三年级数学奥数讲座抽屉原理
- 格式:doc
- 大小:40.50 KB
- 文档页数:3
抽屉原理是在集合中对元素分配的原则和方法之一,它在数学中有着重要的应用。
下面将从什么是抽屉原理、抽屉原理的应用以及抽屉原理的实例等方面进行介绍。
一、什么是抽屉原理抽屉原理(也称为鸽巢原理)是指当把若干个物品放入若干个抽屉中时,无论如何放,总有一个抽屉中要放至少两个物品。
这是因为如果有n+1个物品放入n个抽屉中,那么至少有一个抽屉里面放了两个物品。
抽屉原理的数学概念是一种常用的思考方法,它的核心是基于“物品数大于抽屉数”。
二、抽屉原理的应用抽屉原理在数学中有广泛的应用,特别是在组合数学、概率论和数论等领域。
它常常用来解决组合问题、分配问题以及概率问题等。
1.解决组合问题:例如,若有n+1个元素放入n个抽屉中,那么必然存在至少一个抽屉中有至少两个元素,这对于解决组合问题非常有用。
2.解决分配问题:例如,如果有n+1个待分配的任务和n个人来分配任务,那么必然存在至少一个人分配到了两个任务。
这对于资源的合理分配具有指导意义。
3.解决概率问题:例如,当从一个有限的集合中随机选择元素时,当元素的数目大于选择次数时,抽屉原理可以帮助我们理解为什么在多次实验中,一些结果出现的概率较高。
三、抽屉原理的实例以下是一些经典的抽屉原理的实例,以帮助大家更好地理解抽屉原理的应用。
1.生日原理:假设一个教室里有365个学生,那么他们中间有至少两个人的生日相同的概率是多少?根据抽屉原理,我们可以知道只要有366个学生,那么必然存在至少两个人的生日是相同的。
2.快乐数:快乐数是指一个正整数,将该数的每个数位上的数字的平方相加,再对得到的结果重复进行相同的操作,最终结果为1、根据抽屉原理,如果不是快乐数,那么一定存在循环的结果。
3.鸽巢原理:在一群鸽子和若干个鸽巢之间进行配对,如果鸽子的个数大于鸽巢的个数,那么至少有一个鸽巢中有两只以上的鸽子。
这个例子非常形象地展示了抽屉原理。
总之,抽屉原理作为一种思考方法和解决问题的原则,可以在数学问题中发挥重要的作用。
小学奥数抽屉原理
小学奥数中的抽屉原理是指在一组物品中,如果物品的数量大于抽屉的数量,那么至少会有一个抽屉中放置了两个或以上的物品。
这个原理可以用一个简单的例子来解释。
假设有4只袜子和3
个抽屉,我们要将袜子放入这些抽屉中。
因为袜子的数量大于抽屉的数量,根据抽屉原理,至少有一个抽屉中会放置两只袜子。
我们可以用鸽巢原理(抽屉原理的另一种说法)来帮助我们理解。
想象一下,如果有4只鸽子要放在3个巢里,根据鸽巢原理,至少有一个巢会有两只鸽子。
在小学奥数中,经常会用到抽屉原理来解决问题。
例如,假设有10个苹果,我们要将它们放入9个抽屉中。
我们可以确定
至少有一个抽屉中会放置两个或以上的苹果。
通过理解抽屉原理,我们可以更好地解决一些有关数量关系的问题。
这个简单而重要的数学原理在日常生活中也有很多应用。
例如,在一个大班级中,如果学生的数量超过了座位的数量,必然会有至少两个学生坐在同一个座位上。
总之,小学奥数中的抽屉原理告诉我们,当物品的数量大于抽屉的数量时,一定会有至少一个抽屉中放置了两个或以上的物品。
这个原理可以帮助我们更好地理解数量关系,解决数学问题。
第29讲 抽屉原理理解抽屉原理的基本概念、基本用法;掌握用抽屉原理解题的基本过程;能够构造抽屉进行解题;利用最不利原则进行解题;;利用抽屉原理与最不利原则解释并证明一些结论及生活中的一些问题。
一、知识点介绍 抽屉原理有时也被称为鸽笼原理,它由德国数学家狄利克雷首先明确提出来并用来证明一些数论中的问题,因此,也被称为狄利克雷原则.抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣的问题,并且常常能够起到令人惊奇的作用.许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使问题得到解决。
二、抽屉原理的定义一般情况下,把n +1或多于n +1个苹果放到n 个抽屉里,其中必定至少有一个里至少有两个苹果。
我们称这种现象为抽屉原理。
三、抽屉原理的解题方案1、利用公式进行解题苹果÷抽屉=商……余数余数:(1)余数=1, 结论:至少有(商+1)个苹果在同一个抽屉里(2)余数=x ()()11x n -, 结论:至少有(商+1)个苹果在同一个抽屉里(3)余数=0, 结论:至少有“商”个苹果在同一个抽屉里2、利用最值原理解题将题目中没有阐明的量进行极限讨论,将复杂的题目变得非常简单,也就是常说的极限思想“任我意”方法、特殊值方法。
学习目标知识梳理典例分析考点一:直接利用公式解题例1、6只鸽子要飞进5个笼子,每个笼子里都必须有1只,一定有一个笼子里有2只鸽子.对吗?例2、人的头发平均有12万根,如果最多不超过20万根,那么13亿中国人中至少有人的头发的根数相同。
例3、“六一”儿童节,很多小朋友到公园游玩,在公园里他们各自遇到了许多熟人.试说明:在游园的小朋友中,至少有两个小朋友遇到的熟人数目相等.例4、在任意的四个自然数中,是否其中必有两个数,它们的差能被3整除?例5、求证:对于任意的8个自然数,一定能从中找到6个数a,b,c,d,e,f,使得()()()---是a b c d e f 105的倍数.例6、某班有16名学生,每个月教师把学生分成两个小组.问最少要经过几个月,才能使该班的任意两个学生总有某个月份是分在不同的小组里?例7、一次数学竞赛出了10道选择题,评分标准为:基础分10分,每道题答对得3分,答错扣1分,不答不得分。
第十二讲 简单抽屉原理参考书目:导引(三年级下学期 第20讲)知识要点:简单的抽屉原理:把多于n 个的苹果随意放进n 个抽屉里,那么至少有一个抽屉里有两个或两个以上的苹果。
例1:任意13个人中,至少有2个人的属相相同。
(12种属相看作12个抽屉)例2:任取5张扑克牌(不包括大、小王),至少有两张牌花色相同。
(扑克牌一共有四种花色:红桃、黑桃、梅花、方块,把这四种花色看作是四个抽屉)例3:某校的小学生年龄最小的6岁,最大的13岁,从这个学校中至少任选几个学生就一定能保证其中有两个学生的年龄相同?(答:任选9个)(6—13岁这8个不同的年龄看作是8个抽屉)加强的抽屉原理:把多于m ⨯n 个苹果随意放进n 个抽屉里,那么至少有一个抽屉里有(m+1)个或(m+1)个以上的苹果。
例4:任意25个人中,至少有3个人的属相相同。
3米例5:在边长为3米的正方形内,任意放入28个点,求证:必有4个点, 以它们为顶点的四边形的面积不超过1平方米。
(如右图,9例6:在一次数学竞赛中,获奖的87名学生来自12所小学,证明:至少有8名学生来自同一所学校。
(12个抽屉,371287⋅⋅⋅⋅⋅⋅=÷,7+1=8 )重点与难点:○1构造“抽屉” 、识别“苹果” 。
例7:篮子里有苹果、橘子、梨和西红柿四种水果各若干个。
如果每个小朋友都从中任意拿出两个水果,那么至少有多少个小朋友,才能保证至少有两个小朋友拿出的水果品种一样?怎样构造抽屉:注意“拿出的水果品种”这几个字。
取两个水果的品种搭配有如下10种情况:苹苹、橘橘、梨梨、西西、苹橘、苹梨、苹西、橘梨、橘西、梨西。
把上面的10种情形看作是10个抽屉,根据抽屉原理,至少应有11个小朋友,才能保证……○2考虑“最坏(运气最差、极端糟糕)” 情况。
(袋中取球问题)例8:在一副新买的扑克牌中,最少要取出多少张,才能保证取出的牌中“红桃”、“黑桃”、“方块”、“梅花”每种花色的牌至少有2张?最不利的情况是:三种花色的牌已取完,大、小王也取了,已取出了412313=+⨯(张)牌,此时只需再取2张牌,即共取出41+2=43张牌,就可以保证每种花色的牌至少有2张。
第39讲抽屉原理一、专题简析:把12个苹果放到11个抽屉中去,那么,至少有一个抽屉中放有两个苹果,这个事实的正确性是非常明显的。
把它进一步推广,就可以得到数学里重要的抽屉原理。
用抽屉原理解决问题,小朋友一定要注意哪些是“抽屉”,哪些是“苹果”,并且要应用所学的数学知识制造抽屉,巧妙地加以应用,这样看上去十分复杂,甚至无从下手的题目才能顺利地解答。
二、精讲精练例1:敬老院买来许多苹果、橘子和梨,每位老人任意选两个,那么,至少应有几位老人才能保证必有两位或两位以上老人所选的水果相同?练习一1、学校图书室买来许多故事书、科技书和连环画,每个同学任意选两本。
那么,至少应有几个同学,才能保证有两个或两个以上同学所选的书相同?2、布袋中有红、黄、橙三种颜色的木块若干块,每个小朋友任意摸两块木块。
那么,至少有多少个小朋友,才能保证有两个或两个以上小朋友所选的木块相同?例2 :幼儿园大班有41个小朋友,老师至少拿几件玩具随便分给大家,才能保证至少有一个小朋友能得两件玩具?练习二1、小明家有5口人,小明妈妈至少要买几个苹果分给大家,才能保证至少有一人能得两个苹果?2、某学校共有15个班级,体育室至少要买几个排球分给各班,才能保证至少有一个班能得两个排球?例3:盒子里混装着5个白色球和4个红色球,要想保证一次能拿出两个同颜色的球,至少要拿出多少个球?练习三1、箱子里装着6个苹果和8个梨,要保证一次能拿出两个同样的水果,至少要拿出多少个水果?2、书箱里混装着3本故事书和5本科技书,要保证一次能拿出两本同样的书,至少要拿出多少本书?例4:一个布袋里装有红、黄、蓝袜子各5只,问一次至少取出多少只,才能保证每种颜色至少有一只?练习四1、抽屉里放着红、绿、黄三种颜色的球各3只,一次至少摸出多少只才能保证每种颜色至少有一只?2、书箱里放着4本故事书,3本连环画,2本文艺书。
一次至少取出多少本书,才能保证每种书至少有一本?例5:三(2)班有50个同学,在学雷锋活动中,每人单独做了些好事,他们共做好事155件。
2024最新小学奥数抽屉原理小学生奥数中的抽屉原理是指一种将物品分配到有限的空间中的方法。
这个原理是由数学家所提出的,因为它的应用广泛,并且在解决问题中非常有用。
抽屉原理简单来说就是:如果你有独立的n个抽屉,并且有n+1个物品要放入这些抽屉中,那么必然存在一个抽屉里至少放了两个物品。
这个原理的证明也很简单。
假设每个抽屉里最多只能放一个物品,那么最多只能放n个物品,因为有n个抽屉。
但是题目中说有n+1个物品要放入这些抽屉,所以最少会有一个抽屉里放了两个物品。
抽屉原理的应用非常广泛,包括组合数学、概率论等领域。
在小学奥数中,它通常用于解决物品分配、排列组合等问题。
以下是一些抽屉原理在小学奥数中的具体应用举例:1.分配问题:假设有10个苹果要分给5个人吃,那么必然有至少一个人吃到的苹果数量大于等于2个。
这是因为10个苹果无法平均分给5个人,所以必然有人会多吃一些。
2.字母出现次数问题:假设一个字符串中有11个字母,那么至少有两个字母出现的次数相同。
这是因为只有26个字母,无论如何排列,最多只能给每个字母分配到一个位置,所以肯定有至少两个字母分配到了同一个位置。
3.图形排列问题:假设有10个正方形图案要排列在5个位置上,那么必然有至少一个位置上排列了两个图案。
这是因为10个图案无法完全填满5个位置,所以必然会有至少一个位置上放置了两个图案。
总结起来,抽屉原理告诉我们,在一些有限的情况下,物品的分配不可能完全均匀,必然会有一些位置或者人会多分配到一些物品。
这个原理在解决问题时可以帮助我们快速找到可能的解答,避免不必要的计算和尝试。
所以,在小学奥数中,掌握抽屉原理可以帮助学生更好地理解和解决各种问题,提高问题解决能力和思维逻辑能力。
希望以上内容对您有所帮助。
第39讲抽屉原理一、专题简析:把12个苹果放到11个抽屉中去,那么,至少有一个抽屉中放有两个苹果,这个事实的正确性是非常明显的。
把它进一步推广,就可以得到数学里重要的抽屉原理。
用抽屉原理解决问题,小朋友一定要注意哪些是“抽屉”,哪些是“苹果”,并且要应用所学的数学知识制造抽屉,巧妙地加以应用,这样看上去十分复杂,甚至无从下手的题目才能顺利地解答。
二、精讲精练例1:敬老院买来许多苹果、橘子和梨,每位老人任意选两个,那么,至少应有几位老人才能保证必有两位或两位以上老人所选的水果相同?练习一1、学校图书室买来许多故事书、科技书和连环画,每个同学任意选两本。
那么,至少应有几个同学,才能保证有两个或两个以上同学所选的书相同?2、布袋中有红、黄、橙三种颜色的木块若干块,每个小朋友任意摸两块木块。
那么,至少有多少个小朋友,才能保证有两个或两个以上小朋友所选的木块相同?例2 :幼儿园大班有41个小朋友,老师至少拿几件玩具随便分给大家,才能保证至少有一个小朋友能得两件玩具?练习二1、小明家有5口人,小明妈妈至少要买几个苹果分给大家,才能保证至少有一人能得两个苹果?2、某学校共有15个班级,体育室至少要买几个排球分给各班,才能保证至少有一个班能得两个排球?例3:盒子里混装着5个白色球和4个红色球,要想保证一次能拿出两个同颜色的球,至少要拿出多少个球?练习三1、箱子里装着6个苹果和8个梨,要保证一次能拿出两个同样的水果,至少要拿出多少个水果?2、书箱里混装着3本故事书和5本科技书,要保证一次能拿出两本同样的书,至少要拿出多少本书?例4:一个布袋里装有红、黄、蓝袜子各5只,问一次至少取出多少只,才能保证每种颜色至少有一只?练习四1、抽屉里放着红、绿、黄三种颜色的球各3只,一次至少摸出多少只才能保证每种颜色至少有一只?2、书箱里放着4本故事书,3本连环画,2本文艺书。
一次至少取出多少本书,才能保证每种书至少有一本?例5:三(2)班有50个同学,在学雷锋活动中,每人单独做了些好事,他们共做好事155件。
三年级奥数之抽屉原理抽屉原理是一种非常有用的数学方法,它可以帮助我们解决许多实际问题。
在三年级奥数中,抽屉原理是一个非常重要的知识点,它涉及到组合数学的基础知识。
抽屉原理的基本思想是将多个元素放入几个抽屉中,如果每个抽屉中至少有一个元素,那么就可以通过抽屉原理得出一些有用的结论。
在三年级奥数中,我们通常使用抽屉原理来解决一些比较简单的问题,例如将一些物品放入几个盒子中,或者将一些数字放入几个分组中。
下面是一个简单的例子,它说明了如何使用抽屉原理来解决实际问题:假设我们有4个小朋友和3个苹果,我们想知道是否每个小朋友至少可以得到一个苹果。
我们可以使用抽屉原理来解决这个问题,我们将3个苹果放入3个抽屉中,每个抽屉中至少有一个苹果。
然后我们可以将4个小朋友放入这3个抽屉中,每个小朋友至少可以获得一个苹果。
因此,我们可以得出每个小朋友至少可以得到一个苹果。
这个例子说明了如何使用抽屉原理来解决实际问题,它也帮助我们理解了抽屉原理的基本思想。
在三年级奥数中,我们还会学习一些更复杂的组合数学问题,例如鸽巢原理、背包问题等等。
这些问题的解决方法都涉及到抽屉原理的基础知识,因此学习抽屉原理是非常重要的。
抽屉原理是一种非常有用的数学方法,它可以帮助我们解决许多实际问题。
在三年级奥数中,学习抽屉原理可以帮助我们更好地理解组合数学的基础知识,并且可以让我们更好地解决实际问题。
在四年级的奥数课程中,我们学习了一个非常重要的原理——抽屉原理。
抽屉原理是一种基本的计数原理,它能帮助我们理解和解决各种数学问题。
抽屉原理的内容是这样的:如果有n个抽屉和n+1个物品,那么至少有一个抽屉中包含两个或以上的物品。
这个原理可以用于解决各种问题,尤其是当我们需要找出某种可能的组合或分类时。
例如,如果我们有5本书和4个抽屉,我们可以将书放入抽屉中。
根据抽屉原理,至少有一个抽屉中包含两本书。
现在,如果我们有5个苹果和4个抽屉,那么我们可以将每个苹果放入一个抽屉中,这样每个抽屉中只有一个苹果。
专题简析:
把12个苹果放到11个抽屉中去,那么,至少有一个抽屉中放有两个苹果,这个事实的正确性是非常明显的。
把它进一步推广,就可以得到数学里重要的抽屉原理。
用抽屉原理解决问题,小朋友一定要注意哪些是“抽屉”,哪些是“苹果”,并且要应用所学的数学知识制造抽屉,巧妙地加以应用,这样看上去十分复杂,甚至无从下手的题目才能顺利地解答。
例题 1 敬老院买来许多苹果、橘子和梨,每位老人任意选两个,那么,至少应有几位老人才能保证必有两位或两位以上老人所选的水果相同?
思路导航:根据抽屉原理,要保证必有两个或两个以上的苹果放在同一抽屉中,苹果总数至少要比抽屉数多1。
这里,我们可以马敬老院老人人数看作抽屉原理中的苹果数,关键是看抽屉数了。
因为三种水果任选两个的搭配有:苹果——苹果;苹果——橘子;苹果——梨;橘子——橘子;橘子——梨;梨——梨共6种,所以,既然有6个抽屉,必须至少有7个苹果才能保证两个或两个以上的苹果放在同一抽屉里,即至少要7位老人。
练习一
1.学校图书室买来许多故事书、科技书和连环画,每个同学任意选两本。
那么,至少应有几个同学,才能保证有两个或两个以上同学所选的书相同?
2.布袋中有红、黄、橙三种颜色的木块若干块,每个小朋友任意摸两块木块。
那么,至少有多少个小朋友,才能保证有两个或两个以上小朋友所选的木块相同?
3.一个袋子里有红、黄、橙、紫四种颜色的小球,每人任意摸三个球,那么至少有几人才能保证有两个或两个以上的人所选的小球相同?
例题2 幼儿园大班有41个小朋友,老师至少拿几件玩具随便分给大家,才能保证至少有一个小朋友能得两件玩具?
思路导航:41个小朋友相当于41个抽屉,玩具的件数相当于苹果。
根据抽屉原理,玩具的件数应比41多1,所以至少要拿42件玩具。
练习二
1.小明家有5口人,小明妈妈至少要买几个苹果分给大家,才能保证至少有一人能得两个苹果?
2.某学校共有15个班级,体育室至少要买几个排球分给各班,才能保证至少有一个班能得两个排球?
3.某校有370名1992年出生的学生,那么,至少有几个学生的生日是同一天?
例题3 盒子里混装着5个白色球和4个红色球,要想保证一次能拿出两个同颜色的球,至少要拿出多少个球?
思路导航:如果每次拿2个球会有三种情况:(1)一个白球,一个红球;(2)两个白球;(3)两个红球。
不能保证一次能拿出两个同颜色的球。
如果每次拿3个球会有四种情况:(1)一个白球,两个红球;(2)一个红球,两个白球;(3)三个白球;(4)三个红球。
这样每次都能保证拿出两个同颜色的球,所以至少要拿出3个球。
练习三
1.箱子里装着6个苹果和8个梨,要保证一次能拿出两个同样的水果,至少要拿出多少个水果?
2.书箱里混装着3本故事书和5本科技书,要保证一次能拿出两本同样的书,至少要拿出多少本书?
3.书箱里混装着3本故事书和5本科技书,要保证一次一定能拿出2本故事书,至少要拿出多少本书?
例题4 一个布袋里装有红、黄、蓝袜子各5只,问一次至少取出多少只,才能保证每种颜色至少有一只?
思路导航:我们从最不利的情况着手,如果先取5只全是红的,那么只了再取5只;如果5只又全是黄的,这时,再取1只一定是蓝的了,这样取5×2+1=11只才能保证每种颜色至少有1只。
练习四
1.抽屉里放着红、绿、黄三种颜色的球各3只,一次至少摸出多少只才能保证每种颜色至少有一只?
2.书箱里放着4本故事书,3本连环画,2本文艺书。
一次至少取出多少本书,才能保证每种书至少有一本?
3.盒子里放有3枝绿铅笔,3枝红铅笔和5枝蓝铅笔,如果闭上眼睛摸一次,必须摸几枝才能保证至少有1枝蓝铅笔?
例题5 三(2)班有50个同学,在学雷锋活动中,每人单独做了些好事,他们共做好事155件。
问:是否有人单独做了4件或4件以上的好事?
思路导航:根据条件可知:三(2)班有50个同学,假如每个同学做3件好事,那就做了3×50=150件好事,而他们做的好事是155件,就多做了155-150=5件,所以完全可能有一个同学做了4件或4件以上好事。
练习五
1.幼儿园小班共有30个小朋友,他们每人自己都有一些玩具,他们共有玩具92件。
问:是否有人单独有4件或4件以上玩具?
2.童星幼儿园有6个班,他们在植树节中每班都种了一些树,他们共种了14棵树,问:是否有班级种了3棵或3棵以上的树?
3.明明、华华、颖颖三人各有一些铅笔,他们共有铅笔14枝。
问:是否有人有5枝或5枝以上的铅笔?。