焊缝超声波探伤
- 格式:doc
- 大小:619.22 KB
- 文档页数:8
焊缝超声波探伤锅炉压力容器和各种钢结构主要是采用焊接的方法制造。
为了保证焊缝质量,超声波探伤是重要的检查手段之一。
在焊缝探伤中。
不但要求探伤人员具备熟练的超声波探伤技术。
而且还要求探伤人员了解有关的焊接基本知识,如焊接接头型式,焊接坡口型式、焊接方法和焊接缺陷等。
只有这样,探伤人员才能针对各种不同的焊缝,采用适当的探测方法,从而获得比较正确的探测结果。
第一节 焊接加工及常见缺陷锅炉压力容器及一些钢结构件主要是采用焊接加工成形的。
焊缝内部质量一般利用射线和超声波来检测。
对于焊缝中的裂纹、未熔合等危险性缺陷,超声波探伤比射线更容易发现。
一、焊接加工l.焊接过程常用的焊接方法有手工电弧焊、埋弧自动焊、气体保护焊和电渣焊等。
焊接过程实际上是一个冶炼和铸造过程,首先利用电能或其他形式的能产生高温使金属熔化,形成熔池,熔融金属在熔池中经过冶金反应后冷却,将两母材牢固地结合在一起。
为了防止空气中的氧、氮进入熔融金属,在焊接过程中通常有一定的保护措施。
手工电弧焊是利用焊条外层药皮高温时分解产生的中性或还原性气体作保护层。
埋焊和电渣焊是利用液体焊剂作保护层。
气体保护焊是利用氩气或二氧化碳等保护气体作保护层。
2.接头形式焊接接头形式主要有对接、角接、搭接和T型接头等几种:如图7.1所示。
在锅炉压力容器中,最常见的是对接,其次是角接和T型接头,搭接少见。
3.坡口形式为保证两母材施焊后能完全熔合,焊前应把接合处的母材加工成一定的形状,这种加工后的形状称为坡西,坡口各部分的名称如图7.2所示。
根据板厚、焊接方法、接头形式和要求不同,可采用不同的坡口形式。
常见对接和角接接头的坡口形式如图7.3所示。
二、焊缝中常见缺陷焊缝中常见缺陷有气孔、夹渣、未焊透、未熔合和裂纹等,如图7.4所示。
1.气 孔气孔是在焊接过程中焊接熔池高温时吸收了过量的气体或冶金反应产生的气体,在冷却凝固之前来不及逸出而残留在焊缝金属内所形成的空穴。
产生气孔的主要原因是焊条或焊剂在焊前未烘干,焊件表面污物清理不净等。
钢焊缝手工超声波探伤方法及质量分级法(最新版5篇)《钢焊缝手工超声波探伤方法及质量分级法》篇1钢焊缝手工超声波探伤方法主要分为预扫查、正式扫查和结束扫查三个阶段。
预扫查阶段主要是为了选择最佳扫查面,确定最佳扫查角度,选择灵敏度最高的探头和适宜的仪器。
正式扫查阶段是超声探伤的关键,其操作方法随工件形状、焊缝形式、探头种类及探伤操作部位的不同而不同。
结束扫查阶段主要是对工件进行局部处理。
质量分级法包括如下内容:1. 对未焊透的评级:当缺陷尺寸小于等于评定标准规定的值时,不论其多少,只做合格品评定;当缺陷尺寸大于评定标准规定的值时,则不合格。
2. 对咬边深度评级:若咬边深度不超过评定标准规定的值,则只做合格品评定;若超过评定标准规定的值,则不合格。
3. 对声影评级:当声影不影响焊缝有效长度内的射线胶片时,只做合格品评定;当声影妨碍射线透入焊缝或妨碍焊缝射线胶片的读出时,则不合格。
4. 对波幅评级:根据缺陷回声最高波的波幅与该焊工、该焊道、该焊缝超声检测的评定标准所规定的要求相比,判定其合格或不合格。
《钢焊缝手工超声波探伤方法及质量分级法》篇2钢焊缝手工超声波探伤方法主要分为4个步骤:1. 表面处理:在探伤前,应将焊缝表面及附近区域彻底清理,以便于检测。
2. 操作人员:操作人员必须经过专业培训,熟悉操作规程,严格按工艺要求进行操作。
3. 探伤灵敏度:应根据母材钢材等级、焊接材料、工艺等因素确定探伤灵敏度。
4. 探伤操作:在探伤操作中,应按照标准规定的操作方法进行,注意检测角度、距离、斜率等参数的选择和调整。
对于手工超声波探伤结果的判定,一般采用《超声检测质量分级指南》(GB11345-89)中规定的标准进行质量分级。
该指南将焊缝质量分为5级,分别是A级、B级、C级、D级和E级。
其中,A级和B 级为合格级别,C级为基本合格级别,D级为不合格级别,E级为严重不合格级别。
《钢焊缝手工超声波探伤方法及质量分级法》篇3钢焊缝手工超声波探伤方法主要分为四个步骤:1. 准备工作:探头校直、探头零点调节、耦合剂的涂敷。
焊缝超声波探伤原理
焊缝超声波探伤是利用超声波的传播和相互作用原理来检测和评估焊缝中的缺陷和杂质。
超声波是一种高频机械波,具有传播距离远、穿透性好和对被测材料无损伤的特点。
在焊缝超声波探伤过程中,超声波传播到焊缝区域时,其中的能量会发生转换,一部分能量被反射回传感器,另一部分能量经过焊缝进入焊接材料内部继续传播。
当超声波遇到焊缝中的缺陷或垂直于超声波传播方向的杂质时,会发生反射或散射,这些反射或散射波会被传感器接收并转换成电信号。
根据接收到的电信号,可以分析焊缝中的缺陷类型、大小和位置,以及评估焊缝的质量和可靠性。
常用的超声波探伤方法有脉冲回波法和全景扫查法。
在脉冲回波法中,通过发射短脉冲超声波来激励焊缝区域,接收并记录回波信号。
根据回波信号的时间延迟和振幅变化,可以确定焊缝中的缺陷位置和大小。
全景扫查法是一种全面检测焊缝的方法,可以将焊缝区域划分为多个小区域,逐个扫描并记录每个小区域中的回波信号。
通过综合分析所有小区域的回波信号,可以获得焊缝的完整图像,并对缺陷进行全面评估。
总的来说,焊缝超声波探伤利用超声波在焊缝中传播、反射和散射的特性,通过接收和分析回波信号来检测和评估焊缝的质
量。
这种方法是一种无损检测技术,可以提高焊接质量并确保焊缝的可靠性。
焊缝探伤检测方法
焊缝探伤检测是在焊接过程中对焊缝进行质量控制的重要方法。
以下是一些常用的焊缝探伤检测方法:
1. 超声波探伤检测:通过将超声波传入焊缝中,利用超声波在不同介质中传播速度的变化来检测焊缝内部的缺陷和不良结构。
这种方法非常灵敏,并且可以在不破坏焊缝的情况下进行检测。
2. 射线探伤检测:利用射线(通常是X射线或γ射线)在焊
缝中的吸收和散射来检测焊缝内的缺陷。
这种方法可以探测到非常小的缺陷,并且可以用于检测深部焊缝。
3. 磁粉探伤检测:将磁性材料(如铁粉)喷洒在焊缝表面,通过施加磁场来检测焊缝中的裂纹和断裂。
这种方法适用于检测表面缺陷,并且可以快速、经济地进行。
4. 渗透探伤检测:将渗透剂涂覆在焊缝表面,待其渗透入表面裂纹或孔洞中,随后用显色剂着色,可看到颜色变化,以检测表面缺陷。
这些方法各有优势和适用范围,具体选择何种方法应根据焊缝的要求和实际情况来决定。
在进行焊缝探伤检测时,应根据操作规程严格执行,确保检测结果的准确性和可靠性。
超声波焊缝探伤标准超声波焊缝探伤是一种常用的无损检测方法,广泛应用于焊接质量的评定和缺陷的检测。
本文将介绍超声波焊缝探伤的标准,包括其定义、应用范围、技术要求等内容,以期为相关领域的从业人员提供参考。
超声波焊缝探伤是指利用超声波技术对焊缝进行缺陷检测的方法。
它可以有效地检测焊缝中的各种缺陷,如气孔、夹杂、裂纹等,对焊接质量的评定具有重要意义。
超声波焊缝探伤广泛应用于航空航天、汽车制造、铁路运输等领域,对提高产品质量、保障安全生产具有重要意义。
超声波焊缝探伤的标准主要包括以下几个方面:首先,超声波探伤设备的选择和校准。
超声波探伤设备是进行焊缝探伤的关键工具,其选择和校准直接影响着探伤结果的准确性。
因此,超声波探伤设备的选择和校准应符合相关标准要求,确保其性能和准确性。
其次,超声波探伤操作规程的制定和执行。
超声波焊缝探伤需要进行严格的操作规程,包括探头的放置、超声波的发射和接收、数据的采集和分析等步骤。
操作规程的制定和执行应符合相关标准要求,确保探伤结果的准确性和可靠性。
再次,焊缝探伤的技术要求和评定标准。
超声波焊缝探伤需要对焊缝中的各种缺陷进行检测和评定,其技术要求和评定标准应符合相关标准要求,确保焊接质量的评定准确性和一致性。
最后,超声波焊缝探伤的报告和记录。
超声波焊缝探伤的结果应当进行报告和记录,报告和记录内容应符合相关标准要求,确保探伤结果的可追溯性和可验证性。
综上所述,超声波焊缝探伤标准是保障焊接质量和产品安全的重要依据,相关领域的从业人员应当严格遵守相关标准要求,确保超声波焊缝探伤工作的准确性和可靠性。
同时,相关标准的制定和更新也是保障超声波焊缝探伤工作质量的重要保障,应当引起相关部门和单位的重视和关注。
焊缝超声波探伤标准焊缝超声波探伤是一种常用的无损检测方法,可以用于检测焊缝内部的缺陷,如气孔、夹杂、裂纹等。
在工业生产中,焊接是一项重要的连接工艺,而焊接质量的好坏直接影响到产品的使用性能和安全性。
因此,对焊缝进行超声波探伤是非常必要的,而且在焊接工艺中也被广泛应用。
首先,焊缝超声波探伤的标准是非常重要的。
焊缝超声波探伤标准的制定,可以规范焊缝探伤操作流程,明确探伤设备的选择和使用要求,确保探伤结果的准确性和可靠性。
目前,国际上常用的焊缝超声波探伤标准有ISO、ASME等,而国内也有相应的标准,如GB/T、JB等。
这些标准的制定,为焊缝超声波探伤提供了技术依据和操作指南,有利于推动焊缝探伤技术的发展和应用。
其次,焊缝超声波探伤标准的内容主要包括探伤设备的选择和校准、探伤操作的步骤和要求、探伤结果的评定标准等。
在选择探伤设备时,需要考虑焊缝的类型、厚度、材料等因素,以及探伤的灵敏度和分辨率要求。
而设备的校准则是为了保证探伤结果的准确性,需要定期进行校准和验证。
在探伤操作中,操作人员需要严格按照标准规定的步骤和要求进行,包括探头的放置位置、探测角度、超声波的频率和幅度等。
最后,根据探伤结果的评定标准,对焊缝内部的缺陷进行分类和评定,确定是否符合要求。
此外,焊缝超声波探伤标准的实施也需要具备一定的条件和要求。
首先,需要具备专业的探伤人员和设备,他们需要经过系统的培训和考核,熟练掌握探伤技术和标准操作流程。
其次,探伤现场需要具备良好的工作环境和条件,如清洁的焊缝表面、稳定的探伤介质、适当的温度和湿度等。
最后,探伤结果的记录和报告也需要符合标准规定,包括探伤数据的采集和存储、结果的分析和评定、报告的编制和归档等。
总的来说,焊缝超声波探伤标准的制定和实施对于提高焊接质量和产品安全具有重要意义。
只有严格执行标准要求,才能保证探伤结果的准确性和可靠性,为焊接工艺的优化和改进提供技术支持和保障。
因此,各相关单位和人员在进行焊缝超声波探伤时,务必严格遵守标准要求,确保探伤工作的顺利进行和结果的准确可靠。
焊缝超声波探伤标准焊缝超声波探伤是一种常用的无损检测方法,它通过超声波的传播和反射来检测焊缝中的缺陷和疵点,对焊接质量进行评估。
在实际工程中,焊缝超声波探伤标准是非常重要的,它能够指导焊接人员进行正确的超声波探伤操作,确保焊接质量符合标准要求。
本文将对焊缝超声波探伤标准进行详细介绍,以便广大焊接人员和相关技术人员能够更好地理解和应用。
一、焊缝超声波探伤标准的意义。
焊缝超声波探伤标准的制定是为了规范焊缝超声波探伤工作,保证焊接质量符合要求。
它可以帮助焊接人员正确理解焊缝超声波探伤的要求和方法,避免盲目操作和不当操作,提高焊接质量和安全性。
同时,焊缝超声波探伤标准也是对超声波探伤设备和仪器的要求,包括设备的性能指标、操作规程和维护要求,确保设备能够正常工作和准确检测。
二、焊缝超声波探伤标准的内容。
焊缝超声波探伤标准主要包括以下内容,焊缝超声波探伤的一般要求、设备和仪器的要求、操作规程、评定标准和报告要求等。
其中,焊缝超声波探伤的一般要求包括焊接材料的选择、焊接工艺的控制、焊接质量的要求等;设备和仪器的要求包括超声波探伤设备的性能指标、探头的选择和校准、仪器的校验和维护等;操作规程包括超声波探伤的操作步骤、参数设置、探伤技术要求等;评定标准包括焊缝中各种缺陷和疵点的评定标准,如焊缝内夹杂、气孔、裂纹等;报告要求包括探伤报告的格式、内容、保存要求等。
三、焊缝超声波探伤标准的应用。
焊缝超声波探伤标准主要适用于各种焊接结构的检测,包括压力容器、管道、船舶、桥梁、建筑等。
焊缝超声波探伤标准的应用可以帮助焊接人员和相关技术人员正确理解焊缝超声波探伤的要求和方法,规范操作行为,提高焊接质量和安全性。
同时,焊缝超声波探伤标准也是对超声波探伤设备和仪器的要求,确保设备能够正常工作和准确检测。
四、总结。
焊缝超声波探伤标准是保证焊接质量的重要依据,它规范了焊缝超声波探伤的要求和方法,对焊接质量的评定和检测起着至关重要的作用。
焊缝超声波探伤检测报告一、检测目的本次检测旨在对焊缝进行超声波探伤检测,以确定焊缝的质量和存在的缺陷情况,为后续工作提供参考依据。
二、检测对象本次检测对象为某工程项目中的焊缝,包括横焊缝和纵焊缝。
三、检测方法采用超声波探伤技术进行检测,具体操作步骤如下:1. 对焊缝进行清洁处理,确保表面无杂质和污垢。
2. 将超声波探头放置在焊缝上方,通过超声波的传播和反射,获取焊缝内部的信息。
3. 对焊缝进行全面扫描,记录下焊缝内部的缺陷情况和位置。
4. 根据检测结果,对焊缝进行评估和分类,确定焊缝的质量等级。
四、检测结果经过超声波探伤检测,得到如下结果:1. 横焊缝横焊缝的质量较好,未发现明显的缺陷,焊缝内部结构均匀,无裂纹、气孔等缺陷。
2. 纵焊缝纵焊缝存在一些缺陷,主要包括气孔和裂纹。
其中,气孔分布较为集中,主要集中在焊缝的两端,大小不一,最大的气孔直径为3mm;裂纹主要分布在焊缝的中部,长度不一,最长的裂纹长度为10mm。
五、检测结论根据检测结果,对焊缝进行评估和分类,确定焊缝的质量等级。
横焊缝的质量等级为一级,纵焊缝的质量等级为二级。
六、建议措施针对纵焊缝存在的缺陷,建议采取以下措施:1. 对焊缝进行修补,填补气孔和裂纹,确保焊缝的完整性和稳定性。
2. 对焊接工艺进行优化,减少气孔和裂纹的产生。
3. 对焊接人员进行培训,提高其焊接技能和质量意识。
七、总结超声波探伤技术是一种非破坏性检测方法,可以对焊缝进行全面、准确的检测,为保证焊缝的质量和安全性提供了重要的技术支持。
在实际工程中,应加强对焊缝的检测和管理,确保焊缝的质量符合要求。
一级焊缝超声波探伤合格率要求1.引言焊接是一种常见的连接工艺,在工程领域中得到广泛应用。
对于焊接接头的质量评估至关重要,其中超声波探伤作为一种非破坏性检测方法,被广泛用于焊接质量检验。
本文将讨论一级焊缝超声波探伤的合格率要求。
2.焊缝超声波探伤技术概述超声波探伤是利用超声波在材料中的传播和反射特性来检测材料内部的缺陷的一种技术。
在焊接过程中,焊缝中可能存在各种缺陷,如气孔、夹渣、裂纹等,这些缺陷对焊接接头的强度和密封性有着直接影响。
超声波探伤技术可以帮助我们发现这些缺陷,并评估其对焊接接头质量的影响。
3.一级焊缝超声波探伤合格率要求一级焊缝超声波探伤合格率是指超声波探伤检测过程中焊缝内缺陷检出的合格率。
一般来说,合格率的要求应该根据具体的焊接标准和应用场景而定。
以下是一些常见的合格率要求:3.1标准合格率要求根据国家标准或行业标准的规定,一级焊缝超声波探伤的合格率要求通常应达到90%以上。
这意味着在探伤过程中,至少90%的焊缝内缺陷应能够被准确地检出。
3.2应用场景合格率要求除了标准合格率要求,一级焊缝超声波探伤的合格率还应根据具体的应用场景进行调整。
不同的工程项目可能对焊接接头的质量要求有所不同,因此其合格率要求也可能存在差异。
在一些对焊接接头质量要求极高的项目中,合格率要求可能会高于标准要求。
3.3焊缝类型合格率要求焊缝的类型也会对超声波探伤的合格率要求产生影响。
不同类型的焊缝具有不同的几何形状和缺陷特性,因此其合格率要求也可能存在差异。
一般来说,焊缝类型复杂、缺陷易隐藏的情况下,合格率要求会相对较高。
4.提高一级焊缝超声波探伤合格率的方法为了提高一级焊缝超声波探伤的合格率,我们可以采取以下方法:4.1优化超声波探伤参数超声波探伤参数的选择对于合格率有着重要的影响。
适当调整超声波的频率、传感器的角度和增益等参数,可以提高缺陷的检出率和准确性。
4.2增加焊接前处理焊接接头的质量受到焊前处理的影响。
焊缝超声波探伤标准焊缝超声波探伤是一种常用的无损检测方法,通过超声波的传播和反射来检测焊缝内部的缺陷和质量问题。
在工业生产中,焊接是一项非常重要的工艺,焊缝质量直接影响着产品的安全性和可靠性。
因此,制定和严格执行焊缝超声波探伤标准对于保障焊接质量和产品质量具有重要意义。
一、焊缝超声波探伤的基本原理。
焊缝超声波探伤是利用超声波在材料中传播的特性来检测焊缝内部的缺陷。
当超声波遇到材料的界面或者缺陷时,会发生反射、折射或者散射,通过探伤仪器接收到这些信号,就能够分析出焊缝内部的情况。
根据超声波的传播速度、衰减情况以及反射信号的强度等信息,可以判断焊缝的质量和存在的缺陷类型。
二、焊缝超声波探伤的标准要求。
1. 探伤人员资质要求。
进行焊缝超声波探伤的人员应当具备相应的资质证书,经过专业培训和考核合格。
只有具备一定的理论知识和实际操作经验的人员才能够进行焊缝超声波探伤工作。
2. 探伤仪器要求。
焊缝超声波探伤所使用的仪器应当符合国家标准,具有稳定的性能和精准的测量功能。
同时,仪器的操作人员也应当熟悉仪器的使用方法和维护保养要求,确保仪器的正常运行和准确探伤结果。
3. 探伤环境要求。
进行焊缝超声波探伤的环境应当符合相应的要求,保证探伤工作的准确性和可靠性。
例如,探伤环境应当保持相对清洁,避免杂音和干扰信号的产生,同时还要考虑到温度、湿度等因素对探伤结果的影响。
4. 探伤报告要求。
对于焊缝超声波探伤的结果,应当及时、准确地制作探伤报告。
报告中应当包括探伤的焊缝位置、探伤仪器的型号和参数、探伤人员的信息、探伤结果以及可能存在的问题和建议等内容,确保探伤结果的可追溯性和可靠性。
三、焊缝超声波探伤的应用范围。
焊缝超声波探伤广泛应用于航空航天、石油化工、核电、铁路、桥梁、船舶等领域。
通过超声波探伤,可以及时发现焊缝内部的缺陷,保证焊接质量,提高产品的安全性和可靠性。
四、结语。
制定和执行严格的焊缝超声波探伤标准,对于保障焊接质量和产品质量具有重要意义。
第四章 焊缝超声波探伤第三节 焊缝超声波探伤定位超声波探伤定位的方法是利用已知尺寸的试块(或工件)作为反射体来调节探伤仪的时间轴,然后根据反射波出现在时间轴上的位置,确定缺陷的位置。
一、斜探头定位与直探头定位的区别纵波探伤时定位比较简单,如探测100mm 厚的工件,可把底面回波调在10格,则每格代表工件中的声程(或垂直距离)为100/10=10(mm)。
(因耦合层极薄,可忽略不计)。
探伤时,若在6格出现缺陷波,则缺陷离工件表面的距离为6×10=60mm 。
横波探伤时的定位比较复杂(见图5–7所示),与纵波探伤相比有三点区别:① 超声波射到底面时无底面回波(故时间轴需在试块上预先调节);② 有机玻璃斜楔内一段声程OO '(称斜探头本体声程)在中薄板焊缝探伤定位时不能忽略,必须加以考虑。
③ 超声波的传播路线为O 'OAB(或O 'OB)折线,定位时,必须得用三角公式进行计算。
二、斜探头探伤定位基本原理焊缝探伤前,一般先进行斜探头入射点和折射角的测定,以及时间轴的调节。
故入射点O 和折射角β是已知的,示波屏上扫描线每格所代表的距离(可以是水平距离、垂直距离或声程)也是可知的。
这样,在直角三角形中,知道一只角、一条边、则其他两条边也可求出,故缺陷位置(缺陷离探头入射点的水平距离和深度)便可确定。
根据时间扫描线调节方法的不同,可分三种定位法: 1. 水平定位法即时间扫描线与水平距离成相应的比例关系。
2. 垂直定位法即时间扫描线与深度距离成相应的比例关系。
3. 声程定位法即时间扫描线与声程距离成相应的比例关系。
一般板厚≤24mm 时,用水平定位法、板厚≥32mm 时用垂直定位法。
时间轴的调节,其最大测定范围应在1S ~1.5S 之间(1S 为一个跨距的声程距离)。
三、焊缝超声波探伤定位的常用方法多年来,不少厂矿企业中的检测人员根据自己产品的特点,经过不断摸索、反复实践,已总结出了好多简便、有效的定位方法,下面仅介绍几种常用的定位方法。
1. 计算法计算法定位是应用得比较早的图4–7 横波探伤定位示意图一种方法。
由于采用计算法定位比较麻烦,故目前已很少应用。
但此法是探伤定位的基础,掌握其原理后,在实际探伤中将有很大帮助,故作为一种方法介绍。
其定位原理见图4–8所示。
图中:A —横孔;δ—孔深;O —入射点;β—折射角;l —横波在钢中声程;l 0—有机玻璃本体声程;S 1—入射点到横孔的水平距离;x 0—探头中纵波声程在示波屏上所占格数;x 1—钢中横波声程在示波屏上所占格数;x —整个声程所占的格数;l '0—有机玻璃中本体声程转换成相当于钢中横波声程。
根据声速比则有:000l 2.1l 27003230l =⋅=' 从图中可看出:δ⋅β=tg S 1 00l 2.1sin S ⋅β=则示波屏上每格所代表的水平距离为:β⋅β⋅+δ=β⋅+δ⋅β=+=tg xcos l 2.1x sin l 2.1tg x S S S 0001x (4–4)当使用探头折射角β=67°、l 0=12mm 、x 取5格,则根据式(4–4)可求得不同板厚时的S x值,见表4–3:表4–3 不同板厚时的S x 值探伤时,若已知缺陷波在波屏上的格数x ',则缺陷离探头入射点的水平距离为:x 1S )x x (S S ⋅'--=' 同理,当采用深度定位法时,则每格所代表的垂直距离S y 为:xl 2.1cos S 0y ⋅β+δ=(4–5) 当采用声程定位法时,则每格所代表的声程距离为:xll 2.1S 01+=(4–6) 计算法水平定位步骤如下:① 测入射点O ;② 测折射角β;③ 扫射孔深等于板厚的横孔A ,找到最高回波,调至5格(x=5);④ 按式(4–4)计算S x 值,或查表S x 值;⑤ 探伤中出现缺陷波,其缺陷水平距离x1S )x x (S S '--=';⑥ 缺陷深度β'=tg S H 。
例如,用上述探头探测板厚(T)为20mm 的焊缝,探伤中在示波屏4格出现一个缺陷波,求缺陷到探头入射点的水平距离。
解:缺陷到探头入射点的水平距离x 1S )x x (S S ⋅'--='式中:m m 4736.220tg T S 1≈⨯=β⋅= x=5,x '=4;则S '=47-(5-4)×12.1≈35 mm答:缺陷离探头入射点的水平距离为35 mm 。
计算法定位具有如下优点:a. 定位原理比较清楚;b. 底波位置明确;c. 一次底波调到5格时,示波屏最大测定范围肯定大于1S ;d. 调节时间轴可用试块,也可在工件上进行调节;e. 对于厚度较大的工件,如T=200mm 以上,则斜探头本体声程l 0可忽略,其定位方法和直探头相似。
例如工件厚度T=200mm ,将一次底波调到10格,则每格就代表深度20mm 。
探伤时若5格出现缺陷波,则缺陷的深度即为100mm 。
2. 圆弧面试块比较法由于此法调节时间轴比较简便,故目前应用最普遍。
时间扫描线调节可利用下述圆弧面试块:IIW 试块的R 100圆弧面和圆心槽口;IIW 2试块的R 25和R 50圆弧面;CSK –IA 的R 50、R 100圆弧面,以及半圆试块的两个圆弧面等。
调节时只要将探头入射点对准圆心,通过调节仪器的水平和细调,将圆弧面反射波(和圆心处槽口的反射波)调到所需要的位置。
时间轴调节方法举例如下: 例题1:要求用K 2探头在CSK –IA 试块上以水平1∶1调节时间轴。
调节方法如下:① 探头入射点对准圆心(见图4–9所示); ② 分析可能产生的圆弧面反射波(R 50、R 100); ③ 计算圆弧面的水平距离;S 1=R 50·sin63.4°=44.7mm ,S 2=R 100·sin63.4°=89.4mm 或21K1K 50S +=,122S 2K1K 100S =+=。
④ 要求水平1∶1,表示每格代表水平距离10mm ,则将两圆弧面反射波通过水平、细调分别调到47.4107.44=格和94.8104.89=格; ⑤ 此时,斜探头本体声程已移出,从入射点开始,示波屏每格代表水平距离10mm 。
图4–9 水平和垂直1∶1调节法例题2:要求K 2斜探头在CSK –IA 试块上,以垂直1∶1调节时间轴。
调节方法如下:① 探头入射点对准圆心;② 分析可能产生的圆弧面反射波(R 50、R 100); ③ 计算圆弧面的垂直距离;H 1= R 50·cos63.4°≈22.3mm ,H 2= R 100·cos63.4°=44.7mm 或21K 150H +=,122H 2K1100H =+=④ 要求垂直1∶1,表示每格代表垂直距离10mm ,则将两圆弧面反射波通过水平和细调分别调到23.2103.22=格和47.4107.44=格(见图4–9所示); ⑤ 此时,斜探头本体声程已移出,从入射点开始,示波屏每格代表垂直距离10mm 。
例题3:要求K 2斜探头在R 33.3的半圆试块上,以水平1∶1调节时间轴。
调节方法如下:① 探头入射点对准圆心;② 分析可能产生的圆弧面反射波(R 33.3和R 33.3×3); ③ 计算圆弧面的水平距离:S 1= R 33.3·sin63.4°≈30mm ; 3S 1=3R 33.3·sin63.4°≈90mm ;④ 将两个回波分别调到3格和9格(见图4–10所示);⑤ 此时,斜探头本体声程已移出,从入射点开始示波屏每格代表水平距离10mm 。
各种试块调节时间轴的方法见图4–11所示。
a. 声程1∶2(或测定范围为200mm)每格代表声程20mmb. 声程1∶1(或测定范围为100mm)每格代表声程10mmc. 测定范围:125mm 声程1∶1.25d. 垂直1∶1(每格代表垂直距离10mm) 例题1:用K 2斜探头,以水平1∶1调节时间轴,探测厚度为20mm 的工件,探伤时,在3格和6格出现两个缺陷波,求这两个缺陷的位置。
解:因为是水平1∶1调节时间轴,缺陷波在3格,即表示缺陷离探头入射点的水平距离为30mm ,缺陷距探测面深度为:m m 15230K 30H ===。
图4–10 半圆试块水平1∶1调节示意图缺陷波在6格,表示缺陷离探头入射点的水平距离为60mm ,则缺陷深度为:m m 30260K 60H ===。
显然H >T ,表示超声波经过底面反射到缺陷,此时,缺陷离工件表面的深度为: 2T -H=2×20-30=10mm(a) 声程1∶2(或测定范围为200mm) (b) 声程1∶1(或测定范围为100mm)第格代表声程20mm 第格代表声程10mm(c) 测定范围:125mm 声程1∶1.25 (d) 垂直1∶1(第格代表垂直距离10mm)图4–11 各种试块调节时间轴的方法示意图例题2:用K 2斜探头,以垂直1∶1调节时间轴,探测厚度为40mm 的工件,探伤时,在3格和6格出现两个缺陷波,求这两个缺陷的位置。
解:因为是垂直1∶1,故缺陷波1在3格出现,表示缺陷深度为30mm 。
缺陷1离探头入射点的水平距离为:l 1=K ·H=2×30=60mm 。
缺陷波2在6格出现,表示缺陷2的计算深度为60mm ,此时,H >T ,则缺陷2的实际深度为:2T -H=2×40-60=20mm 。
缺陷2离探头入射点的水平距离为: l 2=K ·H=2×60=120mm 。
3. 薄板试块1∶1法薄板试块的尺寸及时间轴调节方法见图4–12所示。
薄板试块的尺寸为3×20×150mm ,距试块两端30mm ,各钻了一个φ1的柱孔和一个φ1的横孔。
时间轴调节方法如下:将探头前沿与试块φ1柱孔对齐,适当提高灵敏度,此时荧光屏上会同时出现两个反射波,前面一个是φ1柱孔回波,后面一个是板边反射回波。
通过调节水平和细调旋钮将这两个反射回波分别解在3格和6格上,这时,时间轴就调成水平1∶1关系,即示波屏每一格代表水平距离10mm(3格开始,从前沿算起)。
对于一般规格的斜探头,其探头前沿距离和本体声程相加,基本接近钢的水平距离30mm ,此时始波接近零位。
对于大尺寸斜探头,其探头前沿距离和本体声程相加,大于钢中水平距离30mm ,此时始波不在零位,而是偏左。
对于小尺寸斜探头,则始波在零位右边。
定位方法举例:用K 2斜探头(前沿距离为18mm)以薄板试块1∶1调节时间轴,探测工件厚度为16mm 的焊缝,若在6格出现一个缺陷回波,求此缺陷离探头入射点的水平距离和垂直距离。