OO -⋅=⨯==,111111113312m =P A B C D ABCD A B C D V V V --+=,故仓库的容积为3312m ;⑵ 设1m PO x =,仓库的容积为()V x则14m OO x =,11m A O =,11m A B =,()111123331111272224m 3333P A B C D ABCD V S PO x x x x x -⋅=⨯⨯=-=-=,1111233142888m ABCD A B C D ABCD V S OO x x x-⋅=⨯=-=,()()111111113332262428883120633=P A B C D ABCD A B C D V x V V x x x x x x x --+=-+-=-+<<, ()()22'263122612V x x x =-+=--()06x <<,当(x ∈时,()'0V x >,()V x 单调递增,当()x ∈时,()'0V x <,()V x 单调递减,因此,当x =时,()V x 取到最大值,即1m PO =时,仓库的容积最大.18. (本小题满分14分)如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M :221214600x y x y +--+= 及其上一点()2,4A .⑴ 设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线6x =上,求圆N 的标准方程; ⑵ 设平行于OA 的直线l 与圆M 相交于,B C 两点,且BC OA =,求直线l 的方程;⑶ 设点(),0T t 满足:存在圆M 上的两点P 和Q ,使得TA TP TQ +=,求实数t 的取值范围.【答案】⑴()()22611x y -+-=⑵25y x =+或215y x =-⑶2⎡-+⎣【解析】⑴ 因为N 在直线6x =上,设()6,N n ,因为与x 轴相切,则圆N 为()()2226x y n n -+-=,0n >又圆N 与圆M 外切,圆M :()()226725x x -+-=,则75n n -=+,解得1n =,即圆N 的标准方程为()()22611x y -+-=;⑵ 由题意得OA =,2OA k = 设:2l y x b =+,则圆心M 到直线l 的距离d则BC ==BC =,即=,解得5b =或15b =-,即l :25y x =+或215y x =-;⑶ TA TP TQ += ,即TA TQ TP PQ =-=,即TA PQ = ,,又10PQ≤,10,解得2t ⎡∈-+⎣,对于任意2t ⎡∈-+⎣,欲使TA PQ =,此时10TA ≤,只需要作直线TA必然与圆交于P Q 、两点,此时TA PQ = ,即TA PQ =,因此对于任意2t ⎡∈-+⎣,均满足题意,综上2t ⎡∈-+⎣.19. (本小题满分14分)已知函数()()0,0,1,1x x f x a b a b a b =+>>≠≠. ⑴ 设2a =,12b =. ① 求方程()2f x =的根;② 若对于任意x ∈R ,不等式()()26f x mf x -≥恒成立,求实数m 的最大值; ⑵ 若01a <<,1b >,函数()()2g x f x =-有且只有1个零点,求ab 的值. 【答案】⑴ ①0x =;②4;⑵1;【解析】⑴ ① ()122xxf x ⎛⎫=+ ⎪⎝⎭,由()2f x =可得1222x x +=,则()222210x x -⨯+=,即()2210x -=,则21x =,0x =;② 由题意得221122622x x x x m ⎛⎫++- ⎪⎝⎭≥恒成立,令122x xt =+,则由20x >可得2t =≥, 此时226t mt --≥恒成立,即244t m t t t +=+≤恒成立 ∵2t ≥时44t t +=≥,当且仅当2t =时等号成立,因此实数m 的最大值为4.()()22xxg x f x a b =-=+-,()ln 'ln ln ln ln x xxxa b g x a a b b a b b a ⎡⎤⎛⎫=+=+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,由01a <<,1b >可得1b a >,令()ln ln xb ah x a b⎛⎫=+ ⎪⎝⎭,则()h x 递增,而ln 0,ln 0a b <>,因此0ln log ln b a a x b ⎛⎫=- ⎪⎝⎭时()00h x =,因此()0,x x ∈-∞时,()0h x <,ln 0x a b >,则()'0g x <;()0,x x ∈+∞时,()0h x >,ln 0x a b >,则()'0g x >;则()g x 在()0,x -∞递减,()0,x +∞递增,因此()g x 最小值为()0g x , ① 若()00g x <,log 2a x <时,log 22a x a a >=,0x b >,则()0g x >; x >log b 2时,0x a >,log 22b x b b >=,则()0g x >;因此1log 2a x <且10x x <时,()10g x >,因此()g x 在()10,x x 有零点, 2log 2b x >且20x x >时,()20g x >,因此()g x 在()02,x x 有零点, 则()g x 至少有两个零点,与条件矛盾;② 若()00g x ≥,由函数()g x 有且只有1个零点,()g x 最小值为()0g x , 可得()00g x =, 由()00020g a b =+-=, 因此00x =,因此ln log 0ln b aa b ⎛⎫-= ⎪⎝⎭,即ln 1ln a b -=,即ln ln 0a b +=, 因此()ln 0ab =,则1ab =.20. (本小题满分14分)记{}1,2,,100U = .对数列{}n a (*n ∈N )和U 的子集T ,若T =∅,定义0T S =;若{}12,,,k T t t t = ,定义12k T t t t S a a a =+++ .例如:{}1,3,66T =时,1366T S a a a =++. 现设{}n a (*n ∈N )是公比为3的等比数列,且当{}2,4T =时,30T S =. ⑴ 求数列{}n a 的通项公式;⑵ 对任意正整数k (1100k ≤≤),若{}1,2,,T k ⊆ ,求证:1T k S a +<; ⑶ 设C U ⊆,D U ⊆,C D S S ≥,求证:2C C D D S S S + ≥. 【答案】⑴13n n a -=;⑵⑶详见解析;【解析】⑴ 当{}2,4T =时,2422930T S a a a a =+=+=,因此23a =,从而2113a a ==,13n n a -=; ⑵ 2112131133332k k k T k k S a a a a -+-++=++++=<= ≤;⑶ 设()C A C D = ð,()D B C D = ð,则A B =∅ ,C A C D S S S =+ ,D B C D S S S =+ ,22C C D D A B S S S S S +-=- ,因此原题就等价于证明2A B S S ≥.由条件C D S S ≥可知A B S S ≥.① 若B =∅,则0B S =,所以2A B S S ≥.② 若B ≠∅,由A B S S ≥可知A ≠∅,设A 中最大元素为l ,B 中最大元素为m , 若1m l +≥,则由第⑵小题,1A l m B S a a S +<≤≤,矛盾. 因为A B =∅ ,所以l m ≠,所以1l m +≥, 211123113332222m m m l A B m a a S S a a a -+-+++=++++=< ≤≤≤,即2A B S S >.综上所述,2A B S S ≥,因此2C C D D S S S + ≥.数学Ⅱ(附加题)21. [选做题]本题包括A 、B 、C 、D 四小题,请选定其中两小题,并在相应的答题区域内作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤. A .[选修4-1:几何证明选讲](本小题满分10分)如图,在ABC △中,90ABC ∠=︒,BD AC ⊥,D 为垂足,E 是BC 中点. 求证:EDC ABD ∠=∠.【答案】详见解析;【解析】由BD AC ⊥可得90BDC ∠=︒,由E 是BC 中点可得12DE CE BC ==, 则EDC C ∠=∠,EDCBA由90BDC ∠=︒可得90C DBC ∠+∠=︒, 由90ABC ∠=︒可得90ABD DBC ∠+∠=︒, 因此ABD C ∠=∠,又EDC C ∠=∠可得EDC ABD ∠=∠.B .[选修4-2:矩阵与变换](本小题满分10分)已知矩阵1202⎡⎤=⎢⎥-⎣⎦A ,矩阵B 的逆矩阵111202-⎡⎤-⎢⎥=⎢⎥⎣⎦B ,求矩阵AB . 【答案】51401⎡⎤⎢⎥⎢⎥-⎣⎦;【解析】()11112124221010222--⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦B B ,因此151121*********⎡⎤⎡⎤⎢⎥⎡⎤⎢⎥==⎢⎥⎢⎥⎢⎥-⎣⎦⎢⎥-⎣⎦⎢⎥⎣⎦AB .C .[选修4-4:坐标系与参数方程](本小题满分10分)在平面直角坐标系xOy 中,已知直线l的参数方程为()11,2,x t t y ⎧=+⎪⎪⎨⎪=⎪⎩为参数,椭圆C 的参数方程为()cos ,2sin ,x y θθθ=⎧⎨=⎩为参数,设直线l 与椭圆C 相交于,A B 两点,求线段AB 的长. 【答案】167; 【解析】直线l0y --=,椭圆C 方程化为普通方程为2214y x +=,联立得22014y y x --=⎨+=⎪⎩,解得10x y =⎧⎨=⎩或17x y ⎧=-⎪⎪⎨⎪=⎪⎩,因此167AB ==.D .[选修4-5:不等式选讲](本小题满分10分)设0a >,13a x -<,23ay -<,求证:24x y a +-<.【答案】详见解析; 【解析】由13a x -<可得2223a x -<, 22422233a ax y x y a +--+-<+=≤.[必做题]第22题、第23题,每题10分,共计20分.请在答题卡指定区域内作答,解答时写出文字说明、证明过程或演算步骤. 22. (本小题满分10分)如图,在平面直角坐标系xOy 中,已知直线:20l x y --=,抛物线()2:20C y px p =>. ⑴ 若直线l 过抛物线C 的焦点,求抛物线C 的方程; ⑵ 已知抛物线C 上存在关于直线l 对称的相异两点P 和Q . ①求证:线段PQ 上的中点坐标为()2,p p --; ②求p 的取值范围.Cl yxO 【答案】⑴28y x =;⑵①见解析;②40,3⎛⎫⎪⎝⎭【解析】⑴ :20l x y --= ,∴l 与x 轴的交点坐标为()2,0即抛物线的焦点为()2,0,22p∴= 28y x ∴=;⑵ ① 设点()11,P x y ,()22,Q x y则:21122222y px y px ⎧=⎪⎨=⎪⎩,即21122222y x py x p⎧=⎪⎪⎨⎪=⎪⎩,12221212222PQ y y p k y y y y p p -==+- 又,P Q 关于直线l 对称,1PQ k ∴=- 即122y y p +=-,122y y p +∴=- 又PQ 中点一定在直线l 上 12122222x x y y p ++∴=+=- ∴线段PQ 上的中点坐标为()2,p p --;② 中点坐标为()2,p p --122212122422y y p y y x x p p +=-⎧⎪∴+⎨+==-⎪⎩即1222212284y y p y y p p +=-⎧⎨+=-⎩ 12212244y y py y p p+=-⎧∴⎨=-⎩,即关于222440y py p p ++-=有两个不等根 0∴∆>,()()2224440p p p -->,40,3p ⎛⎫∴∈ ⎪⎝⎭.23. (本小题满分10分)⑴ 求34677C 4C -的值;⑵ 设*,m n ∈N ,n m ≥,求证:()()()()()212121C 2C 3C C 1C 1C m m m m m m m m m n n n m m m n n m +++-++++++++++=+ .【答案】⑴0;⑵详见解析;【解析】⑴ 34677C 4C 7204350-=⨯-⨯=;⑵ 对任意的*m ∈N ,① 当n m =时,左边()1C 1m m m m =+=+,右边()221C 1m m m m ++=+=+,等式成立,② 假设()n k k m =≥时命题成立,即()()()()()212121C 2C 3C C 1C 1C m m m m m m m m m k k k m m m k k m +++-++++++++++=+ ,当1n k =+时,左边=()()()()()12111C 2C 3C C 1C 2C m m m m m m m m m k k k m m m k k k ++-++++++++++++ ()()2211C 2C m m k k m k +++=+++,右边()231C m k m ++=+, 而()()22321C 1C m m k k m m +++++-+,()()()()()()()()()()()()()()()()13!2!12!1!2!!2!1312!1!1!2!1!2C m k k k m m k m m k m k m k k m m k m k k m k m k +⎡⎤++=+-⎢⎥+-++-⎢⎥⎣⎦+=+⨯+--+⎡⎤⎣⎦+-++=+-+=+ 因此()()()222131C 2C 1C m m m k k k m k m ++++++++=+,因此左边=右边,因此1n k =+时命题也成立,综合①②可得命题对任意n m ≥均成立.另解:因为()()111C 1C m m k k k m +++=+,所以左边()()()1111211C 1C 1C m m m m m n m m m ++++++=++++++ ()()1111211C C C m m m m m n m ++++++=++++ 又由111C C C k k k n n n ---=+,知2212112111112111221121C C C C C C C C C C C C m m m m m m m m m m m m n n n n n n m m n m m n ++++++++++++++++++++++=+=++==+++=+++ , 所以,左边=右边.。
2016年江苏高考数学试卷及答案【篇一:(精校版)2016年江苏数学高考试题文档版(含解析)】科网解析团队教师与学而思培优名师团队制作,有可能存在少量错误,仅供参考使用。
2016年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式:21n1n样本数据x1,x2,?,xn的方差s??xi?x,其中x??xi.ni?1ni?12??棱柱的体积v?sh,其中s是棱柱的底面积,h是高.1棱锥的体积v?sh,其中s是棱锥的底面积,h为高.3一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置.......上..1. 已知集合a???1,2,3,6?,b??x|?2?x?3?,则a?b?.【答案】??1,2?;【解析】由交集的定义可得a?b???1,2?.2. 复数z??1?2i??3?i?,其中i为虚数单位,则z的实部是.【答案】5;【解析】由复数乘法可得z?5?5i,则则z的实部是5.x2y23. 在平面直角坐标系xoy中,双曲线??1的焦距是.73【答案】【解析】c?2c?4. 已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是.【答案】0.1;【解析】x?5.1,s2?10.42?0.32?02?0.32?0.42??0.1. ?55.函数y 【答案】??3,1?;【解析】3?2x?x2≥0,解得?3≤x≤1,因此定义域为??3,1?. 6. 如图是一个算法的流程图,则输出a的值是.【答案】9;【解析】a,b的变化如下表:则输出时a?9.7. 将一个质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点为正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是.【答案】5; 6【解析】将先后两次点数记为?x,y?,则共有6?6?36个等可能基本事件,其中点数之和大于等于10有?4,6?,?5,5?,?5,6?,?6,4?,?6,5?,?6,6?六种,则点数之和小于10共有30种,概率为305?. 36628. 已知?an?是等差数列,sn是其前n项和.若a1?a2??3,s5?10,则a9的值是.【答案】20;【解析】设公差为d,则由题意可得a1??a1?d???3,5a1?10d?10,解得a1??4,d?3,则a9??4?8?3?20.【解析】画出函数图象草图,共7个交点.2bx2y210. 如图,在平面直角坐标系xoy中,f是椭圆2?2?1?a?b?0?的右焦点,直线y?2ab与椭圆交于b,c两点,且?bfc?90?,则该椭圆的离心率是.【解析】由题意得f?c,0?,直线y??b?b?b与椭圆方程联立可得b?,c?2??2??, 2???????????????????b????b?由?bfc?90?可得bf?cf?0,bf??,c?cf?c????????,22????c3131则c2?a2?b2?0,由b2?a2?c2可得c2?a2,则e??.a4442?x?a,?1?x?0,?11. 设f?x?是定义在r上且周期为2的函数,在区间??1,1?上f?x???2?x,0?x?1,?5??5??9?其中a?r,若f????f??,则f?5a?的值是.?2??2?2【答案】?;51?5??1?【解析】由题意得f????f??????a,2?2??2?1?9??1?21f???f?????, ?2??2?5210113?5??9?由f????f??可得??a?,则a?,2105?2??2?则f?5a??f?3??f??1???1?a??1?32??.55?x?2y?4?0,?12. 已知实数x,y满足?2x?y?2?0, 则x2?y2的取值范围是. ?3x?y?3?0,??4?【答案】?,13?;?5?【解析】在平面直角坐标系中画出可行域如下x2?y2为可行域内的点到原点距离的平方.可以看出图中a点距离原点最近,此时距离为原点a到直线2x?y?2?0的距离,d??x2?y2??min?4, 5图中b点距离原点最远,b点为x?2y?4?0与3x?y?3?0交点,则b?2,3?,则?x2?y2?max?13.????????13. 如图,在△abc中,d是bc的中点,e,f是ad上两个三等分点,ba?ca?4,????????bf?cf??1, ????????则be?ce的值是.7; 8?????????????????????????【解析】令df?a,db?b,则dc??b,de?2a,da?3a, ????????????????????????????????????则ba?3a?b,ca?3a?b,be?2a?b,ce?2a?b,bf?a?b,cf?a?b, ?????????2?2?????????2?2?????????2?2则ba?ca?9a?b,bf?cf?a?b,be?ce?4a?b,【答案】?????????????????2?2?2?2?25?213由ba?ca?4,bf?cf??1可得9a?b?4,a?b??1,因此a?,b?,88?????????2?24?5137因此be?ce?4a?b???.88814. 在锐角三角形abc中,sina?2sinbsinc,则tanatanbtanc的最小值是.【答案】8;可得sinbcosc?cosbsinc?2sinbsinc(*),由三角形abc为锐角三角形,则cosb?0,cosc?0,tanb?tanc(#),1?tanbtanctanb?tanc?tanbtanc,1?tanbtanc2?tanbtanc?2由tanb?tanc?2tanbtanc可得tanatanbtanc??1?tanbtanc,令tanbtanc?t,由a,b,c为锐角可得tana?0,tanb?0,tanc?0,由(#)得1?tanbtanc?0,解得t?1 2t22tanatanbtanc????,111?t?tt11?11?1111??????,由t?1则0?2???,因此tanatanbtanc最小值为8,2tt?t2?4tt42当且仅当t?2时取到等号,此时tanb?tanc?4,tanbtanc?2,解得tanb?2c?2a?4(或tanb,tanc互换),此时a,b,c均为锐角.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明,证明过程或演算步骤.15. (本小题满分14分)54⑴求ab的长;⑵求cos?a??的值.6??【答案】⑴.【篇二:2016年高考试题(数学)江苏卷解析精校版】txt>一、填空题:本大题共14个小题,每小题5分,共70分.请把答案写在答题卡相应位置上。
2016年⾼考数学江苏卷压轴题详解今年的江苏卷较之去年要简单不少.填空题倒数第⼆题考查向量的“极化恒等式”,在江苏的各类模拟卷中已知屡见不鲜了,对认真复习的同学没有什么难度.填空题最后⼀题将三⾓恒等变换和不等式有机的结合起来,是⼀道不错的题⽬.不过设问⽅式以及所求结论的形式可能会让⼤部分同学“⼼中⼀凛”,难度还是不⼩的.直线与圆的⼤题⽐2013年的要逊⾊不少,函数⼤题的答案很容易猜到,稍加论证即可.压轴题明显较去年温柔很多,不仅给了充⾜的提⽰,⽽且最后⼀⼩题把解题⽤到的字母都预留好了……附加卷的两道题中规中矩,配合整卷完成了对知识的全⾯考查.总的来说,今年江苏卷命题⽔平在全国九卷中还是稳居前三的.第13题(填空倒数第⼆题):如图,在中,是的中点,是上的两个三等分点,,,则的值是______.解 极化恒等式 我们熟知极化恒等式利⽤它可以将不好计算的数量积转化为好计算的线段长度.本题中有⽽于是不难计算得,,进⽽基底化 设,,根据题意有整理得于是第14题(填空压轴题):在锐⾓三⾓形中,若,则的最⼩值是_______ .解 注意到题中条件两边的次数不齐,考虑将改写为,于是有朝结论靠拢,有我们熟知在锐⾓中有于是从⽽等号当时取得.经验证,当,,时可以取得等号,因此的最⼩值是.拓展 在⾮直⾓中,有整理即得这个三⾓恒等式曾多次在各个⾼校的⾃主招⽣试题中出现.第18题(解析⼏何):如图,在平⾯直⾓坐标系中,已知以为圆⼼的圆及其上⼀点.(1) 设圆与轴相切,与圆外切,且圆⼼在直线上,求圆的标准⽅程;(2) 设平⾏于的直线与圆相交于两点,且,求直线的⽅程;(3) 设满⾜:存在圆上的两点和,使得,求实数的取值范围.解 (1) 将圆的⽅程整理为标准⽅程:.由于圆与圆的圆⼼连线与轴垂直,于是圆与轴和圆的切点分别是和,进⽽其标准⽅程为(2) 由题意,,于是圆⼼到直线的距离为⼜直线的斜率为,设其⽅程为,则有解得或,因此直线的⽅程是或.(3) 由题意,.⽽可以在圆上任取,因此可以表⽰任何长度不超过圆的直径的向量.于是问题等价于点在圆的圆内部(包含边界),即解得因此实数的取值范围是.第19题(导数):已知函数().(1) 设,.(i) 求⽅程的根;(ii) 若对于任意,不等式恒成⽴,求实数的最⼤值;(2) 若,,函数有且只有个零点,求的值.解 (1)(i) ⽅程即,也即,因此它的根是.(ii) 原命题即也即对⼀切实数均成⽴.由第(1)⼩题,当时,,此时右侧函数取得最⼩值为.因此实数的最⼤值是.(2) 函数的导函数令,则单调递增,且有唯⼀零点,其中满⾜进⽽函数在处取得极⼩值,亦为最⼩值.由于,进⾏如下讨论.情形⼀ .此时必然有,取,,则显然有,且,此时函数在区间和区间内都存在零点,不符合题意.情形⼆ .此时函数在上单调递减,在上单调递增,⽽,因此函数有唯⼀零点,符合题意.综上所述,,进⽽可得,从⽽.第20题(压轴题):记.对数列()和的⼦集,若,定义;若,定义.例如:时,.现设()是公⽐为的等⽐数列,且当时,.(1) 求数列的通项公式;(2) 对任意正整数(),若,求证:;(3) 设,,,求证:.解 (1) 根据题意有,从⽽,因此所求通项公式为(2) 根据题意,有因此命题得证.(3) 设集合集合则因此条件即,⽽当时命题显然成⽴,接下来考虑的情形.设此时集合中的最⼤元素为,集合中的最⼤元素为,则由于和没有公共元素,因此.情形⼀ .此时由第(2)⼩题结论,有⽭盾.情形⼆ .此时与第(2)⼩题的论证过程类似,有因此有,命题得证.综上所述,原命题得证.第22题(解析⼏何):如图,在平⾯直⾓坐标系中,已知直线,抛物线().(1) 若直线过抛物线的焦点,求抛物线的⽅程;(2) 已知抛物线上存在关于直线对称的相异两点和.(i) 求证:线段的中点坐标为;(ii) 求的取值范围.解 (1) 直线的横截距为,于是,从⽽抛物线的⽅程为.(2)(i) 设,,则的斜率从⽽,因此线段的中点的纵坐标,进⽽由中点在直线上可得其坐标为.(ii) 由(i),可得因此题意即圆()和直线有两个公共点.进⽽可得解得的取值范围是.第23题(附加卷最后⼀题):(1) 求的值;(2) 设,,求证:解 (1) ,⽽,于是(2) 在第(1)⼩题的提⽰下,我们可以证明,于是⼜由于,于是这样就证明了题中的等式.注 考虑到欲证明结论是⼀个有关正整数的等式,因此(2)必然可以⽤数学归纳法证明.助⼒2017领新书优惠码。
2016年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式: 样本数据12,,,n x x x 的方差()2211ni i s x xn ==-∑,其中11ni i x x n ==∑.棱柱的体积V Sh =,其中S 是棱柱的底面积,h 是高.棱锥的体积13V Sh =,其中S 是棱锥的底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共计70分. 请把答案填写在答题卡相应位置上......... (1)【2016年江苏,1,5分】已知集合{}1,2,3,6A =-,{}|23B x x =-<<,则A B =_______.【答案】{}1,2-【解析】由交集的定义可得{}1,2AB =-.【点评】本题考查的知识点是集合的交集及其运算,难度不大,属于基础题. (2)【2016年江苏,2,5分】复数()()12i 3i z =+-,其中i 为虚数单位,则z 的实部是_______. 【答案】5【解析】由复数乘法可得55i z =+,则则z 的实部是5.【点评】本题考查了复数的运算性质,考查了推理能力与计算能力,属于基础题.(3)【2016年江苏,3,5分】在平面直角坐标系xOy 中,双曲线22173x y -=的焦距是_______.【答案】210【解析】2210c a b =+=,因此焦距为2210c =.【点评】本题重点考查了双曲线的简单几何性质,考查学生的计算能力,比较基础 (4)【2016年江苏,4,5分】已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是_______. 【答案】0.1【解析】 5.1x =,()22222210.40.300.30.40.15s =++++=.【点评】本题考查方差的求法,是基础题,解题时要认真审题,注意方差计算公式的合理运用. (5)【2016年江苏,5,5分】函数232y x x =--的定义域是_______. 【答案】[]3,1-【解析】2320x x --≥,解得31x -≤≤,因此定义域为[]3,1-.【点评】本题考查的知识点是函数的定义域,二次不等式的解法,难度不大,属于基础题. (6)【2016年江苏,6,5分】如图是一个算法的流程图,则输出a 的值是________. 【答案】9【解析】,a b 的变化如下表:a 1 5 9b 9 7 5 则输出时9a =.【点评】本题考查的知识点是程序框图,当循环次数不多,或有规律可循时,可采用模拟程序法进行解答.(7)【2016年江苏,7,5分】将一个质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点为正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是________.【答案】56【解析】将先后两次点数记为(),x y ,则共有6636⨯=个等可能基本事件,其中点数之和大于等于10有()()()()()()4,6,5,5,5,6,6,4,6,5,6,6六种,则点数之和小于10共有30种,概率为305366=.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意对立事件概率计算公式的合理运用.(8)【2016年江苏,8,5分】已知{}n a 是等差数列,n S 是其前n 项和.若2123a a +=-,510S =,则9a 的值是_______. 【答案】20【解析】设公差为d ,则由题意可得()2113a a d ++=-,151010a d +=,解得14a =-,3d =,则948320a =-+⨯=. 【点评】本题考查等差数列的第9项的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.(9)【2016年江苏,9,5分】定义在区间[]0,3π上的函数sin 2y x =的图象与cos y x =的图象的交点个数是________.【答案】7【解析】画出函数图象草图,共7个交点.【点评】本题考查正弦函数与余弦函数的图象,作出函数sin 2y x =与cos y x =在区间[]0,3π上的图象是关键,属于中档题.(10)【2016年江苏,10,5分】如图,在平面直角坐标系xOy 中,F 是椭圆()222210x y a b a b +=>>的右焦点,直线2by =与椭圆交于,B C 两点,且90BFC ∠=︒,则该椭圆的离心率是________【解析】由题意得(),0F c ,直线2by =与椭圆方程联立可得2b B ⎛⎫ ⎪ ⎪⎝⎭,2b C ⎫⎪⎪⎝⎭,由90BFC ∠=︒可得 0BF CF ⋅=,2b BF c ⎛⎫=+- ⎪ ⎪⎝⎭,2b CF c ⎛⎫=- ⎪ ⎪⎝⎭,则22231044c a b -+=,由222b a c =-可得 223142c a =,则c e a ==. 【点评】本题考查椭圆的离心率的求法,注意运用两直线垂直的条件:斜率之积为﹣1,考查化简整理的运算能力,属于中档题.(11)【2016年江苏,11,5分】设()f x 是定义在R 上且周期为2的函数,在区间[)1,1-上(),10,2,01,5x a x f x x x +-≤<⎧⎪=⎨-≤<⎪⎩其中a ∈R ,若5922f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,则()5f a 的值是________.【答案】25-【解析】由题意得511222f f a ⎛⎫⎛⎫-=-=-+ ⎪ ⎪⎝⎭⎝⎭,91211225210f f ⎛⎫⎛⎫==-= ⎪ ⎪⎝⎭⎝⎭,由5922f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭可得11210a -+=,则35a =,则()()()325311155f a f f a ==-=-+=-+=-.【点评】本题考查的知识点是分段函数的应用,函数的周期性,根据已知求出a 值,是解答的关键.(12)【2016年江苏,12,5分】已知实数,x y 满足240,220,330,x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩ 则22x y +的取值范围是________.【答案】4,135⎡⎤⎢⎥⎣⎦【解析】在平面直角坐标系中画出可行域如下:22x y +为可行域内的点到原点距离的平方.可以看出图中A 点距离原点最近,此时距离为原点A 到直线220x y +-=的距离,d ==,则()22min 45x y +=,图中B 点距离原点最远,B 点为240x y -+=与330x y --=交点,则()2,3B ,则()22max13x y +=.【点评】本题主要考查线性规划的应用,涉及距离的计算,利用数形结合是解决本题的关键. (13)【2016年江苏,13,5分】如图,在ABC △中,D 是BC 的中点,,E F 是AD 上两个三等分点,4BA CA ⋅=,1BF CF ⋅=-,则BE CE ⋅的值是________.【答案】78【解析】令DF a =,DB b =,则DC b =-,2DE a =,3DA a =,则3BA a b =-,3CA a b =+,2BE a b =-,2CE a b =+,BF a b =-,CF a b =+,则229BA CA a b ⋅=-,22BF CF a b ⋅=-, 224BE CE a b ⋅=-,由4BA CA ⋅=,1BF CF ⋅=-可得2294a b -=,221a b -=-,因此22513,88a b ==,因此22451374888BE CE a b ⨯⋅=-=-=.【点评】本题考查的知识是平面向量的数量积运算,平面向量的线性运算,难度中档.(14)【2016年江苏,14,5分】在锐角三角形ABC 中,sin 2sin sin A B C =,则tan tan tan A B C 的最小值是_______. 【答案】8【解析】由()()sin sin πsin sin cos cos sin A A B C B C B C =-=+=+,sin 2sin sin A B C =,可得sin cos cos sin 2sin sin B C B C B C +=(*),由三角形ABC 为锐角三角形,则cos 0,cos 0B C >>, 在(*)式两侧同时除以cos cos B C 可得tan tan 2tan tan B C B C +=,又()()tan tan tan tan πtan 1tan tan B CA ABC B C+=--=-+=--(#),则tan tan tan tan tan tan tan 1tan tan B CA B C B C B C+=-⨯-,由tan tan 2tan tan B C B C +=可得()22tan tan tan tan tan 1tan tan B C A B C B C=--,令tan tan B C t =,由,,A B C 为锐角可得tan 0,tan 0,tan 0A B C >>>, 由(#)得1tan tan 0B C -<,解得1t >,2222tan tan tan 111t A B C t t t =-=---,221111124t t t ⎛⎫-=-- ⎪⎝⎭,由1t >则211104t t >-≥-,因此tan tan tan A B C 最小值为8, 当且仅当2t =时取到等号,此时tan tan 4B C +=,tan tan 2B C =,解得tan 2tan 2tan 4B C A ===(或tan ,tan B C 互换),此时,,A B C 均为锐角.【点评】本题考查了三角恒等式的变化技巧和函数单调性知识,有一定灵活性. 二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内........作答,解答时应写出必要的文字说明、证明过程或演算步骤.(15)【2016年江苏,15,14分】在ABC △中,6AC =,4cos 5B =,π4C =.(1)求AB 的长;(2)求πcos 6A ⎛⎫- ⎪⎝⎭的值. 解:(1)4cos 5B =,B 为三角形的内角,3sin 5B ∴=,sinC sin AB ACB =,635=,即:AB = (2)()cos cos sin sin cos cos A C B B C B C =-+=-,cos A ∴=又A 为三角形的内角,sin A ∴=,π1cos sin 62A A A ⎛⎫∴-+ ⎪⎝⎭【点评】本题考查正弦定理,考查两角和差的余弦公式,考查学生的计算能力,属于中档题.(16)【2016年江苏,16,14分】如图,在直三棱柱111ABC A B C -中,,D E 分别为,AB BC 的中点,点F 在侧棱1B B 上,且11B D A F ⊥,1111AC A B ⊥.求证: (1)直线//DE 平面11A C F ; (2)平面1B DE ⊥平面11A C F .解:(1),D E 为中点,DE ∴为ABC ∆的中位线,//DE AC ∴,又111ABC A B C -为棱柱,11//AC AC ∴11//DE AC ∴,又11AC ⊂平面11A C F ,且11DE AC F ⊄,//DE ∴平面11A C F .(2)111ABC A B C -为直棱柱,1AA ∴⊥平面111A B C ,111AA AC ∴⊥,又1111AC A B ⊥,且1111AA A B A =,111,AA A B ⊂平面11AA B B ,11AC ∴⊥平面11AA B B ,又11//DE AC ,DE ∴⊥平面11AA B B , 又1A F ⊂平面11AA B B ,1DE A F ∴⊥,又11A F B D ⊥,1DEB D D =,且1,DE B D ⊂平面1B DE ,1A F ∴⊥平面1B DE ,又111A F AC F ⊂,∴平面1B DE ⊥平面11A C F .【点评】本题考查直线与平面平行的证明,以及平面与平面相互垂直的证明,把握常用方法最关键,难答不大. (17)【2016年江苏,17,14分】现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥1111P A B C D -,下部分的形状是正四棱柱1111ABCD A B C D -(如图所示),并要求正四棱柱 的高1O O 是正四棱锥的高1PO 的4倍.(1)若6m AB =,12m PO =,则仓库的容积是多少;(2)若正四棱锥的侧棱长为6m ,当1PO 为多少时,仓库的容积最大?解:(1)12m PO =,则18m OO =,1111231116224m 33P A B C D ABCD V S PO -⋅=⨯⨯==, 111123168288m ABCD A B C D ABCD V S OO -⋅=⨯==,111111113312m =P A B C D ABCD A B C D V V V --+=,故仓库的容积为3312m . (2)设1m PO x =,仓库的容积为()V x ,则14m OO x =,11m A O =,11A B =,()111123331111272224m 3333P A B C D ABCD V S PO x x x x x -⋅=⨯⨯=-=-=,1111233142888m ABCD A B C D ABCD V S OO x x x-⋅=⨯=-=,()()111111113332262428883120633=P A B C D ABCD A B C D V x V V x x x x x x x --+=-+-=-+<<,()()22'263122612V x x x =-+=--()06x <<,当(x ∈时,()'0V x >,()V x 单调递增,当()x ∈时,()'0V x <,()V x 单调递减,因此,当x =时,()V x 取到最大值,即1m PO =时,仓库的容积最大.【点评】本题考查的知识点是棱锥和棱柱的体积,导数法求函数的最大值,难度中档.(18)【2016年江苏,18,16分】如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M :221214600x y x y +--+=及其上一点()2,4A .(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线6x =上,求圆N 的标准方程; (2)设平行于OA 的直线l 与圆M 相交于,B C 两点,且BC OA =,求直线l 的方程;(3)设点(),0T t 满足:存在圆M 上的两点P 和Q ,使得TA TP TQ +=,求实数t 的取值范围.解:(1)因为N 在直线6x =上,设()6,N n ,因为与x 轴相切,则圆N 为()()2226x y n n -+-=,0n >,又圆N 与圆M 外切,圆M :()()226725x x -+-=,则75n n -=+,解得1n =,即圆N 的标准方程为()()22611x y -+-=.(2)由题意得OA =2OA k = 设:2l y x b =+,则圆心M 到直线l的距离d ==,则BC ==BC =1A FEDCBAC 1B 1A 1解得5b =或15b =-,即l :25y x =+或215y x =-. (3)TA TP TQ +=,即TA TQ TP PQ =-=,即TA PQ =,(TA t =,又10PQ ≤,10,解得2t⎡∈-+⎣,对于任意2t ⎡∈-+⎣,欲使TA PQ =,此时10TA ≤,只需要作直线TA 的平行线,2TA P Q 、两点,此时TA PQ=,即TA PQ =,因此对于任意2t ⎡∈-+⎣,均满足题意,综上2t ⎡∈-+⎣.【点评】本题考查圆的标准方程的求法,考查直线方程的求法,考查实数的取值范围的求法,是中档题,解题时要认真审题,注意圆的性质的合理运用.(19)【2016年江苏,19,16分】已知函数()()0,0,1,1x x f x a b a b a b =+>>≠≠. (1)设2a =,12b =. ①求方程()2f x =的根;②若对于任意x ∈R ,不等式()()26f x mf x -≥恒成立,求实数m 的最大值;(2)若01a <<,1b >,函数()()2g x f x =-有且只有1个零点,求ab 的值. 解:(1)①()122xxf x ⎛⎫=+ ⎪⎝⎭,由()2f x =可得1222x x +=,则()222210x x -⨯+=,即()2210x -=,则21x =,0x =.②由题意得221122622x x x x m ⎛⎫++- ⎪⎝⎭≥恒成立,令122xx t =+,则由20x >可得2t =≥,此时226t mt --≥恒成立,即244t m tt t+=+≤恒成立∵2t ≥时44t t +=≥,当且仅当2t =时等号成立,因此实数m 的最大值为4.(2)()()22x x g x f x a b =-=+-,()ln 'ln ln ln ln x x x xa b g x a a b b a b b a ⎡⎤⎛⎫=+=+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,由01a <<,1b >可得1b a >,令()ln ln xb a h x a b ⎛⎫=+ ⎪⎝⎭,则()h x 递增,而ln 0,ln 0a b <>,因此0ln log ln b a a x b ⎛⎫=- ⎪⎝⎭时()00h x =, 因此()0,x x ∈-∞时,()0h x <,ln 0x a b >,则()'0g x <;()0,x x ∈+∞时,()0h x >,ln 0x a b >, 则()'0g x >;则()g x 在()0,x -∞递减,()0,x +∞递增,因此()g x 最小值为()0g x ,① 若()00g x <,log 2a x <时,log 22a x a a >=,0x b >,则()0g x >;x >log b 2时,0x a >,log 22b x b b >=, 则()0g x >;因此1log 2a x <且10x x <时,()10g x >,因此()g x 在()10,x x 有零点, 2log 2b x >且20x x >时,()20g x >,因此()g x 在()02,x x 有零点, 则()g x 至少有两个零点,与条件矛盾;② 若()00g x ≥,由函数()g x 有且只有1个零点,()g x 最小值为()0g x ,可得()00g x =, 由()00020g a b =+-=,因此00x =,因此ln log 0ln b a a b ⎛⎫-= ⎪⎝⎭,即ln 1ln a b -=,即ln ln 0a b +=, 因此()ln 0ab =,则1ab =.【点评】本题考查函数与方程的综合应用,函数的导数的应用,基本不等式的应用,函数恒成立的应用,考查分析问题解决问题的能力.(20)【2016年江苏,20,16分】记{}1,2,,100U =.对数列{}n a (*n ∈N )和U 的子集T ,若T =∅,定义0T S =;若{}12,,,k T t t t =,定义12k T t t t S a a a =+++.例如:{}1,3,66T =时,1366T S a a a =++.现设{}n a (*n ∈N )是公比为3的等比数列,且当{}2,4T =时,30T S =. (1)求数列{}n a 的通项公式;(2)对任意正整数k (1100k ≤≤),若{}1,2,,T k ⊆,求证:1T k S a +<;(3)设C U ⊆,D U ⊆,C D S S ≥,求证:2C CDD S S S +≥.解:(1)当{}2,4T =时,2422930T S a a a a =+=+=,因此23a =,从而2113a a ==,13n n a -=. (2)2112131133332k k kT k k S a a a a -+-++=++++=<=≤(3)设()C A C D =,()D B C D =,A B =∅,C A C D S S S =+,D B CDS S S =+, 22C CDD A B S S S S S +-=-,因此原题就等价于证明2A B S S ≥.由条件C D S S ≥可知A B S S ≥. ① 若B =∅,则0B S =,所以2A B S S ≥.② 若B ≠∅,由A B S S ≥可知A ≠∅,设A 中最大元素为l ,B 中最大元素为m ,若1m l +≥,则由第⑵小题,1A l m B S a a S +<≤≤,矛盾.因为A B =∅,所以l m ≠,所以1l m +≥,211123113332222m m m lA B m a a S S a a a -+-+++=++++=<≤≤≤,即2A B S S >.综上所述,2A B S S ≥,因此2C C D D S S S +≥.【点评】本题考查数列的应用,涉及新定义的内容,解题的关键是正确理解题目中对于新定义的描述.数学Ⅱ【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题......,并在相应的答题区域内作答............,若多做,则按作答 的前两题评分.解答时应写出文字说明、证明过程或演算步骤. (21-A )【2016年江苏,21-A,10分】(选修4—1:几何证明选讲)如图,在ABC △中,90ABC ∠=︒,BD AC ⊥,D 为垂足,E 是BC 中点,求证:EDC ABD ∠=∠.解:由BD AC ⊥可得90BDC ∠=︒,由E 是BC 中点可得12DE CE BC ==,则EDC C ∠=∠, 由90BDC ∠=︒可得90C DBC ∠+∠=︒,由90ABC ∠=︒可得90ABD DBC ∠+∠=︒,因此ABD C ∠=∠, 又EDC C ∠=∠可得EDC ABD ∠=∠.【点评】本题考查三角形的性质应用,利用∠C+∠DBC=∠ABD+∠DBC=90°,证得∠ABD=∠C 是关键,属于中档题.(21—B )【2016年江苏,21—B,10分】(选修4—2:矩阵与变换)已知矩阵1202⎡⎤=⎢⎥-⎣⎦A ,矩阵B 的逆矩阵111202-⎡⎤-⎢⎥=⎢⎥⎣⎦B ,求矩阵AB .解:()11112124221010222--⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦B B ,因此151121*********⎡⎤⎡⎤⎢⎥⎡⎤⎢⎥==⎢⎥⎢⎥⎢⎥-⎣⎦⎢⎥-⎣⎦⎢⎥⎣⎦AB . 【点评】本题考查逆变换与逆矩阵,考查矩阵乘法的性质,属于中档题. (21—C )【2016年江苏,21—C ,10分】(选修4-4:坐标系与参数方程)在平面直角坐标系xOy 中,已知直线l 的参数方程为()11,2,x t t y ⎧=+⎪⎪⎨⎪=⎪⎩为参数,椭圆C 的参数方程为()cos ,2sin ,x y θθθ=⎧⎨=⎩为参数,设直线l 与椭圆C 相交于,A B 两点,求线段AB 的长.ED CB A解:直线l0y --=,椭圆C 方程化为普通方程为2214y x +=,联立得22014y y x --=⎨+=⎪⎩,解得10x y =⎧⎨=⎩或17x y ⎧=-⎪⎪⎨⎪=⎪⎩,因此167AB =. 【点评】本题考查直线与椭圆的参数方程,考查了参数方程化普通方程,考查直线与椭圆位置关系的应用,是基础题.(21-D )【2016年江苏,21-D 】(本小题满分10分)(选修4—4:不等式选讲)设0a >,13a x -<,23ay -<,求证:24x y a +-<.解:由13a x -<可得2223a x -<,22422233a a x y x y a +--+-<+=≤. 【点评】本题考查绝对值不等式的证明,注意运用绝对值不等式的性质,以及不等式的简单性质,考查运算能力,属于基础题.【必做题】第22、23题,每小题10分,计20分.请把答案写在答题卡的指定区域内............ (22)【2016年江苏,22,10分】如图,在平面直角坐标系xOy 中,已知直线:20l x y --=,抛物线()2:20C y px p =>.(1)若直线l 过抛物线C 的焦点,求抛物线C 的方程;(2)已知抛物线C 上存在关于直线l 对称的相异两点P 和Q .①求证:线段PQ 上的中点坐标为()2,p p --; ②求p 的取值范围.解:(1):20l x y --=,∴l 与x 轴的交点坐标为()2,0,即抛物线的焦点为()2,0,22p∴=,28y x ∴=. (2)① 设点()11,P x y ,()22,Q x y ,则:21122222y px y px ⎧=⎪⎨=⎪⎩,即21122222y x p y x p⎧=⎪⎪⎨⎪=⎪⎩,12221212222PQ y y p k y y y y p p -==+-, 又,P Q 关于直线l 对称,1PQ k ∴=-,即122y y p +=-,122y y p +∴=-,又PQ 中点一定在直线l 上,12122222x x y y p ++∴=+=-,∴线段PQ 上的中点坐标为()2,p p --;② 中点坐标为()2,p p --,122212122422y y p y y x x p p +=-⎧⎪∴+⎨+==-⎪⎩即1222212284y y p y y p p +=-⎧⎨+=-⎩,12212244y y p y y p p +=-⎧∴⎨=-⎩, 即关于222440y py p p ++-=有两个不等根,0∴∆>,()()2224440p p p -->,40,3p ⎛⎫∴∈ ⎪⎝⎭.【点评】本题考查抛物线方程的求法,直线与抛物线的位置关系的应用,考查转化思想以及计算能力. (23)【2016年江苏,23,10分】(1)求34677C 4C -的值;(2)设*,m n ∈N ,n m ≥,求证:()()()()()212121C 2C 3C C 1C 1C m m m m m m m m m n n n m m m n n m +++-++++++++++=+.解:(1)34677C 4C 7204350-=⨯-⨯=.(2)对任意的*m ∈N ,① 当n m =时,左边()1C 1m m m m =+=+,右边()221C 1m m m m ++=+=+,等式成立,② 假设()n k k m =≥时命题成立,即()()()()()212121C 2C 3C C 1C 1C m m mm m m m m m k k k m m m k k m +++-++++++++++=+,当1n k =+时,左边=()()()()()12111C 2C 3C C 1C 2C m m mm m mm m m k k k m m m k k k ++-++++++++++++()()2211C2Cm m k k m k +++=+++,右边()231C m k m ++=+,而()()()()()()()()()22323!2!1C 1C 12!1!2!!m m k k k k m m m m k m m k m ++++⎡⎤+++-+=+-⎢⎥+-++-⎢⎥⎣⎦()()()()()()()()()12!1!13122C 2!1!!1!mk k k m k k m k k m k m m k m +++=+⨯+--+=+=+⎡⎤⎣⎦+-+-+ 因此()()()222131C 2C 1C m m m k k k m k m ++++++++=+,因此左边=右边,因此1n k =+时命题也成立,综合①②可得命题对任意n m ≥均成立.另解:因为()()111C 1C m m k k k m +++=+,所以左边()()()1111211C 1C 1C m m m m m n m m m ++++++=++++++()()1111211C C C m m m m m n m ++++++=++++又由111C CCkk k n n n ---=+,知2212112111112111221121C C C C C C C C C C C C m m m m m m m m m m m m n n n n n n m m n m m n ++++++++++++++++++++++=+=++==+++=+++,所以,左边=右边.【点评】本题考查组合数的计算与证明,是中档题,解题时要认真审题,注意组合数公式和数学归纳法的合理运用.。
江苏省2016届高考数学预测卷五一、填空题:本大题共14题,每小题5分,共70分.请把答案填写在答题纸相应位置上.........1. 函数23()lg(31)1x f x x x=++-的定义域是__ (— 错误! ,1) ___.2。
已知直线l 和双曲线22194x y -=相交于A ,B 两点,线段AB 的中点为M.设直线l 的斜率为k 1(k 1≠0),直线OM 的斜率为k 2,则k 1k 2=__错误!______.3.数列{}n a 满足11112,1n n n a a a a ++-==+,其前n 项积为n T ,则2014T =__6-_____.4.对任意实数x ,若][x 表示不超过x 的最大整数,则“1<-y x ”是“][][y x =”的__必要不充分条件______。
5。
在直角△ABC 中,︒=∠90BCA ,1==CB CA ,P 为AB 边上的点且AB AP λ=,若PB PA AB CP ⋅≥⋅,则λ的取值范围是___]1,222[-____.6。
从如图所示的正方形OABC 区域内任取一个点M (,)x y ,则点M 取自阴影部分的概率为 错误! 7。
对于下列命题:①在ABC 中,若cos2A=cos2B, 则ABC 为等腰三角形;②ABC 中角A 、B 、C 的对边分别为,,a b c ,若2,5,6a b A π===,则ABC 有两组解;③设201420142014sin ,cos ,tan ,333a b c πππ=== 则;a b c <<④将函数2sin(3)6y x π=+的图象向左平移错误!个单位,得到函数y =2cos(3x +错误!)的图象。
其中正确命题的个数是 3 .8。
已知ABC ∆中,30BAD ∠=,45CAD ∠=,3,2AB AC ==,则BD DC=____324____.9。
在平面直角坐标系中,点P 是由不等式组001x y x y ≥⎧⎪≥⎨⎪+≥⎩所确定的平面区域内的动点,Q 是直线20x y +=上任意一点,O 为坐标原点,则||OP OQ +的最小值为55。
2016江苏高考数学压轴题(含答案)2016江苏高考压轴卷数学注意事项:1.本试卷共4页,包括填空题(第1题~第14题)、解答题(第15题~第20题)两部分.本试卷满分为160分,考试时间为120分钟.2.答题前,请务必将自己的姓名、学校、班级、学号写在答题纸的密封线内.试题的答案写在答题纸上对应题目的答案空格内.考试结束后,交回答题纸.参考公式:锥体的体积公式:V=13Sh,其中S为锥体的底面积,h 为锥体的高.一、填空题(本大题共14小题,每小题5分,计70分.不需写出解答过程,请把答案写在题中横线上)1.若集合,,则.2.若复数(i为虚数单位)为纯虚数,则实数.3.若原点和点在直线的异侧,则的取值范围是.4.某射击选手连续射击5枪命中的环数分别为:9.7,9.9,10.1,10.2,10.1,则这组数据的方差为.5.右图是一个算法流程图,则输出的的值为.6.从2个红球,2个黄球,1个白球中随机取出两个球,则两球颜色不同的概率是.7.若且是第二象限角,则.8.正四棱锥的底面边长为,侧面积为,则它的体积为.9.已知双曲线的一条渐近线的方程为,则该双曲线的离心率为.10.不等式组所表示的区域的面积为.11.已知外接圆的半径为2,圆心为,且,,则的值等于.12.如图所示,三个边长为2的等边三角形有一条边在同一直线上,边上有10个不同的点,,…,,记(1,2,…,10),则.13.在等差数列中,首项,公差,若某学生对其中连续10项进行求和,在遗漏掉一项的情况下,求得余下9项的和为185,则此连续10项的和为.14.设关于的实系数不等式对任意恒成立,则.二、解答题15.(本小题满分14分)(本大题满分14分)如图,在△中,点在边上,,,,.(1)求的长;(2)求△的面积.16.(本小题满分14分)如图,在四棱锥P-ABCD中,底面ABCD为平行四边形,E 为侧棱PA的中点.(1)求证:PC//平面BDE;(2)若PC⊥PA,PD=AD,求证:平面BDE⊥平面PAB.17.(本大题满分14分)如图,,是海岸线,上的两个码头,海中小岛有码头到海岸线,的距离分别为,.测得,.以点为坐标原点,射线为轴的正半轴,建立如图所示的直角坐标系.一艘游轮以小时的平均速度在水上旅游线航行(将航线看作直线,码头在第一象限,航线经过).(1)问游轮自码头沿方向开往码头共需多少分钟?(2)海中有一处景点(设点在平面内,,且),游轮无法靠近.求游轮在水上旅游线航行时离景点最近的点的坐标.18.(本大题满分16分)已知椭圆的右焦点为,且点在椭圆上.(1)求椭圆的标准方程;(2)过椭圆上异于其顶点的任意一点作圆的两条切线,切点分别为,(,不在坐标轴上),若直线在轴,轴上的截距分别为,,证明:为定值;(3)若,是椭圆上不同的两点,轴,圆过,,且椭圆上任意一点都不在圆内,则称圆为该椭圆的一个内切圆.试问:椭圆是否存在过左焦点的内切圆?若存在,求出圆心的坐标;若不存在,请说明理由.19.已知函数.(1)当时,求的单调减区间;(2)若存在m0,方程恰好有一个正根和一个负根,求实数的最大值.20.(本大题满分16分)已知数列的通项公式为,其中,,.(1)试写出一组,的值,使得数列中的各项均为正数;(2)若,,数列满足,且对任意的(),均有,写出所有满足条件的的值;(3)若,数列满足,其前项和为,且使(,,)的和有且仅有4组,,,…,中有至少个连续项的值相等,其它项的值均不相等,求,的最小值.数学附加题注意事项:1.附加题供选修物理的考生使用.2.本试卷共40分,考试时间30分钟.3.答题前,考生务必将自己的姓名、学校、班级、学号写在答题纸的密封线内.试题的答案写在答题纸上对应题目的答案空格内.考试结束后,交回答题纸.21.【选做题】在A、B、C、D四小题中只能选做2题,每小题10分,共计20分.请在答卷纸指定区域内作答.解答应写出文字说明、证明过程或演算步骤.A.选修4—1:几何证明选讲(本小题满分10分)如图,在Rt△ABC中,AB=BC.以AB为直径的⊙O交AC 于点D,过D作DEBC,垂足为E,连接AE交⊙O 于点F.求证:BECE=EFEA.B.[选修4—2:矩阵与变换](本小题满分10分)已知矩阵,求矩阵的特征值和特征向量.C.选修4—4:坐标系与参数方程(本小题满分10分)在极坐标系中,曲线C的极坐标方程为,以极点为坐标原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为(为参数),求直线被曲线所截得的弦长.D.选修4—5:不等式选讲(本小题满分10分)设均为正数,且,求证:.【必做题】第22题、第23题,每题10分,共计20分.请在答卷卡指定区域内作答.解答应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)甲、乙两人投篮命中的概率分别为23与12,各自相互独立.现两人做投篮游戏,共比赛3局,每局每人各投一球.(1)求比赛结束后甲的进球数比乙的进球数多1个的概率;(2)设ξ表示比赛结束后甲、乙两人进球数的差的绝对值,求ξ的概率分布和数学期望E(ξ).23.(本小题满分10分)若存在个不同的正整数,对任意,都有,则称这个不同的正整数为“个好数”.(1)请分别对,构造一组“好数”;(2)证明:对任意正整数,均存在“个好数”.答案与提示一、填空题1.2.3.4.0.0325.6.457.8.49.510.161.1212.18013.2001 4.9解析:11.如图,取BC中点D,联结AD,则,又因为,所以O为BC的中点,因为,所以是等边三角形,,因为ABC外接圆的半径为2,所以,,所以,故答案为12.12.延长,,则,又,所以,即,则,则,故答案为180.13.等差数列中的连续10项为,遗漏的项为且则,化简得,所以,,则连续10项的和为,故答案为200.14.令,在同一坐标系下作出两函数的图像:①如图(1),当的在轴上方时,,,但对却不恒成立;②如图(2),,令得,令得,要使得不等式在上恒成立,只需,,.综上,,故答案为9.二、解答题15.解:(1)在△中,因为,设,则.在△中,因为,,,所以.在△中,因为,,,由余弦定理得.因为,所以,即.解得.所以的长为5.(2)由(Ⅰ)求得,.所以,从而.所以.16.证明:(1)连结AC,交BD于O,连结OE.因为ABCD是平行四边形,所以OA=OC.因为E为侧棱PA的中点,所以OE∥PC.因为PC/平面BDE,OE平面BDE,所以PC//平面BDE.(2)因为E为PA中点,PD=AD,所以PA⊥DE.因为PC⊥PA,OE∥PC,所以PA⊥OE.因为OE平面BDE,DE平面BDE,OE∩DE =E,所以PA⊥平面BDE.因为PA平面PAB,所以平面BDE⊥平面PAB.17.解:(1)由已知得,直线的方程为,设,由及图得,,直线的方程为,即,由得即,,即水上旅游线的长为.游轮在水上旅游线自码头沿方向开往码头共航行30分钟时间.(2)解法一:点到直线的垂直距离最近,则垂足为.由(1)知直线的方程为,,则直线的方程为,所以解直线和直线的方程组,得点的坐标为(1,5).解法2:设游轮在线段上的点处,则,,.,,,当时,离景点最近,代入得离景点最近的点的坐标为(1,5).18.解:(1)由题意得,,所以又点在椭圆上,所以解得所以椭圆的标准方程为(2)由(1)知,设点则直线的方程为①直线的方程为②把点的坐标代入①②得所以直线的方程为令得令得所以又点在椭圆上,所以即为定值.(3)由椭圆的对称性,不妨设由题意知,点在轴上,设点则圆的方程为由椭圆的内切圆的定义知,椭圆上的点到点的距离的最小值是设点是椭圆上任意一点,则当时,最小,所以①假设椭圆存在过左焦点的内切圆,则②又点在椭圆上,所以③由①②③得或当时,不合题意,舍去,且经验证,符合题意. 综上,椭圆存在过左焦点的内切圆,圆心的坐标是19.解:(1)当时,当时,,由,解得,所以的单调减区间为,当时,,由,解得或,所以的单调减区间为,综上:的单调减区间为,.(2)当时,,则,令,得或,x+0-0+↗极大值↘极小值↗所以有极大值,极小值,当时,同(1)的讨论可得,在上增,在上减,在上增,在上减,在上增,且函数有两个极大值点,,,且当时,,所以若方程恰好有正根,则(否则至少有二个正根).又方程恰好有一个负根,则.令,则,所以在时单调减,即,等号当且仅当时取到.所以,等号当且仅当时取到.且此时,即,所以要使方程恰好有一个正根和一个负根,的最大值为.20.解:(1)、(答案不唯一).(2)由题设,.当,时,均单调递增,不合题意,因此,.当时,对于,当时,单调递减;当时,单调递增.由题设,有,.于是由及,可解得.因此,的值为7,8,9,10,11.(4)因为,且,所以因为(,,),所以、.于是由,可得,进一步得,此时,的四个值为,,,,因此,的最小值为.又,,…,中有至少个连续项的值相等,其它项的值均不相等,不妨设,于是有,因为当时,,所以,因此,,即的最小值为.21.【选做题】A.选修4—1:几何证明选讲证明:连接BD.因为AB为直径,所以BD⊥AC.因为AB=BC,所以AD=DC.因为DEBC,ABBC,所以DE∥AB,所以CE=EB.因为AB是直径,ABBC,所以BC是圆O的切线,所以BE2=EFEA,即BECE=EFEA.B.选修4—2:矩阵与变换解:矩阵的特征多项式为,由,解得,.当时,特征方程组为故属于特征值的一个特征向量.当时,特征方程组为故属于特征值的一个特征向量.C.选修4—4:坐标系与参数方程解:曲线C的直角坐标方程为,圆心为,半径为,直线的直角坐标方程为,所以圆心到直线的距离为,所以弦长.D.选修4—5:不等式选讲因为x>0,y>0,x-y>0,,=,所以.22.(本小题满分10分)解:(1)比赛结束后甲的进球数比乙的进球数多1个有以下几种情况:甲进1球,乙进0球;甲进2球,乙进1球;甲进3球,乙进2球.所以比赛结束后甲的进球数比乙的进球数多1个的概率P=C1323(13)2(12)3+C23(23)2(13)C13(12)3+C33(23)3C23(12)3=1136.(2)ξ的取值为0,1,2,3,所以ξ的概率分布列为ξ0123P7241124524124所以数学期望E(ξ)=0×724+1×1124+2×524+3×124=1.分23.(本小题满分10分)解:(1)当时,取数,,因为,当时,取数,,,则,,,即,,可构成三个好数.(2)证:①由(1)知当时均存在,②假设命题当时,存在个不同的正整数,其中,使得对任意,都有成立,则当时,构造个数,,(*)其中,若在(*)中取到的是和,则,所以成立,若取到的是和,且,则,由归纳假设得,又,所以是A的一个因子,即,所以,所以当时也成立.所以对任意正整数,均存在“个好数”.。
2016年江苏省高考数学试卷一、填空题(共14小题,每小题5分,满分70分)1.(5分)已知集合A={﹣1,2,3,6},B={x|﹣2<x<3},则A∩B=.2.(5分)复数z=(1+2i)(3﹣i),其中i为虚数单位,则z的实部是.3.(5分)在平面直角坐标系xOy中,双曲线﹣=1的焦距是.4.(5分)已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是.5.(5分)函数y=的定义域是.6.(5分)如图是一个算法的流程图,则输出的a的值是.7.(5分)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是.8.(5分)已知{a n}是等差数列,S n是其前n项和,若a1+a22=﹣3,S5=10,则a9的值是.9.(5分)定义在区间[0,3π]上的函数y=sin2x的图象与y=cosx的图象的交点个数是.10.(5分)如图,在平面直角坐标系xOy中,F是椭圆+=1(a>b>0)的右焦点,直线y=与椭圆交于B,C两点,且∠BFC=90°,则该椭圆的离心率是.11.(5分)设f(x)是定义在R上且周期为2的函数,在区间[﹣1,1)上,f (x)=,其中a∈R,若f(﹣)=f(),则f(5a)的值是.12.(5分)已知实数x,y满足,则x2+y2的取值范围是.13.(5分)如图,在△ABC中,D是BC的中点,E,F是AD上的两个三等分点,•=4,•=﹣1,则•的值是.14.(5分)在锐角三角形ABC中,若sinA=2sinBsinC,则tanAtanBtanC的最小值是.二、解答题(共6小题,满分90分)15.(14分)在△ABC中,AC=6,cosB=,C=.(1)求AB的长;(2)求cos(A﹣)的值.16.(14分)如图,在直三棱柱ABC﹣A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.17.(14分)现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P﹣A1B1C1D1,下部的形状是正四棱柱ABCD﹣A1B1C1D1(如图所示),并要求正四棱柱的高O1O是正四棱锥的高PO1的4倍.(1)若AB=6m,PO1=2m,则仓库的容积是多少?(2)若正四棱锥的侧棱长为6m,则当PO1为多少时,仓库的容积最大?18.(16分)如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y2﹣12x﹣14y+60=0及其上一点A(2,4).(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;(2)设平行于OA的直线l与圆M相交于B、C两点,且BC=OA,求直线l的方程;(3)设点T(t,0)满足:存在圆M上的两点P和Q,使得+=,求实数t的取值范围.19.(16分)已知函数f(x)=a x+b x(a>0,b>0,a≠1,b≠1).(1)设a=2,b=.①求方程f(x)=2的根;②若对于任意x∈R,不等式f(2x)≥mf(x)﹣6恒成立,求实数m的最大值;(2)若0<a<1,b>1,函数g(x)=f(x)﹣2有且只有1个零点,求ab的值.20.(16分)记U={1,2,…,100},对数列{a n}(n∈N*)和U的子集T,若T=∅,定义S T=0;若T={t1,t2,…,t k},定义S T=++…+.例如:T={1,3,66}时,S T=a1+a3+a66.现设{a n}(n∈N*)是公比为3的等比数列,且当T={2,4}时,S T=30.(1)求数列{a n}的通项公式;(2)对任意正整数k(1≤k≤100),若T⊆{1,2,…,k},求证:S T<a k+1;(3)设C⊆U,D⊆U,S C≥S D,求证:S C+S C∩D≥2S D.附加题【选做题】本题包括A、B、C、D四小题,请选定其中两小题,并在相应的答题区域内作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤.A.【选修4—1几何证明选讲】21.(10分)如图,在△ABC中,∠ABC=90°,BD⊥AC,D为垂足,E为BC的中点,求证:∠EDC=∠ABD.B.【选修4—2:矩阵与变换】22.(10分)已知矩阵A=,矩阵B的逆矩阵B﹣1=,求矩阵AB.C.【选修4—4:坐标系与参数方程】23.在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),椭圆C的参数方程为(θ为参数),设直线l与椭圆C相交于A,B两点,求线段AB的长.24.设a>0,|x﹣1|<,|y﹣2|<,求证:|2x+y﹣4|<a.附加题【必做题】25.(10分)如图,在平面直角坐标系xOy中,已知直线l:x﹣y﹣2=0,抛物线C:y2=2px(p>0).(1)若直线l过抛物线C的焦点,求抛物线C的方程;(2)已知抛物线C上存在关于直线l对称的相异两点P和Q.①求证:线段PQ的中点坐标为(2﹣p,﹣p);②求p的取值范围.26.(10分)(1)求7C﹣4C的值;(2)设m,n∈N*,n≥m,求证:(m+1)C+(m+2)C+(m+3)C+…+nC+(n+1)C=(m+1)C.2016年江苏省高考数学试卷参考答案与试题解析一、填空题(共14小题,每小题5分,满分70分)1.(5分)已知集合A={﹣1,2,3,6},B={x|﹣2<x<3},则A∩B={﹣1,2} .【分析】根据已知中集合A={﹣1,2,3,6},B={x|﹣2<x<3},结合集合交集的定义可得答案.【解答】解:∵集合A={﹣1,2,3,6},B={x|﹣2<x<3},∴A∩B={﹣1,2},故答案为:{﹣1,2}【点评】本题考查的知识点是集合的交集及其运算,难度不大,属于基础题.2.(5分)复数z=(1+2i)(3﹣i),其中i为虚数单位,则z的实部是5.【分析】利用复数的运算法则即可得出.【解答】解:z=(1+2i)(3﹣i)=5+5i,则z的实部是5,故答案为:5.【点评】本题考查了复数的运算性质,考查了推理能力与计算能力,属于基础题.3.(5分)在平面直角坐标系xOy中,双曲线﹣=1的焦距是2.【分析】确定双曲线的几何量,即可求出双曲线﹣=1的焦距.【解答】解:双曲线﹣=1中,a=,b=,∴c==,∴双曲线﹣=1的焦距是2.故答案为:2.【点评】本题重点考查了双曲线的简单几何性质,考查学生的计算能力,比较基础.4.(5分)已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是0.1.【分析】先求出数据4.7,4.8,5.1,5.4,5.5的平均数,由此能求出该组数据的方差.【解答】解:∵数据4.7,4.8,5.1,5.4,5.5的平均数为:=(4.7+4.8+5.1+5.4+5.5)=5.1,∴该组数据的方差:S2=[(4.7﹣5.1)2+(4.8﹣5.1)2+(5.1﹣5.1)2+(5.4﹣5.1)2+(5.5﹣5.1)2]=0.1.故答案为:0.1.【点评】本题考查方差的求法,是基础题,解题时要认真审题,注意方差计算公式的合理运用.5.(5分)函数y=的定义域是[﹣3,1] .【分析】根据被开方数不小于0,构造不等式,解得答案.【解答】解:由3﹣2x﹣x2≥0得:x2+2x﹣3≤0,解得:x∈[﹣3,1],故答案为:[﹣3,1]【点评】本题考查的知识点是函数的定义域,二次不等式的解法,难度不大,属于基础题.6.(5分)如图是一个算法的流程图,则输出的a的值是9.【分析】根据已知的程序框图可得,该程序的功能是利用循环结构计算并输出变量a的值,模拟程序的运行过程,可得答案.【解答】解:当a=1,b=9时,不满足a>b,故a=5,b=7,当a=5,b=7时,不满足a>b,故a=9,b=5当a=9,b=5时,满足a>b,故输出的a值为9,故答案为:9【点评】本题考查的知识点是程序框图,当循环次数不多,或有规律可循时,可采用模拟程序法进行解答.7.(5分)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是.【分析】出现向上的点数之和小于10的对立事件是出现向上的点数之和不小于10,由此利用对立事件概率计算公式能求出出现向上的点数之和小于10的概率.【解答】解:将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,基本事件总数为n=6×6=36,出现向上的点数之和小于10的对立事件是出现向上的点数之和不小于10,出现向上的点数之和不小于10包含的基本事件有:(4,6),(6,4),(5,5),(5,6),(6,5),(6,6),共6个,∴出现向上的点数之和小于10的概率:p=1﹣=.故答案为:.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意对立事件概率计算公式的合理运用.8.(5分)已知{a n}是等差数列,S n是其前n项和,若a1+a22=﹣3,S5=10,则a9的值是20.【分析】利用等差数列的通项公式和前n项和公式列出方程组,求出首项和公差,由此能求出a9的值.【解答】解:∵{a n}是等差数列,S n是其前n项和,a1+a22=﹣3,S5=10,∴,解得a1=﹣4,d=3,∴a9=﹣4+8×3=20.故答案为:20.【点评】本题考查等差数列的第9项的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.9.(5分)定义在区间[0,3π]上的函数y=sin2x的图象与y=cosx的图象的交点个数是7.【分析】法1:画出函数y=sin2x与y=cosx在区间[0,3π]上的图象即可得到答案;法2:由sin2x=cosx,即cosx(2sinx﹣1)=0,可得cosx=0或sinx=,结合题意,解之即可.【解答】解:法1:画出函数y=sin2x与y=cosx在区间[0,3π]上的图象如下:由图可知,共7个交点.法2:依题意,sin2x=cosx,即cosx(2sinx﹣1)=0,故cosx=0或sinx=,因为x∈[0,3π],故x=,,,,,,,共7个,故答案为:7.【点评】本题考查正弦函数与余弦函数的图象,作出函数y=sin2x与y=cosx在区间[0,3π]上的图象是关键,属于中档题.10.(5分)如图,在平面直角坐标系xOy中,F是椭圆+=1(a>b>0)的右焦点,直线y=与椭圆交于B,C两点,且∠BFC=90°,则该椭圆的离心率是.【分析】设右焦点F(c,0),将y=代入椭圆方程求得B,C的坐标,运用两直线垂直的条件:斜率之积为﹣1,结合离心率公式,计算即可得到所求值.方法二、运用向量的数量积的性质,向量垂直的条件:数量积为0,结合离心率公式计算即可得到所求.【解答】解:设右焦点F(c,0),将y=代入椭圆方程可得x=±a=±a,可得B(﹣a,),C(a,),由∠BFC=90°,可得k BF•k CF=﹣1,即有•=﹣1,化简为b2=3a2﹣4c2,由b2=a2﹣c2,即有3c2=2a2,由e=,可得e2==,可得e=,另解:设右焦点F(c,0),将y=代入椭圆方程可得x=±a=±a,可得B(﹣a,),C(a,),=(﹣a﹣c,),=(a﹣c,),•=0,则c2﹣a2十b2=0,因为b2=a2﹣c2,代入得3c2=2a2,由e=,可得e2==,可得e=.故答案为:.【点评】本题考查椭圆的离心率的求法,注意运用两直线垂直的条件:斜率之积为﹣1,考查化简整理的运算能力,属于中档题.11.(5分)设f(x)是定义在R上且周期为2的函数,在区间[﹣1,1)上,f (x)=,其中a∈R,若f(﹣)=f(),则f(5a)的值是﹣.【分析】根据已知中函数的周期性,结合f(﹣)=f(),可得a值,进而得到f(5a)的值.【解答】解:f(x)是定义在R上且周期为2的函数,在区间[﹣1,1)上,f(x)=,∴f(﹣)=f(﹣)=﹣+a,f()=f()=|﹣|=,∴a=,∴f(5a)=f(3)=f(﹣1)=﹣1+=﹣,故答案为:﹣【点评】本题考查的知识点是分段函数的应用,函数的周期性,根据已知求出a 值,是解答的关键.12.(5分)已知实数x,y满足,则x2+y2的取值范围是[,13] .【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,结合两点间的距离公式以及点到直线的距离公式进行求解即可.【解答】解:作出不等式组对应的平面区域,设z=x2+y2,则z的几何意义是区域内的点到原点距离的平方,由图象知A到原点的距离最大,点O到直线BC:2x+y﹣2=0的距离最小,由得,即A(2,3),此时z=22+32=4+9=13,点O到直线BC:2x+y﹣2=0的距离d==,则z=d2=()2=,故z的取值范围是[,13],故答案为:[,13].【点评】本题主要考查线性规划的应用,涉及距离的计算,利用数形结合是解决本题的关键.13.(5分)如图,在△ABC中,D是BC的中点,E,F是AD上的两个三等分点,•=4,•=﹣1,则•的值是.【分析】由已知可得=+,=﹣+,=+3,=﹣+3,=+2,=﹣+2,结合已知求出2=,2=,可得答案.【解答】解:∵D是BC的中点,E,F是AD上的两个三等分点,∴=+,=﹣+,=+3,=﹣+3,∴•=2﹣2=﹣1,•=92﹣2=4,∴2=,2=,又∵=+2,=﹣+2,∴•=42﹣2=,故答案为:【点评】本题考查的知识是平面向量的数量积运算,平面向量的线性运算,难度中档.14.(5分)在锐角三角形ABC中,若sinA=2sinBsinC,则tanAtanBtanC的最小值是8.【分析】结合三角形关系和式子sinA=2sinBsinC可推出sinBcosC+cosBsinC=2sinBsinC,进而得到tanB+tanC=2tanBtanC,结合函数特性可求得最小值.【解答】解:由sinA=sin(π﹣A)=sin(B+C)=sinBcosC+cosBsinC,sinA=2sinBsinC,可得sinBcosC+cosBsinC=2sinBsinC,①由三角形ABC为锐角三角形,则cosB>0,cosC>0,在①式两侧同时除以cosBcosC可得tanB+tanC=2tanBtanC,又tanA=﹣tan(π﹣A)=﹣tan(B+C)=﹣②,则tanAtanBtanC=﹣•tanBtanC,由tanB+tanC=2tanBtanC可得tanAtanBtanC=﹣,令tanBtanC=t,由A,B,C为锐角可得tanA>0,tanB>0,tanC>0,由②式得1﹣tanBtanC<0,解得t>1,tanAtanBtanC=﹣=﹣,=()2﹣,由t>1得,﹣≤<0,因此tanAtanBtanC的最小值为8,另解:由已知条件sinA=2sinBsinc,sin(B十C)=2sinBsinC,sinBcosC十cosBsinC=2sinBcosC,两边同除以cosBcosC,tanB十tanC=2tanBtanC,∵﹣tanA=tan(B十C)=,∴tanAtanBtanC=tanA十tanB十tanC,∴tanAtanBtanC=tanA十2tanBtanC≥2,令tanAtanBtanC=x>0,即x≥2,即x≥8,或x≤0(舍去),所以x的最小值为8.当且仅当t=2时取到等号,此时tanB+tanC=4,tanBtanC=2,解得tanB=2+,tanC=2﹣,tanA=4,(或tanB,tanC互换),此时A,B,C 均为锐角.【点评】本题考查了三角恒等式的变化技巧和函数单调性知识,有一定灵活性.二、解答题(共6小题,满分90分)15.(14分)在△ABC中,AC=6,cosB=,C=.(1)求AB的长;(2)求cos(A﹣)的值.【分析】(1)利用正弦定理,即可求AB的长;(2)求出cosA、sinA,利用两角差的余弦公式求cos(A﹣)的值.【解答】解:(1)∵△ABC中,cosB=,B∈(0,π),∴sinB=,∵,∴AB==5;(2)cosA═﹣cos(π﹣A)=﹣cos(C+B)=sinBsinC﹣cosBcosC=﹣.∵A为三角形的内角,∴sinA=,∴cos(A﹣)=cosA+sinA=.【点评】本题考查正弦定理,考查两角和差的余弦公式,考查学生的计算能力,属于基础题.16.(14分)如图,在直三棱柱ABC﹣A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.【分析】(1)通过证明DE∥AC,进而DE∥A1C1,据此可得直线DE∥平面A1C1F1;(2)通过证明A1F⊥DE结合题目已知条件A1F⊥B1D,进而可得平面B1DE⊥平面A1C1F.【解答】解:(1)∵D,E分别为AB,BC的中点,∴DE为△ABC的中位线,∴DE∥AC,∵ABC﹣A1B1C1为棱柱,∴AC∥A1C1,∴DE∥A1C1,∵A1C1⊂平面A1C1F,且DE⊄平面A1C1F,∴DE∥A1C1F;(2)在ABC﹣A1B1C1的直棱柱中,∴AA1⊥平面A1B1C1,∴AA1⊥A1C1,又∵A1C1⊥A1B1,且AA1∩A1B1=A1,AA1、A1B1⊂平面AA1B1B,∴A1C1⊥平面AA1B1B,∵DE∥A1C1,∴DE⊥平面AA1B1B,又∵A1F⊂平面AA1B1B,∴DE⊥A1F,又∵A1F⊥B1D,DE∩B1D=D,且DE、B1D⊂平面B1DE,∴A1F⊥平面B1DE,又∵A1F⊂平面A1C1F,∴平面B1DE⊥平面A1C1F.【点评】本题考查直线与平面平行的证明,以及平面与平面相互垂直的证明,把握常用方法最关键,难度不大.17.(14分)现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P﹣A1B1C1D1,下部的形状是正四棱柱ABCD﹣A1B1C1D1(如图所示),并要求正四棱柱的高O1O是正四棱锥的高PO1的4倍.(1)若AB=6m,PO1=2m,则仓库的容积是多少?(2)若正四棱锥的侧棱长为6m,则当PO1为多少时,仓库的容积最大?【分析】(1)由正四棱柱的高O1O是正四棱锥的高PO1的4倍,可得PO1=2m时,O1O=8m,进而可得仓库的容积;(2)设PO1=xm,则O1O=4xm,A1O1=m,A1B1=•m,代入体积公式,求出容积的表达式,利用导数法,可得最大值.【解答】解:(1)∵PO1=2m,正四棱柱的高O1O是正四棱锥的高PO1的4倍.∴O1O=8m,答:仓库的容积V=×62×2+62×8=312m3,(2)若正四棱锥的侧棱长为6m,设PO1=xm,则O1O=4xm,A1O1=m,A1B1=•m,则仓库的容积V=×(•)2•x+(•)2•4x=x3+312x,(0<x<6),∴V′=﹣26x2+312,(0<x<6),当0<x<2时,V′>0,V(x)单调递增;当2<x<6时,V′<0,V(x)单调递减;故当x=2时,V(x)取最大值;答:当PO1=2m时,仓库的容积最大.【点评】本题考查的知识点是棱锥和棱柱的体积,导数法求函数的最大值,难度中档.18.(16分)如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y2﹣12x﹣14y+60=0及其上一点A(2,4).(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;(2)设平行于OA的直线l与圆M相交于B、C两点,且BC=OA,求直线l的方程;(3)设点T(t,0)满足:存在圆M上的两点P和Q,使得+=,求实数t的取值范围.【分析】(1)设N(6,n),则圆N为:(x﹣6)2+(y﹣n)2=n2,n>0,从而得到|7﹣n|=|n|+5,由此能求出圆N的标准方程.(2)由题意得OA=2,k OA=2,设l:y=2x+b,则圆心M到直线l的距离:d=,由此能求出直线l的方程.(3)=,即||=,又||≤10,得t∈[2﹣2,2+2],对于任意t∈[2﹣2,2+2],欲使,只需要作直线TA的平行线,使圆心到直线的距离为,由此能求出实数t的取值范围.【解答】解:(1)∵N在直线x=6上,∴设N(6,n),∵圆N与x轴相切,∴圆N为:(x﹣6)2+(y﹣n)2=n2,n>0,又圆N与圆M外切,圆M:x2+y2﹣12x﹣14y+60=0,即圆M:(x﹣6)2+(x﹣7)2=25,∴|7﹣n|=|n|+5,解得n=1,∴圆N的标准方程为(x﹣6)2+(y﹣1)2=1.(2)由题意得OA=2,k OA=2,设l:y=2x+b,则圆心M到直线l的距离:d==,则|BC|=2=2,BC=2,即2=2,解得b=5或b=﹣15,∴直线l的方程为:y=2x+5或y=2x﹣15.(3)设P(x1,y1),Q(x2,y2),∵A(2,4),T(t,0),,∴,①∵点Q在圆M上,∴(x2﹣6)2+(y2﹣7)2=25,②将①代入②,得(x1﹣t﹣4)2+(y1﹣3)2=25,∴点P(x1,y1)即在圆M上,又在圆[x﹣(t+4)]2+(y﹣3)2=25上,从而圆(x﹣6)2+(y﹣7)2=25与圆[x﹣(t+4)]2+(y﹣3)2=25有公共点,∴5﹣5≤≤5+5.解得2﹣2≤t,∴实数t的取值范围是[2﹣2,2+2].【点评】本题考查圆的标准方程的求法,考查直线方程的求法,考查实数的取值范围的求法,是中档题,解题时要认真审题,注意圆的性质的合理运用.19.(16分)已知函数f(x)=a x+b x(a>0,b>0,a≠1,b≠1).(1)设a=2,b=.①求方程f(x)=2的根;②若对于任意x∈R,不等式f(2x)≥mf(x)﹣6恒成立,求实数m的最大值;(2)若0<a<1,b>1,函数g(x)=f(x)﹣2有且只有1个零点,求ab的值.【分析】(1)①利用方程,直接求解即可.②列出不等式,利用二次函数的性质以及函数的最值,转化求解即可.(2)求出g(x)=f(x)﹣2=a x+b x﹣2,求出函数的导数,构造函数h(x)=+,求出g(x)的最小值为:g(x0).①若g(x0)<0,g(x)至少有两个零点,与条件矛盾.②若g(x0)>0,利用函数g(x)=f(x)﹣2有且只有1个零点,推出g(x0)=0,然后求解ab=1.【解答】解:函数f(x)=a x+b x(a>0,b>0,a≠1,b≠1).(1)设a=2,b=.①方程f(x)=2;即:=2,y=2x在R上单调,可得x=0.②不等式f(2x)≥mf(x)﹣6恒成立,即≥m()﹣6恒成立.令t=,t≥2.不等式化为:t2﹣mt+4≥0在t≥2时,恒成立.可得:△≤0或即:m2﹣16≤0或m≤4,∴m∈(﹣∞,4].实数m的最大值为:4.(2)g(x)=f(x)﹣2=a x+b x﹣2,g′(x)=a x lna+b x lnb=a x[+]lnb,0<a<1,b>1可得,令h(x)=+,则h(x)是递增函数,而,lna<0,lnb>0,因此,x0=时,h(x0)=0,因此x∈(﹣∞,x0)时,h(x)<0,a x lnb>0,则g′(x)<0.x∈(x0,+∞)时,h(x)>0,a x lnb>0,则g′(x)>0,则g(x)在(﹣∞,x0)递减,(x0,+∞)递增,因此g(x)的最小值为:g(x0).①若g(x0)<0,x<log a2时,a x>=2,b x>0,则g(x)>0,因此x1<log a2,且x1<x0时,g(x1)>0,因此g(x)在(x1,x0)有零点,则g(x)至少有两个零点,与条件矛盾.②若g(x0)≥0,函数g(x)=f(x)﹣2有且只有1个零点,g(x)的最小值为g(x0),可得g(x0)=0,由g(0)=a0+b0﹣2=0,因此x0=0,因此=0,﹣=1,即lna+lnb=0,ln(ab)=0,则ab=1.可得ab=1.【点评】本题考查函数与方程的综合应用,函数的导数的应用,基本不等式的应用,函数恒成立的应用,考查分析问题解决问题的能力.20.(16分)记U={1,2,…,100},对数列{a n}(n∈N*)和U的子集T,若T=∅,定义S T=0;若T={t1,t2,…,t k},定义S T=++…+.例如:T={1,3,66}时,S T=a1+a3+a66.现设{a n}(n∈N*)是公比为3的等比数列,且当T={2,4}时,S T=30.(1)求数列{a n}的通项公式;(2)对任意正整数k(1≤k≤100),若T⊆{1,2,…,k},求证:S T<a k+1;(3)设C⊆U,D⊆U,S C≥S D,求证:S C+S C∩D≥2S D.【分析】(1)根据题意,由S T的定义,分析可得S T=a2+a4=a2+9a2=30,计算可得a2=3,进而可得a1的值,由等比数列通项公式即可得答案;(2)根据题意,由S T的定义,分析可得S T≤a1+a2+…a k=1+3+32+…+3k﹣1,由等比数列的前n项和公式计算可得证明;(3)设A=∁C(C∩D),B=∁D(C∩D),则A∩B=∅,进而分析可以将原命题转化为证明S C≥2S B,分2种情况进行讨论:①、若B=∅,②、若B≠∅,可以证明得到S A≥2S B,即可得证明.【解答】解:(1)等比数列{a n}中是公比为3的等比数列,则a4=3a3=9a2,当T={2,4}时,S T=a2+a4=a2+9a2=30,因此a2=3,从而a1==1,故a n=3n﹣1,(2)S T≤a1+a2+…a k=1+3+32+…+3k﹣1=<3k=a k+1,(3)设A=∁C(C∩D),B=∁D(C∩D),则A∩B=∅,分析可得S C=S A+S C∩D,S D=S B+S C∩D,则S C+S C∩D﹣2S D=S A﹣2S B,因此原命题的等价于证明S A≥2S B,由条件S C≥S D,可得S A≥S B,①、若B=∅,则S B=0,故S A≥2S B,②、若B≠∅,由S A≥S B可得A≠∅,设A中最大元素为l,B中最大元素为m,若m≥l+1,则其与S A<a1+1≤a m≤S B相矛盾,因为A∩B=∅,所以l≠m,则l≥m+1,S B≤a1+a2+…a m=1+3+32+…+3m﹣1=≤=,即S A≥2S B,综上所述,S A≥2S B,故S C+S C∩D≥2S D.【点评】本题考查数列的应用,涉及新定义的内容,解题的关键是正确理解题目中对于新定义的描述.附加题【选做题】本题包括A、B、C、D四小题,请选定其中两小题,并在相应的答题区域内作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤.A.【选修4—1几何证明选讲】21.(10分)如图,在△ABC中,∠ABC=90°,BD⊥AC,D为垂足,E为BC的中点,求证:∠EDC=∠ABD.【分析】依题意,知∠BDC=90°,∠EDC=∠C,利用∠C+∠DBC=∠ABD+∠DBC=90°,可得∠ABD=∠C,从而可证得结论.【解答】解:在△ABC中,由BD⊥AC可得∠BDC=90°,因为E为BC的中点,所以DE=CE=BC,则:∠EDC=∠C,由∠BDC=90°,可得∠C+∠DBC=90°,由∠ABC=90°,可得∠ABD+∠DBC=90°,因此∠ABD=∠C,而∠EDC=∠C,所以,∠EDC=∠ABD.【点评】本题考查三角形的性质应用,利用∠C+∠DBC=∠ABD+∠DBC=90°,证得∠ABD=∠C是关键,属于中档题.B.【选修4—2:矩阵与变换】22.(10分)已知矩阵A=,矩阵B的逆矩阵B﹣1=,求矩阵AB.【分析】依题意,利用矩阵变换求得B=(B﹣1)﹣1==,再利用矩阵乘法的性质可求得答案.【解答】解:∵B﹣1=,∴B=(B﹣1)﹣1==,又A=,∴AB==.【点评】本题考查逆变换与逆矩阵,考查矩阵乘法的性质,属于中档题.C.【选修4—4:坐标系与参数方程】23.在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),椭圆C的参数方程为(θ为参数),设直线l与椭圆C相交于A,B两点,求线段AB的长.【分析】分别化直线与椭圆的参数方程为普通方程,然后联立方程组,求出直线与椭圆的交点坐标,代入两点间的距离公式求得答案.【解答】解:由,由②得,代入①并整理得,.由,得,两式平方相加得.联立,解得或.∴|AB|=.【点评】本题考查直线与椭圆的参数方程,考查了参数方程化普通方程,考查直线与椭圆位置关系的应用,是基础题.24.设a>0,|x﹣1|<,|y﹣2|<,求证:|2x+y﹣4|<a.【分析】运用绝对值不等式的性质:|a+b|≤|a|+|b|,结合不等式的基本性质,即可得证.【解答】证明:由a>0,|x﹣1|<,|y﹣2|<,根据绝对值不等式的性质,可得|2x+y﹣4|=|2(x﹣1)+(y﹣2)|≤2|x﹣1|+|y﹣2|<+=a,则|2x+y﹣4|<a成立.【点评】本题考查绝对值不等式的证明,注意运用绝对值不等式的性质,以及不等式的简单性质,考查运算能力,属于基础题.附加题【必做题】25.(10分)如图,在平面直角坐标系xOy中,已知直线l:x﹣y﹣2=0,抛物线C:y2=2px(p>0).(1)若直线l过抛物线C的焦点,求抛物线C的方程;(2)已知抛物线C上存在关于直线l对称的相异两点P和Q.①求证:线段PQ的中点坐标为(2﹣p,﹣p);②求p的取值范围.【分析】(1)求出抛物线的焦点坐标,然后求解抛物线方程.(2):①设点P(x1,y1),Q(x2,y2),通过抛物线方程,求解k PQ,通过P,Q 关于直线l对称,点的k PQ=﹣1,推出,PQ的中点在直线l上,推出=2﹣p,即可证明线段PQ的中点坐标为(2﹣p,﹣p);②利用线段PQ中点坐标(2﹣p,﹣p).推出,得到关于y2+2py+4p2﹣4p=0,有两个不相等的实数根,列出不等式即可求出p的范围.【解答】解:(1)∵l:x﹣y﹣2=0,∴l与x轴的交点坐标(2,0),即抛物线的焦点坐标(2,0).∴,∴抛物线C:y2=8x.(2)证明:①设点P(x1,y1),Q(x2,y2),则:,即:,k PQ==,又∵P,Q关于直线l对称,∴k PQ=﹣1,即y1+y2=﹣2p,∴,又PQ的中点在直线l上,∴==2﹣p,∴线段PQ的中点坐标为(2﹣p,﹣p);②因为Q中点坐标(2﹣p,﹣p).∴,即∴,即关于y2+2py+4p2﹣4p=0,有两个不相等的实数根,∴△>0,(2p)2﹣4(4p2﹣4p)>0,∴p∈.【点评】本题考查抛物线方程的求法,直线与抛物线的位置关系的应用,考查转化思想以及计算能力.26.(10分)(1)求7C﹣4C的值;(2)设m,n∈N*,n≥m,求证:(m+1)C+(m+2)C+(m+3)C+…+nC+(n+1)C=(m+1)C.【分析】(1)由已知直接利用组合公式能求出7的值.(2)对任意m∈N*,当n=m时,验证等式成立;再假设n=k(k≥m)时命题成立,推导出当n=k+1时,命题也成立,由此利用数学归纳法能证明(m+1)C+(m+2)C+(m+3)C+…+nC+(n+1)C=(m+1)C.【解答】解:(1)7=﹣4×=7×20﹣4×35=0.证明:(2)对任意m∈N*,①当n=m时,左边=(m+1)=m+1,右边=(m+1)=m+1,等式成立.②假设n=k(k≥m)时命题成立,即(m+1)C+(m+2)C+(m+3)C+…+k+(k+1)=(m+1),当n=k+1时,左边=(m+1)+(m+2)+(m+3)++(k+1)+(k+2)=,右边=∵=(m+1)[﹣]=(m+1)×[k+3﹣(k﹣m+1)]=(k+2)=(k+2),∴=(m+1),∴左边=右边,∴n=k+1时,命题也成立,∴m,n∈N*,n≥m,(m+1)C+(m+2)C+(m+3)C+…+nC+(n+1)C=(m+1)C.【点评】本题考查组合数的计算与证明,是中档题,解题时要认真审题,注意组合数公式和数学归纳法的合理运用.。
江苏省2016届高考预测卷九一、填空题:本大题共14题,每小题5分,共70分.请把答案填写在答题纸相应位置上.........1. 设集合1{-=x A ≤}4<x ,}034{2<+-=x x x B ,则)(B CA R= )4,3[]1,1[ - .2。
函数2(ln(2)f x x x -的定义域为(1,2) .3.已知复数21i z i=-(为虚数单位),z 的共轭复数为z ,则z z += -2 .4.阅读右面的程序框图,当该程序运行后输出的S 值是32.5。
设∈x R ,则“b a =”是“b x a x x f ++=)()(为奇函数"的 必要而不充分条件.6。
在不等式组02,02x y ≤≤⎧⎨≤≤⎩.表示的平面区域内任取一个点(,)P x y ,使得1x y +≤的概率为 18.7。
已知点P 在抛物线24yx =上,它到抛物线焦点的距离为5,那么点P 的坐标为(4, 4),(4,-4).8. 将函数()sin2f x x =的图象向左平移6π个单位后与函数()g x 的图象重合,则函数()g x =sin(2)3x π+.9。
在各项均为正数的等比数列{}na 中,564a a=,则数列{}2logn a 的前10项和等于 10 。
10. 已知平行四边形ABCD 中,120BAD ∠=︒,1,2AB AD ==,点P 是线段BC 上的一个动点,则AP DP ⋅的取值范围是_____1,24⎡⎤-⎢⎥⎣⎦_____.11. 已知两个同底的正四棱锥的所有顶点都在同一球面上,它们的底面边长为2,体积的比值为12,则该球的表面积为 9π .12. 已知P (a ,b)为圆22x y +=4上任意一点,则2214a b +最小时,2a 的值为 43.13。
已知F 为抛物线2y x =4的焦点,P (x ,y )是该抛物线上的动点,点A 是抛物线的准线与x 轴的交点,当PF PA最小时,点P 的坐标为__()2,1±________.14。