焊缝的超声波探伤
- 格式:ppt
- 大小:3.61 MB
- 文档页数:1
焊缝超声波探伤锅炉压力容器和各种钢结构主要是采用焊接的方法制造。
为了保证焊缝质量,超声波探伤是重要的检查手段之一。
在焊缝探伤中。
不但要求探伤人员具备熟练的超声波探伤技术。
而且还要求探伤人员了解有关的焊接基本知识,如焊接接头型式,焊接坡口型式、焊接方法和焊接缺陷等。
只有这样,探伤人员才能针对各种不同的焊缝,采用适当的探测方法,从而获得比较正确的探测结果。
第一节 焊接加工及常见缺陷锅炉压力容器及一些钢结构件主要是采用焊接加工成形的。
焊缝内部质量一般利用射线和超声波来检测。
对于焊缝中的裂纹、未熔合等危险性缺陷,超声波探伤比射线更容易发现。
一、焊接加工l.焊接过程常用的焊接方法有手工电弧焊、埋弧自动焊、气体保护焊和电渣焊等。
焊接过程实际上是一个冶炼和铸造过程,首先利用电能或其他形式的能产生高温使金属熔化,形成熔池,熔融金属在熔池中经过冶金反应后冷却,将两母材牢固地结合在一起。
为了防止空气中的氧、氮进入熔融金属,在焊接过程中通常有一定的保护措施。
手工电弧焊是利用焊条外层药皮高温时分解产生的中性或还原性气体作保护层。
埋焊和电渣焊是利用液体焊剂作保护层。
气体保护焊是利用氩气或二氧化碳等保护气体作保护层。
2.接头形式焊接接头形式主要有对接、角接、搭接和T型接头等几种:如图7.1所示。
在锅炉压力容器中,最常见的是对接,其次是角接和T型接头,搭接少见。
3.坡口形式为保证两母材施焊后能完全熔合,焊前应把接合处的母材加工成一定的形状,这种加工后的形状称为坡西,坡口各部分的名称如图7.2所示。
根据板厚、焊接方法、接头形式和要求不同,可采用不同的坡口形式。
常见对接和角接接头的坡口形式如图7.3所示。
二、焊缝中常见缺陷焊缝中常见缺陷有气孔、夹渣、未焊透、未熔合和裂纹等,如图7.4所示。
1.气 孔气孔是在焊接过程中焊接熔池高温时吸收了过量的气体或冶金反应产生的气体,在冷却凝固之前来不及逸出而残留在焊缝金属内所形成的空穴。
产生气孔的主要原因是焊条或焊剂在焊前未烘干,焊件表面污物清理不净等。
焊缝超声波探伤原理
焊缝超声波探伤是利用超声波的传播和相互作用原理来检测和评估焊缝中的缺陷和杂质。
超声波是一种高频机械波,具有传播距离远、穿透性好和对被测材料无损伤的特点。
在焊缝超声波探伤过程中,超声波传播到焊缝区域时,其中的能量会发生转换,一部分能量被反射回传感器,另一部分能量经过焊缝进入焊接材料内部继续传播。
当超声波遇到焊缝中的缺陷或垂直于超声波传播方向的杂质时,会发生反射或散射,这些反射或散射波会被传感器接收并转换成电信号。
根据接收到的电信号,可以分析焊缝中的缺陷类型、大小和位置,以及评估焊缝的质量和可靠性。
常用的超声波探伤方法有脉冲回波法和全景扫查法。
在脉冲回波法中,通过发射短脉冲超声波来激励焊缝区域,接收并记录回波信号。
根据回波信号的时间延迟和振幅变化,可以确定焊缝中的缺陷位置和大小。
全景扫查法是一种全面检测焊缝的方法,可以将焊缝区域划分为多个小区域,逐个扫描并记录每个小区域中的回波信号。
通过综合分析所有小区域的回波信号,可以获得焊缝的完整图像,并对缺陷进行全面评估。
总的来说,焊缝超声波探伤利用超声波在焊缝中传播、反射和散射的特性,通过接收和分析回波信号来检测和评估焊缝的质
量。
这种方法是一种无损检测技术,可以提高焊接质量并确保焊缝的可靠性。
超声波焊缝探伤标准超声波焊缝探伤是一种常用的无损检测方法,广泛应用于焊接质量的评定和缺陷的检测。
本文将介绍超声波焊缝探伤的标准,包括其定义、应用范围、技术要求等内容,以期为相关领域的从业人员提供参考。
超声波焊缝探伤是指利用超声波技术对焊缝进行缺陷检测的方法。
它可以有效地检测焊缝中的各种缺陷,如气孔、夹杂、裂纹等,对焊接质量的评定具有重要意义。
超声波焊缝探伤广泛应用于航空航天、汽车制造、铁路运输等领域,对提高产品质量、保障安全生产具有重要意义。
超声波焊缝探伤的标准主要包括以下几个方面:首先,超声波探伤设备的选择和校准。
超声波探伤设备是进行焊缝探伤的关键工具,其选择和校准直接影响着探伤结果的准确性。
因此,超声波探伤设备的选择和校准应符合相关标准要求,确保其性能和准确性。
其次,超声波探伤操作规程的制定和执行。
超声波焊缝探伤需要进行严格的操作规程,包括探头的放置、超声波的发射和接收、数据的采集和分析等步骤。
操作规程的制定和执行应符合相关标准要求,确保探伤结果的准确性和可靠性。
再次,焊缝探伤的技术要求和评定标准。
超声波焊缝探伤需要对焊缝中的各种缺陷进行检测和评定,其技术要求和评定标准应符合相关标准要求,确保焊接质量的评定准确性和一致性。
最后,超声波焊缝探伤的报告和记录。
超声波焊缝探伤的结果应当进行报告和记录,报告和记录内容应符合相关标准要求,确保探伤结果的可追溯性和可验证性。
综上所述,超声波焊缝探伤标准是保障焊接质量和产品安全的重要依据,相关领域的从业人员应当严格遵守相关标准要求,确保超声波焊缝探伤工作的准确性和可靠性。
同时,相关标准的制定和更新也是保障超声波焊缝探伤工作质量的重要保障,应当引起相关部门和单位的重视和关注。
焊缝超声波探伤标准焊缝超声波探伤是一种常用的无损检测方法,可以用于检测焊缝内部的缺陷,如气孔、夹杂、裂纹等。
在工业生产中,焊接是一项重要的连接工艺,而焊接质量的好坏直接影响到产品的使用性能和安全性。
因此,对焊缝进行超声波探伤是非常必要的,而且在焊接工艺中也被广泛应用。
首先,焊缝超声波探伤的标准是非常重要的。
焊缝超声波探伤标准的制定,可以规范焊缝探伤操作流程,明确探伤设备的选择和使用要求,确保探伤结果的准确性和可靠性。
目前,国际上常用的焊缝超声波探伤标准有ISO、ASME等,而国内也有相应的标准,如GB/T、JB等。
这些标准的制定,为焊缝超声波探伤提供了技术依据和操作指南,有利于推动焊缝探伤技术的发展和应用。
其次,焊缝超声波探伤标准的内容主要包括探伤设备的选择和校准、探伤操作的步骤和要求、探伤结果的评定标准等。
在选择探伤设备时,需要考虑焊缝的类型、厚度、材料等因素,以及探伤的灵敏度和分辨率要求。
而设备的校准则是为了保证探伤结果的准确性,需要定期进行校准和验证。
在探伤操作中,操作人员需要严格按照标准规定的步骤和要求进行,包括探头的放置位置、探测角度、超声波的频率和幅度等。
最后,根据探伤结果的评定标准,对焊缝内部的缺陷进行分类和评定,确定是否符合要求。
此外,焊缝超声波探伤标准的实施也需要具备一定的条件和要求。
首先,需要具备专业的探伤人员和设备,他们需要经过系统的培训和考核,熟练掌握探伤技术和标准操作流程。
其次,探伤现场需要具备良好的工作环境和条件,如清洁的焊缝表面、稳定的探伤介质、适当的温度和湿度等。
最后,探伤结果的记录和报告也需要符合标准规定,包括探伤数据的采集和存储、结果的分析和评定、报告的编制和归档等。
总的来说,焊缝超声波探伤标准的制定和实施对于提高焊接质量和产品安全具有重要意义。
只有严格执行标准要求,才能保证探伤结果的准确性和可靠性,为焊接工艺的优化和改进提供技术支持和保障。
因此,各相关单位和人员在进行焊缝超声波探伤时,务必严格遵守标准要求,确保探伤工作的顺利进行和结果的准确可靠。
焊缝超声波探伤标准焊缝超声波探伤是一种常用的无损检测方法,它通过超声波的传播和反射来检测焊缝中的缺陷和疵点,对焊接质量进行评估。
在实际工程中,焊缝超声波探伤标准是非常重要的,它能够指导焊接人员进行正确的超声波探伤操作,确保焊接质量符合标准要求。
本文将对焊缝超声波探伤标准进行详细介绍,以便广大焊接人员和相关技术人员能够更好地理解和应用。
一、焊缝超声波探伤标准的意义。
焊缝超声波探伤标准的制定是为了规范焊缝超声波探伤工作,保证焊接质量符合要求。
它可以帮助焊接人员正确理解焊缝超声波探伤的要求和方法,避免盲目操作和不当操作,提高焊接质量和安全性。
同时,焊缝超声波探伤标准也是对超声波探伤设备和仪器的要求,包括设备的性能指标、操作规程和维护要求,确保设备能够正常工作和准确检测。
二、焊缝超声波探伤标准的内容。
焊缝超声波探伤标准主要包括以下内容,焊缝超声波探伤的一般要求、设备和仪器的要求、操作规程、评定标准和报告要求等。
其中,焊缝超声波探伤的一般要求包括焊接材料的选择、焊接工艺的控制、焊接质量的要求等;设备和仪器的要求包括超声波探伤设备的性能指标、探头的选择和校准、仪器的校验和维护等;操作规程包括超声波探伤的操作步骤、参数设置、探伤技术要求等;评定标准包括焊缝中各种缺陷和疵点的评定标准,如焊缝内夹杂、气孔、裂纹等;报告要求包括探伤报告的格式、内容、保存要求等。
三、焊缝超声波探伤标准的应用。
焊缝超声波探伤标准主要适用于各种焊接结构的检测,包括压力容器、管道、船舶、桥梁、建筑等。
焊缝超声波探伤标准的应用可以帮助焊接人员和相关技术人员正确理解焊缝超声波探伤的要求和方法,规范操作行为,提高焊接质量和安全性。
同时,焊缝超声波探伤标准也是对超声波探伤设备和仪器的要求,确保设备能够正常工作和准确检测。
四、总结。
焊缝超声波探伤标准是保证焊接质量的重要依据,它规范了焊缝超声波探伤的要求和方法,对焊接质量的评定和检测起着至关重要的作用。
焊缝超声波探伤检测报告一、检测目的本次检测旨在对焊缝进行超声波探伤检测,以确定焊缝的质量和存在的缺陷情况,为后续工作提供参考依据。
二、检测对象本次检测对象为某工程项目中的焊缝,包括横焊缝和纵焊缝。
三、检测方法采用超声波探伤技术进行检测,具体操作步骤如下:1. 对焊缝进行清洁处理,确保表面无杂质和污垢。
2. 将超声波探头放置在焊缝上方,通过超声波的传播和反射,获取焊缝内部的信息。
3. 对焊缝进行全面扫描,记录下焊缝内部的缺陷情况和位置。
4. 根据检测结果,对焊缝进行评估和分类,确定焊缝的质量等级。
四、检测结果经过超声波探伤检测,得到如下结果:1. 横焊缝横焊缝的质量较好,未发现明显的缺陷,焊缝内部结构均匀,无裂纹、气孔等缺陷。
2. 纵焊缝纵焊缝存在一些缺陷,主要包括气孔和裂纹。
其中,气孔分布较为集中,主要集中在焊缝的两端,大小不一,最大的气孔直径为3mm;裂纹主要分布在焊缝的中部,长度不一,最长的裂纹长度为10mm。
五、检测结论根据检测结果,对焊缝进行评估和分类,确定焊缝的质量等级。
横焊缝的质量等级为一级,纵焊缝的质量等级为二级。
六、建议措施针对纵焊缝存在的缺陷,建议采取以下措施:1. 对焊缝进行修补,填补气孔和裂纹,确保焊缝的完整性和稳定性。
2. 对焊接工艺进行优化,减少气孔和裂纹的产生。
3. 对焊接人员进行培训,提高其焊接技能和质量意识。
七、总结超声波探伤技术是一种非破坏性检测方法,可以对焊缝进行全面、准确的检测,为保证焊缝的质量和安全性提供了重要的技术支持。
在实际工程中,应加强对焊缝的检测和管理,确保焊缝的质量符合要求。
焊缝的超声波探伤及缺陷评定超声波探伤作为无损检测一种方法,因其探伤效率高、成本低、穿透能力强,而被广泛应用。
它是利用频率超过20KHz的高频声束在试件中与试件内部缺陷(如裂缝、气孔、夹渣等)中传播的特性,来判定是否存在缺陷及其尺度的一种无损检测技术。
超声检测因其固有特点,它比较适合于检测焊缝中的平面型缺陷,如裂纹、未焊透、未熔合等。
焊缝厚度较大时,其优点愈明显。
4.1 焊缝超声波探伤焊缝探伤主要采用斜探头横波探伤,斜探头使声束斜向入射,斜探头的倾斜角有多种,使用斜探头发现焊缝中的缺陷与用直探头探伤一样,都是根据在始脉冲与底脉冲之间是否存在伤脉冲来判断。
当发现焊缝中存在缺陷之后,根据探头在试件上的位置以及缺陷回波在显示屏上的高度,就可确定出焊缝的缺陷位置和大小。
这是因为在探伤前按一定的比例在超声仪荧光屏上作有距离—波幅曲线。
下面详细介绍。
(1)检测条件的选择由于焊缝中的危险缺陷常与入射声束轴线呈一定夹角,基于缺陷反射波指向性的考虑,频率不宜过高,一般工作频率采用2.0-5.0MHz:板厚较大,衰减明显的焊缝,应选用更低一些的频率。
探头折射角的选择应使声束能扫查到焊缝的整个截面,能使声束中心线尽可能与主要危险性缺陷面垂直。
常用的探头斜率为K1.5~K2.5。
常用耦合剂有机油、甘油、浆糊、润滑脂和水等,从耦合剂效果看,浆糊与机油差别不大,但浆糊粘度大,并具有较好的水洗性,所以,常用于倾斜面或直立面的检测。
(2) 检测前的准备(3)探测面的修整探测面上的焊接飞溅、氧化皮、锈蚀和油垢等应清除掉,探头移动区的深坑应补焊后用砂轮打磨。
探测面的修整宽度B应根据板厚t和探头的斜率K计算确定,一般不应小于2.5Kt。
(4)斜探头入射点和斜率的测定1) 斜探头的入射点测定。
斜探头声束轴线与探头楔块底面的交点称为斜探头的入射点,商品斜探头都在外壳侧面标志入射点,由于制造偏差和磨损等原因,实际入射点往往与标志位置存在偏差,因此需经常测定。
焊缝超声波探伤操作步骤一、探头前沿长度的测量。
将探头放置在CSK—ⅠA试块上,将入射点对准R100处,找出反射波达到最高时探头到R100端部的距离。
然后用其所长100减去此段距离。
现在所得的数据确实是探头的前沿距离。
按此方式连测三次,求出平均值。
二、测量探头的K值利用CSK—ⅠA试块上的φ50孔的反射角测出并用反三角函数计算出K值。
将探头对准试块上φ50横孔,找到最高回波:那么有K=tgβ=(L+l-35)/30。
三、扫描速度的调剂1、水平调剂法:将探头对准R50、R100,调剂仪器使B一、B2别离对准不平刻度,现在计算出l1、l2。
l1,l2将计算出的数据在示波屏上将B1和B2调至相对应的位置,现在水平距离扫描速度为1:1。
2、深度调剂法利用CSK-ⅠA试块调剂,先计算R50、R100圆弧反射波B一、B2对应的纵深d一、d2:d1,d2器使B一、B2别离对准水平刻度值d一、d2。
如K=2时,经计算d1=、d2=。
调剂仪器使B一、B2别离对准和平共处,这时深度1:1就调剂好了。
四、距离——波幅曲线的绘制1、将探头置于CSK-ⅢA试块上,衰减48dB,调增益使深度为10mm的φ1×6孔的最高回波达基准60%,记录现在的衰减器读数和孔深,然后别离探测其它不同深度的φ1×6孔,增益不动,调剂衰减器将各孔的最高回波调至60%高,记下相应的dB值和孔深填入表中。
2、以孔深为横坐标,以分贝值为纵坐标,在座标纸上描点绘出定量线、判废线和评定线,标出Ⅰ区、Ⅱ区、Ⅲ区,并注明所用探头的频率、晶片尺寸和K值。
3、现以T=30mm举例说明50403020101020304050D BM m五、 调剂探伤灵敏度调剂探伤灵敏度时,探伤灵敏度不得低于评定线,一样以2倍的壁厚处所对应的评定线dB 值,也确实是说在工件60mm 处评定线所对应的分贝值。
如假设还要考虑耦合补偿,补偿依如实际情形而定。
六、探测钢板一、初扫,找缺点,疑心处作好标记。
焊缝超声波探伤标准
超声波探伤是一种常用的无损检测方法,广泛应用于焊缝的质
量控制和评定。
焊缝超声波探伤标准是指对焊缝进行超声波探伤时
所遵循的一系列标准和规范,其目的是确保焊接质量符合要求,提
高焊接结构的安全性和可靠性。
首先,焊缝超声波探伤标准应包括对焊接材料、焊接工艺和设
备的要求。
对于焊接材料,应明确规定其化学成分、力学性能和超
声波透射率等指标,以确保焊接材料的质量能够满足超声波探伤的
要求。
对于焊接工艺,应规定焊接接头的几何形状、焊接层间质量、焊接温度和速度等参数,以确保焊缝的质量符合要求。
对于设备,
应规定超声波探伤设备的性能指标和技术要求,以确保其能够满足
焊缝探伤的需要。
其次,焊缝超声波探伤标准应包括对探伤方法和技术的要求。
对于探伤方法,应规定超声波探伤的具体步骤和操作要点,包括超
声波传播路径、探头的选择和放置、探测灵敏度的调节等内容,以
确保探伤结果准确可靠。
对于探伤技术,应规定超声波探伤人员的
培训和资质要求,以确保其具备良好的技术水平和操作能力。
最后,焊缝超声波探伤标准应包括对探伤结果的评定和记录要求。
对于探伤结果的评定,应规定焊缝缺陷的类型、尺寸和数量等指标,以便对焊缝的质量进行准确的评定。
对于记录要求,应规定探伤结果的记录格式和内容,包括焊缝的位置、探伤图像、探伤报告等内容,以便对焊缝的质量进行追溯和分析。
总之,焊缝超声波探伤标准是保证焊接质量的重要手段,其制定和执行对于提高焊接结构的安全性和可靠性具有重要意义。
只有严格遵循焊缝超声波探伤标准,才能确保焊接质量符合要求,从而保障工程结构的安全运行。
焊缝超声波探伤标准焊缝超声波探伤是一种常用的无损检测方法,通过超声波的传播和反射来检测焊缝中的缺陷和问题。
在工业生产中,焊接是一项重要的工艺,而焊缝的质量直接影响到整个产品的质量和安全性。
因此,对焊缝进行超声波探伤是非常必要的。
一、焊缝超声波探伤的原理。
焊缝超声波探伤是利用超声波在材料中的传播特性来检测焊缝中的缺陷。
当超声波遇到材料的界面或者缺陷时,会发生反射或者衍射,通过检测这些反射或者衍射信号,就可以判断焊缝中是否存在缺陷,以及缺陷的位置和大小。
二、焊缝超声波探伤的标准。
1. 超声波探伤设备的选择。
在进行焊缝超声波探伤时,需要选择适当的超声波设备。
设备的频率、探头的尺寸和材质等都会影响到探测的效果,因此需要根据具体的焊缝情况来选择合适的设备。
2. 探测方法和参数的设定。
在进行焊缝超声波探伤时,需要根据焊缝的类型和要求来设定合适的探测方法和参数。
包括超声波的频率、探头的角度、扫描方式等,这些参数的设定直接影响到探测的准确性和可靠性。
3. 缺陷的判定标准。
针对不同类型的焊缝,需要制定相应的缺陷判定标准。
比如对于焊接接头的缺陷,需要根据相关标准来判断缺陷的大小、形状和位置,以及对产品质量的影响程度。
4. 数据分析和报告。
在进行焊缝超声波探伤后,需要对探测到的数据进行分析,并生成相应的检测报告。
报告中需要包括焊缝的情况描述、探测到的缺陷情况、以及针对缺陷的处理建议等内容。
三、焊缝超声波探伤的应用。
焊缝超声波探伤广泛应用于航空航天、汽车制造、船舶建造、管道工程等领域。
通过超声波探伤,可以及时发现焊缝中的缺陷和问题,保障产品的质量和安全性。
总之,焊缝超声波探伤是一项非常重要的无损检测方法,对于焊接工艺的质量控制和产品质量的保障起着至关重要的作用。
因此,在进行焊缝超声波探伤时,需要严格按照相关标准和要求进行操作,确保探测的准确性和可靠性。
钢结构焊缝超声波探伤检测报告一、引言钢结构在现代建筑和工程中广泛应用,为确保钢结构的安全和质量,需要对焊缝进行超声波探伤检测。
本报告旨在总结和分析钢结构焊缝超声波探伤检测的结果,提供相应的结论和建议。
二、方法与原理1. 超声波探伤原理超声波探伤是利用超声波在材料中的传播特性来检测和评估材料的内部缺陷和异物的一种无损检测技术。
在钢结构焊缝超声波探伤中,一般使用纵波和横波两种超声波模式。
2. 设备及仪器本次探伤测试采用了XXX品牌的超声波探伤仪器,配备了适当的传感器和探头。
该仪器具备高精度、高灵敏度和便携性的特点,能够有效地检测钢结构焊缝中的缺陷。
3. 探伤方法首先,对待测的焊缝进行准备工作,包括清洁、除锈等。
然后,将超声波探头置于焊缝表面,以一定的速度进行移动。
仪器将自动记录并显示超声波的传播特性和检测结果。
三、检测结果通过对焊缝进行超声波探伤检测,得到了以下结果:1. 检测到的焊缝缺陷在焊接过程中,可能会出现焊缝的气孔、裂纹、夹杂物等缺陷。
在本次探伤中,共检测出X处焊缝缺陷,主要包括气孔和夹杂物。
2. 缺陷的尺寸和位置通过超声波探伤仪器的分析,确定了焊缝缺陷的尺寸和位置。
其中,气孔的尺寸范围在X~Y毫米之间,主要分布在焊缝的边缘位置。
夹杂物的尺寸范围在X~Y毫米之间,主要位于焊缝的内部位置。
3. 缺陷对钢结构强度的影响通过对焊缝缺陷的分析,评估了其对钢结构强度和稳定性的影响。
结果表明,焊缝缺陷对钢结构的强度和稳定性产生了一定程度的负面影响。
具体的影响程度需要进一步的工程计算和分析。
四、结论与建议1. 结论本次钢结构焊缝超声波探伤检测发现了焊缝中的气孔和夹杂物等缺陷。
这些缺陷对钢结构的强度和稳定性产生一定的影响。
2. 建议针对检测到的焊缝缺陷,建议采取以下措施:- 对发现的气孔进行补焊处理,以确保焊缝的完整性和密实性;- 对发现的夹杂物进行修剪处理,确保其不会对焊缝产生进一步的影响;- 对其他焊接工艺和参数进行进一步优化,以减少焊缝缺陷的发生。
第四章 焊缝超声波探伤第三节 焊缝超声波探伤定位超声波探伤定位的方法是利用已知尺寸的试块(或工件)作为反射体来调节探伤仪的时间轴,然后根据反射波出现在时间轴上的位置,确定缺陷的位置。
一、斜探头定位与直探头定位的区别纵波探伤时定位比较简单,如探测100mm 厚的工件,可把底面回波调在10格,则每格代表工件中的声程(或垂直距离)为100/10=10(mm)。
(因耦合层极薄,可忽略不计)。
探伤时,若在6格出现缺陷波,则缺陷离工件表面的距离为6×10=60mm 。
横波探伤时的定位比较复杂(见图5–7所示),与纵波探伤相比有三点区别:① 超声波射到底面时无底面回波(故时间轴需在试块上预先调节);② 有机玻璃斜楔内一段声程OO '(称斜探头本体声程)在中薄板焊缝探伤定位时不能忽略,必须加以考虑。
③ 超声波的传播路线为O 'OAB(或O 'OB)折线,定位时,必须得用三角公式进行计算。
二、斜探头探伤定位基本原理焊缝探伤前,一般先进行斜探头入射点和折射角的测定,以及时间轴的调节。
故入射点O 和折射角β是已知的,示波屏上扫描线每格所代表的距离(可以是水平距离、垂直距离或声程)也是可知的。
这样,在直角三角形中,知道一只角、一条边、则其他两条边也可求出,故缺陷位置(缺陷离探头入射点的水平距离和深度)便可确定。
根据时间扫描线调节方法的不同,可分三种定位法: 1. 水平定位法即时间扫描线与水平距离成相应的比例关系。
2. 垂直定位法即时间扫描线与深度距离成相应的比例关系。
3. 声程定位法即时间扫描线与声程距离成相应的比例关系。
一般板厚≤24mm 时,用水平定位法、板厚≥32mm 时用垂直定位法。
时间轴的调节,其最大测定范围应在1S ~1.5S 之间(1S 为一个跨距的声程距离)。
三、焊缝超声波探伤定位的常用方法多年来,不少厂矿企业中的检测人员根据自己产品的特点,经过不断摸索、反复实践,已总结出了好多简便、有效的定位方法,下面仅介绍几种常用的定位方法。
焊缝超声波探伤标准焊接是制造业中常见的一种连接工艺,而焊缝的质量直接关系到焊接件的使用性能和安全性。
为了确保焊缝质量,超声波探伤技术被广泛应用于焊接质量检测中。
本文将介绍焊缝超声波探伤的标准和要点。
一、超声波探伤原理。
超声波探伤是利用超声波在材料中的传播特性来检测材料内部缺陷的一种无损检测技术。
当超声波遇到材料内部的缺陷时,会发生反射、散射或透射,通过对超声波的接收和分析,可以确定材料内部的缺陷类型、位置和大小。
二、焊缝超声波探伤标准。
1. 超声波探伤设备。
进行焊缝超声波探伤时,应选择适当的超声波探伤设备,包括超声波发射探头、接收探头、超声波检测仪器等。
设备的选择应符合相关标准要求,并经过校准和检定。
2. 探伤方法。
焊缝超声波探伤可以采用直接接触法、浸润法或者接触耦合法。
在选择探伤方法时,应根据具体情况和标准要求进行合理选择,并保证探伤过程中与焊缝的充分接触。
3. 探伤参数。
探伤参数包括超声波频率、波束角、增益、脉冲重复频率等。
在进行焊缝超声波探伤时,应根据焊缝的材料、厚度、几何形状等特点,合理选择探伤参数,并进行相应的调节和优化。
4. 探伤结果评定。
根据焊缝超声波探伤的标准,对探伤结果进行评定和判定。
根据探伤结果,判断焊缝内部是否存在缺陷,确定缺陷的类型、位置和大小,并进行相应的等级评定。
5. 报告和记录。
对焊缝超声波探伤的整个过程进行记录和报告,包括探伤设备的选择和校准、探伤方法和参数的选择、探伤结果的评定等内容,确保探伤过程的可追溯性和可复制性。
三、注意事项。
1. 操作人员应具备专业的超声波探伤技术知识和操作技能,严格按照相关标准和要求进行操作。
2. 探伤设备应定期进行维护和保养,确保设备的正常工作状态。
3. 在进行焊缝超声波探伤前,应对焊缝进行清洁和表面处理,保证探伤的准确性和可靠性。
四、结论。
焊缝超声波探伤是一种有效的焊接质量检测方法,对焊接件的质量和安全性具有重要意义。
严格按照相关标准和要求进行焊缝超声波探伤,可以有效地发现焊缝内部的缺陷,保证焊接件的质量和可靠性。
焊缝超声波探伤标准
焊接是工程中常见的连接方式,而焊缝的质量直接影响着焊接件的使用性能和安全性。
为了保证焊缝质量,超声波探伤技术被广泛应用于焊接质量的检测中。
本文将介绍焊缝超声波探伤的标准,以及其在工程中的应用。
首先,焊缝超声波探伤的标准主要包括两个方面,一是焊缝的几何尺寸和形状,二是焊缝中的缺陷检测。
在焊缝的几何尺寸和形状方面,超声波探伤可以测量焊缝的宽度、高度、角度等参数,从而判断焊缝的质量是否符合标准要求。
在焊缝中的缺陷检测方面,超声波可以检测焊缝中的气孔、夹杂物、裂纹等缺陷,为焊接质量提供可靠的检测手段。
其次,焊缝超声波探伤在工程中的应用非常广泛。
首先,在焊接生产过程中,超声波探伤可以及时发现焊缝中的缺陷,避免因质量问题导致的生产事故和安全隐患。
其次,在焊接质量检测中,超声波探伤可以对焊接件进行全面的检测,提高了焊接件的质量和可靠性。
最后,在焊接维修中,超声波探伤可以帮助工程师快速准确地找到焊缝中的缺陷位置,为焊接维修提供了重要的依据。
总之,焊缝超声波探伤标准是保证焊接质量的重要手段,其在
工程中的应用具有重要意义。
通过对焊缝的几何尺寸和形状以及缺
陷的检测,超声波探伤可以有效地提高焊接质量,保障工程安全。
希望本文的介绍能够帮助大家更加深入地了解焊缝超声波探伤标准,并在工程实践中加以应用。
焊缝超声波探伤标准焊接是金属材料加工中常见的工艺,而焊缝作为焊接的重要部分,其质量直接影响到整体结构的安全性和可靠性。
为了保证焊缝的质量,超声波探伤技术被广泛应用于焊缝的质量检测中。
本文将介绍焊缝超声波探伤的标准,以及其在焊接工艺中的重要性。
首先,焊缝超声波探伤的标准主要包括超声波探伤设备的选择、探头的选择、探伤技术参数的设置等内容。
在选择超声波探伤设备时,需要考虑焊缝的类型、厚度和材料,以及探伤的环境条件等因素,以确保设备的适用性和可靠性。
探头的选择也是至关重要的,不同类型的焊缝需要选择不同频率和形式的探头,以获得更准确的检测结果。
此外,探伤技术参数的设置也需要根据具体的焊缝情况进行调整,包括脉冲重复频率、增益、阈值等参数的设置,以保证探伤的准确性和可靠性。
其次,焊缝超声波探伤在焊接工艺中的重要性不言而喻。
通过超声波探伤技术,可以及时发现焊缝中的各种缺陷,如气孔、夹杂物、裂纹等,从而及时采取措施进行修补或重新焊接,以确保焊缝的质量。
同时,超声波探伤还可以对焊接工艺参数进行优化和调整,以提高焊接质量和效率。
因此,焊缝超声波探伤标准的制定和执行对于保障焊接质量和安全具有重要意义。
总之,焊缝超声波探伤标准是现代焊接工艺中不可或缺的一部分,其准确性和可靠性直接关系到焊接结构的安全性和可靠性。
通过严格执行焊缝超声波探伤标准,可以及时发现和处理焊缝中的各种缺陷,提高焊接质量,确保焊接结构的安全可靠。
因此,各个相关行业和企业都应高度重视焊缝超声波探伤标准的制定和执行,以推动焊接工艺的质量提升和技术进步。
在实际应用中,需要根据具体的焊接项目和要求,结合相关标准和规范,制定适合的焊缝超声波探伤方案,并严格执行,以确保焊接质量和安全。
同时,也需要不断加强对焊缝超声波探伤技术的研究和应用,提高检测的准确性和可靠性,为焊接工艺的发展和提升质量提供技术支持和保障。
综上所述,焊缝超声波探伤标准是焊接工艺中的重要环节,其准确执行对于确保焊接质量和安全具有重要意义。