2020届高三数学 等差、等比数列的概念与性质期末复习测试卷 文
- 格式:doc
- 大小:1.10 MB
- 文档页数:6
《等比数列及其前n 项和》专题题型一 等比数列基本量的运算 1、在等比数列{a n }中,如果a 1+a 4=18,a 2+a 3=12,那么这个数列的公比为2、已知S n 是各项均为正数的等比数列{a n }的前n 项和,若a 2·a 4=16,S 3=7,则a 8=3、在等比数列{a n }中,a 1=2,公比q =2,若a m =a 1a 2a 3a 4(m ∈N +),则m =4、在等比数列{a n }中,已知a 3=6,a 3+a 5+a 7=78,则a 5=5、在数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和.若S n =126,则n =________.6、等比数列{a n }的前n 项和为S n ,已知S 3=a 2+10a 1,a 5=9,则a 1=7、设等比数列{a n }满足a 1+a 2=-1,a 1-a 3=-3,则a 4=8、在9与243中间插入两个数,使它们同这两个数成等比数列,则这两个数为9、设{a n }是公比为正数的等比数列,S n 为{a n }的前n 项和,若a 1=1,a 5=16,则数列{a n }的前7项和为10、已知等比数列{a n }的公比为正数,且a 5·a 7=4a 24,a 2=1,则a 1=11、等比数列{a n }的前n 项和为S n ,且4a 1,2a 2,a 3成等差数列,若a 1=1,则S 4=12、已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=13、在等比数列{a n }中,S n 表示前n 项和,若a 3=2S 2+1,a 4=2S 3+1,则公比q 等于________.14、在各项均为正数的等比数列{a n }中,若a 2=1,a 8=a 6+2a 4,则a 6的值是________.15、已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2等于 16、等比数列{a n }的各项均为实数,其前n 项和为S n ,已知S 3=74,S 6=634,则a 8=________. 17、若等比数列{a n }的前n 项和为S n ,且S n =m ·5n +1,则实数m =________.18、已知各项均为正数的等比数列{a n }的前n 项和为S n ,若S 4=3S 2,a 3=2,则a 7=________.19、已知等比数列{a n }满足a 1=1,a 3a 7=16,则该数列的公比为20、已知递增的等比数列{a n }中,a 2=6,a 1+1,a 2+2,a 3成等差数列,则该数列的前6项和S 6等于21、已知等比数列{a n }的公比为-2,且S n 为其前n 项和,则S 4S 2等于22、数列{a n }中,已知对任意n ∈N +,a 1+a 2+a 3+…+a n =3n -1,则a 21+a 22+a 23+…+a 2n等于23、已知等比数列{a n }的前n 项和为S n ,且a 1=2 018,a 2+a 4=-2a 3,则S 2 019=________.24、已知各项均为正数的等比数列{a n }满足a 1=12,且a 2a 8=2a 5+3,则a 9=________. 25、设等比数列{a n }的前n 项和为S n ,若a 3a 11=2a 25,且S 4+S 12=λS 8,则λ=________.26、等比数列{a n }中,a 1=1,a 5=4a 3.(1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和,若S m =63,求m .题型二 等比数列的性质类型一 等比数列项的性质1、已知各项不为0的等差数列{a n }满足a 6-a 27+a 8=0,数列{b n }是等比数列,且b 7=a 7,则b 2b 8b 11=2、在正项等比数列{a n }中,已知a 1a 2a 3=4,a 4a 5a 6=12,a n -1a n a n +1=324,则n 等于3、等比数列{a n }各项均为正数,a 3a 8+a 4a 7=18,则1+2+…+10= _____4、已知数列{a n }为等比数列,若a 4+a 6=10,则a 7(a 1+2a 3)+a 3a 9的值为5、等比数列{a n }的各项均为正数,且a 10a 11+a 9a 12=2e 5,则ln a 1+ln a 2+…+ln a 20=________.6、等比数列{a n }的前n 项和为S n ,若a n >0,q >1,a 3+a 5=20,a 2a 6=64,则S 5=________.7、在等比数列{a n }中,a 3,a 15是方程x 2+6x +2=0的根,则a 2a 16a 9的值为 8、已知数列{a n }是递增的等比数列,a 1+a 4=9,a 2a 3=8,则数列{a n }的前n 项和S n =________.9、递增的等比数列{a n }中,已知a 1+a n =34,a 3·a n -2=64,前n 项和S n =42,则n 等于 类型二 等比数列前n 项和的性质1、设等比数列{a n }的前n 项和为S n ,若S 6S 3=3,则S 9S 6= 2、设各项都是正数的等比数列{a n },S n 为前n 项和,且S 10=10,S 30=70,那么S 40等于3、设S n 是等比数列{a n }的前n 项和,若S 4S 2=3,则S 6S 4=________. 4、已知数列{a n }是等比数列,S n 为其前n 项和,若a 1+a 2+a 3=4,a 4+a 5+a 6=8,则S 12等于5、设等比数列{a n }的前n 项和为S n ,S 2=-1,S 4=-5,则S 6等于6、已知等比数列{a n }的前n 项和为S n ,且S 3S 6=89,则a n +1a n -a n -1=________(n ≥2,且n ∈N). 题型三 等比数列的判定与证明1、已知数列{a n }满足对任意的正整数n ,均有a n +1=5a n -2·3n ,且a 1=8.(1)证明:数列{a n -3n }为等比数列,并求数列{a n }的通项公式;(2)记b n =a n 3n ,求数列{b n }的前n 项和T n .2、设数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=4a n +2.设b n =a n +1-2a n ,证明:数列{b n }是等比数列;3、已知数列{a n }满足a 1=1,a 2=2,a n +2=a n +a n +12,n ∈N +. (1)令b n =a n +1-a n ,证明:{b n }是等比数列;(2)求数列{a n }的通项公式.题型四 等差、等比数列的综合问题1、在等比数列{a n }中,a 2=3,a 5=81.(1)求a n ;(2)设b n =log 3a n ,求数列{b n }的前n 项和S n .2、设数列{a n }(n =1,2,3,…)的前n 项和S n 满足S n =2a n -a 1,且a 1,a 2+1,a 3成等差数列.(1)求数列{a n }的通项公式;(2)记数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为T n ,求使得|T n -1|<11 000成立的n 的最小值.3、在数列{a n }中,a 1=2,a n +1=n +12n a n(n ∈N +). (1)证明:数列⎩⎨⎧⎭⎬⎫a n n 是等比数列,并求数列{a n }的通项公式; (2)设b n =a n 4n -a n,若数列{b n }的前n 项和是T n ,求证:T n <2.。
2020年高考数学(理)总复习:等差数列与等比数列题型一 等差、等比数列的基本运算 【题型要点】方程思想在等差(比)数列的基本运算中的运用等差(比)数列的通项公式、求和公式中一共包含a 1、d (或q )、n 、a n 与S n 这五个量,如果已知其中的三个,就可以求其余的两个.其中a 1和d (或q )是两个基本量,所以等差数列与等比数列的基本运算问题一般先设出这两个基本量,然后根据通项公式,求和公式构建这两者的方程组,通过解方程组求其值,这也是方程思想在数列问题中的体现.【例1】等比数列{a n }的前n 项和为S n ,已知a 2a 5=2a 3,且a 4与2a 7的等差中项为54,则S 5等于( )A .29B .31C .33D .36【例2】.{}a n 是公差不为0的等差数列,满足a 24+a 25=a 26+a 27,则该数列的前10项和S 10等于( )A .-10B .-5C .0D .5【例3】.已知递增数列{a n }对任意n ∈N *均满足a n ∈N *,aa n =3n ,记b n =a 2·3n -1(n ∈N *),则数列{b n }的前n 项和等于( )A .2n +nB .2n +1-1 C.3n +1-3n2D.3n +1-32题组训练一 等差、等比数列的基本运算1.设等差数列{a n }的前n 项和为S n ,若a 3+a 5=4,S 15=60则a 20等于( ) A .4 B .6 C .10 D .122.在等差数列{a n }中,2(a 1+a 3+a 5)+3(a 8+a 10)=36,则a 6等于( ) A .8 B .6 C .4 D .33.已知等比数列{a n }的前n 项和为S n ,a 1+a 3=30,S 4=120,设b n =1+log 3a n ,那么数列{b n }的前15项和为( )A .152B .135C .80D .16 题型二 等差、等比数列的性质及应用 【题型要点】(1)解决此类问题的关键是抓住项与项之间的关系及项的序号之间的关系,从这些特点入手选择恰当的性质进行求解.(2)等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形.【例4】已知数列{a n },{b n }满足b n =log 2a n ,n ∈N *,其中{b n }是等差数列,且a 8·a 2 008=14,则b 1+b 2+b 3+…+b 2 015等于( ) A .log 22 015B .2 015C .-2 015D .1 0082.各项均为正数的等比数列{a n }的前n 项和为S n ,若S 4=10,S 12=130,则S 8等于( ) A .-30 B .40 C .40或-30D .40或-503.等比数列{a n }的首项为32,公比为-12,前n 项和为S n ,则当n ∈N *时,S n -1S n的最大值与最小值之和为( )A .-23B .-712C.14D.56题组训练二 等差、等比数列的性质及应用1.在等比数列{a n }中,a 3,a 15是方程x 2-7x +12=0的两根,则a 1a 17a 9的值为( )A .2 3B .4C .±2 2D .±4 2.设公差为d 的等差数列{a n }的前n 项和为S n ,若a 1=1,-217<d <-19,则当S n 取最大值时n 的值为________.3.若{a n }是等差数列,首项a 1>0,a 2 016+a 2 017>0,a 2 016·a 2 017<0,则使前n 项和S n>0成立的最大正整数n 是( )A .2 016B .2 017C .4 032D .4 033题型三 等差、等比数列的综合问题 【题型要点】关于等差、等比数列的综合问题多属于两者运算的综合题以及相互之间的转化,关键是求出两个数列的基本量:首项和公差(或公比),灵活运用性质转化条件,简化运算,准确记忆相关的公式是解决此类问题的关键.【例3】已知等差数列{a n }的公差为-1,且a 2+a 7+a 12=-6. (1)求数列{a n }的通项公式a n 与前n 项和S n ;(2)将数列{a n }的前4项抽去其中一项后,剩下三项按原来顺序恰为等比数列{b n }的前3项,记{b n }的前n 项和为T n ,若存在m ∈N *,使对任意n ∈N *,总有S n <T m +λ恒成立,求实数λ的取值范围.题组训练三 等差、等比数列的综合问题已知数列{a n }中,a 1=1,a n ·a n +1=n⎪⎭⎫⎝⎛21,记T 2n 为{a n }的前2n 项的和,b n =a 2n +a 2n -1,n ∈N *.(1)判断数列{b n }是否为等比数列,并求出b n ; (2)求T 2n .题型四 数列与其他知识的交汇 【题型要点】数列在中学教材中既有相对独立性,又有较强的综合性,很多数列问题一般转化,特殊数列求解,一些题目常与函数、向量、三角函数、解析几何等知识交汇结合,考查数列的基本运算与应用.【例4】 已知等差数列{a n }的前n 项和为S n ,若OB →=a 1OA →+a 2 016OC →,且A ,B ,C 三点共线(该直线不过点O ),则S 2 016等于( )A .1 007B .1 008C .2 015D .2 016题组训练四 数列与其他知识的交汇1.在由正数组成的等比数列{a n }中,若a 3a 4a 5=3π,则sin(log 3a 1+log 3a 2+…+log 3a 7)的值为( )A.12B.32C .1D .-322.已知各项都为正数的等比数列{a n }满足a 7=a 6+2a 5,存在两项a m ,a n 使得 a m ·a n =4a 1,则1m +4n的最小值为( )A.32B.53C.256D.433.艾萨克·牛顿(1643年1月4日-1727年3月31日)英国皇家学会会长,英国著名物理学家,同时在数学上也有许多杰出贡献,牛顿用“作切线”的方法求函数f (x )的零点时给出一个数列{}x n 满足x n +1=x n -f (x n )f ′(x n ),我们把该数列称为牛顿数列.如果函数f (x )=ax 2+bx +c (a >0)有两个零点1,2,数列{}x n 为牛顿数列,设a n =ln x n -2x n -1,已知a 1=2,x n >2,则{}a n 的通项公式a n =________.【专题训练】 一、选择题1.等比数列{a n }中,a 4=2,a 7=5,则数列{lg a n }的前10项和等于( ) A .2 B .lg 50 C .10D .52.在正项等比数列{a n }中,已知a 3a 5=64,则a 1+a 7的最小值为( ) A .64B .32C .16D .83.一个等比数列的前三项的积为2,最后三项的积为4,且所有项的积为64,则该数列的项数是( )A .13B .12C .11D .104.在数列{a n }中,若a 1=2,且对任意正整数m ,k ,总有a m +k =a m +a k ,则{a n }的前n 项和S n 等于( )A .n (3n -1)B.n (n +3)2C .n (n +1)D.n (3n +1)25.记S n 为正项等比数列{a n }的前n 项和,若S 12-S 6S 6-7·S 6-S 3S 3-8=0,且正整数m ,n满足a 1a m a 2n =2a 35,则1m +8n的最小值是( ) A.157 B.95 C.53D.756.数列{}a n 是以a 为首项,b 为公比的等比数列,数列{}b n 满足b n =1+a 1+a 2+…+a n (n =1,2,…),数列{}c n 满足c n =2+b 1+b 2+…+b n (n =1,2,…),若{}c n 为等比数列,则a +b 等于( )A. 2 B .3 C. 5 D .6二、填空题7.数列{a n }的通项a n =n 2·⎪⎭⎫ ⎝⎛-3sin 3cos22ππn n ,其前n 项和为S n ,则S 30=________. 8.已知数列{a n }满足a 1=2,且a n =2na n -1a n -1+n -1(n ≥2,n ∈N *),则a n =________.9.在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增一十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢.问:几日相逢?( )A .8日B .9日C .12日D .16日10.数列{log k a n }是首项为4,公差为2的等差数列,其中k >0,且k ≠1.设c n =a n lg a n ,若{c n }中的每一项恒小于它后面的项,则实数k 的取值范围为________.三、解答题11.已知数列{}a n 的前n 项和为S n ,且S n =2a n -3n (n ∈N *). (1)求a 1,a 2,a 3的值;(2)是否存在常数λ,使得数列{a n +λ}为等比数列?若存在,求出λ的值和通项公式a n ;若不存在,请说明理由.12.已知数列{a n }的前n 项和为S n ,且S n -1=3(a n -1),n ∈N *. (1)求数列{a n }的通项公式;(2)设数列{b n }满足a n +1=⎪⎭⎫⎝⎛23a n ·b n ,若b n ≤t 对于任意正整数n 都成立,求实数t 的取值范围.。
高考文科数学数列专题复习数列常用公式数列的通项公式与前n 项的和的关系a n s , n 11s s ,n 2n n 1( 数列{a n} 的前n 项的和为s n a1 a2 a n ).等差数列的通项公式*a a1 (n 1)d dn a1 d(n N ) ;n等差数列其前n 项和公式为n(a a ) n(n 1)1 ns na1 d n2 2 d 12n (a d)n .12 2等比数列的通项公式an 1 1 n *a a1q q (n N )nq;等比数列前n 项的和公式为na (1 q )1s 1 qn , q 1或sna a q1 n1 q,q 1na ,q 1 1 na ,q 1 1一、选择题1.( 广东卷) 已知等比数列{a n} 的公比为正数,且a3 ·a9 =2 2a ,a2 =1,则a1 =5A. 12B.22C. 2D.22.(安徽卷)已知为等差数列,,则等于A. -1B. 1C. 3D.7 3(. 江西卷)公差不为零的等差数列{a n} 的前n项和为S n .若a4 是a3与a7 的等比中项, S8 32, 则S等于10A. 18B. 24C. 60D. 904(湖南卷)设S n 是等差数列a n 的前n 项和,已知a2 3,a6 11,则S7 等于【】第1页/ 共8页A .13 B.35 C.49 D.633.(辽宁卷)已知a为等差数列,且a7 -2 a4 =-1, a3 =0, 则公差d=n(A)-2 (B)-12 (C)12(D)24.(四川卷)等差数列{a n }的公差不为零,首项a1 =1,a2 是a1 和a5 的等比中项,则数列的前10 项之和是A. 90B. 100C. 145D. 1905.(湖北卷)设x R, 记不超过x 的最大整数为[ x ], 令{x }= x -[ x ],则{ 52 1} ,[ 521],521A.是等差数列但不是等比数列B.是等比数列但不是等差数列C.既是等差数列又是等比数列D.既不是等差数列也不是等比数列6.(湖北卷)古希腊人常用小石子在沙滩上摆成各种性状来研究数,例如:他们研究过图1 中的1,3,6,10,⋯,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16⋯这样的数成为正方形数。
高中数学《等比数列性质》复习基础知识与练习题(含答案解析)一、基础知识1、定义:数列{}n a 从第二项开始,后项与前一项的比值为同一个常数()0q q ≠,则称{}n a 为等比数列,这个常数q 称为数列的公比注:非零常数列既可视为等差数列,也可视为1q =的等比数列,而常数列0,0,0,只是等差数列2、等比数列通项公式:11n n a a q−=⋅,也可以为:n mn m a a q−=⋅3、等比中项:若,,a b c 成等比数列,则b 称为,a c 的等比中项 (1)若b 为,a c 的等比中项,则有2a bb ac b c=⇒= (2)若{}n a 为等比数列,则n N *∀∈,1n a +均为2,n n a a +的等比中项 (3)若{}n a 为等比数列,则有m n p q m n p q a a a a +=+⇔= 4、等比数列前n 项和公式:设数列{}n a 的前n 项和为n S 当1q =时,则{}n a 为常数列,所以1n S na = 当1q ≠时,则()111n n a q S q−=−可变形为:()1111111n n n a q a aS q qq q −==−−−−,设11a k q =−,可得:n n S k q k =⋅−5、由等比数列生成的新等比数列(1)在等比数列{}n a 中,等间距的抽取一些项组成的新数列仍为等比数列 (2)已知等比数列{}{},n n a b ,则有 ① 数列{}n ka (k 为常数)为等比数列 ② 数列{}na λ(λ为常数)为等比数列,特别的,当1λ=−时,即1n a ⎧⎫⎨⎬⎩⎭为等比数列③ 数列{}n n a b 为等比数列④ 数列{}n a 为等比数列6、相邻k 项和的比值与公比q 相关: 设1212,m m m k n n n k S a a a T a a a ++++++=+++=+++,则有:()()212212k m n m m m m k mk n n n k nn a q q q S a a a a q T a a a a a q q q −++++++++++++====++++++ 特别的:若121222,,k k k k k k k a a a S a a a S S +++++=+++=−2122332,k k k k k a a a S S +++++=−,则232,,,k k k k k S S S S S −−成等比数列7、等比数列的判定:(假设{}n a 不是常数列) (1)定义法(递推公式):()1n na q n N a *+=∈ (2)通项公式:nn a k q =⋅(指数类函数) (3)前n 项和公式:nn S kq k =−注:若()n n S kq m m k =−≠,则{}n a 是从第二项开始成等比关系 (4)等比中项:对于n N *∀∈,均有212n n n a a a ++=8、非常数等比数列{}n a 的前n 项和n S 与1n a ⎧⎫⎨⎬⎩⎭前n 项和n T 的关系()111n n a q S q−=−,因为1n a ⎧⎫⎨⎬⎩⎭是首项为11a ,公比为1q 的等比数列,所以有()1111111111111nn n nn n q a q q q T q a q q a qq−⎡⎤⎛⎫−−⎢⎥ ⎪⎝⎭⎢⎥−⎣⎦===−−−⋅ ()()1112111111n n n nn n a q a q q S a q T q q−−−−=⋅=−− 例1:已知等比数列{}n a 的公比为正数,且223951,2a a a a ==,则10a =________思路:因为2396a a a =,代入条件可得:22652a a =,因为0q >,所以65a =,q =所以810216a a q == 答案:16例2:已知{}n a 为等比数列,且374,16a a =−=−,则5a =( ) A. 64 B. 64− C. 8 D. 8− 思路一:由37,a a 可求出公比:4734a q a ==,可得22q =,所以253428a a q ==−⋅=− 思路二:可联想到等比中项性质,可得253764a a a ==,则58a =±,由等比数列特征可得奇数项的符号相同,所以58a =− 答案:D小炼有话说:思路二的解法尽管简单,但是要注意双解时要验证项是否符合等比数列特征。
2020年高考数学(理)总复习:等差数列与等比数列题型一 等差、等比数列的基本运算 【题型要点】方程思想在等差(比)数列的基本运算中的运用等差(比)数列的通项公式、求和公式中一共包含a 1、d (或q )、n 、a n 与S n 这五个量,如果已知其中的三个,就可以求其余的两个.其中a 1和d (或q )是两个基本量,所以等差数列与等比数列的基本运算问题一般先设出这两个基本量,然后根据通项公式,求和公式构建这两者的方程组,通过解方程组求其值,这也是方程思想在数列问题中的体现.【例1】等比数列{a n }的前n 项和为S n ,已知a 2a 5=2a 3,且a 4与2a 7的等差中项为54,则S 5等于( )A .29B .31C .33D .36【解析】 法一:设等比数列{a n }的首项为a 1,公比为q ,由题意知⎩⎪⎨⎪⎧a 1qa 1q 4=2a 1q 2a 1q 3+2a 1q 6=2×54,解得⎩⎪⎨⎪⎧q =12a 1=16,所以S 5=a 1(1-q 5)1-q=31,故选B.法二:由a 2a 5=2a 3,得a 4=2.又a 4+2a 7=52,所以a 7=14,所以q =12,所以a 1=16,所以S 5=a 2(1-q 5)1-q=31,故选B.【答案】 B【例2】.{}a n 是公差不为0的等差数列,满足a 24+a 25=a 26+a 27,则该数列的前10项和S 10等于( )A .-10B .-5C .0D .5【解析】 由题意,得a 24-a 27=a 26-a 25,即()a 4-a 7()a 4+a 7=()a 6-a 5()a 6+a 5,即-3d ()a 4+a 7=d ()a 6+a 5,又因为d ≠0,所以a 4+a 7=a 6+a 5=0,则该数列的前10项和S 10=10(a 1+a 10)2=5()a 6+a 5=0.故选C.【答案】 C【例3】.已知递增数列{a n }对任意n ∈N *均满足a n ∈N *,aa n =3n ,记b n =a 2·3n -1(n ∈N *),则数列{b n }的前n 项和等于( )A .2n +nB .2n +1-1 C.3n +1-3n 2D.3n +1-32【解析】 因为aa n =3n ,所以a 1≤3,若a 1=1,那么a 1=aa 1=3×1=3≠1矛盾,若a 1=2,那么a 2=aa 1=3×1=3成立,若a 1=3,那么a 3=aa 1=3×1=3=a 1矛盾,所以a 2=b 1=2,当aa an =3a n =a 3n ,所以b n =a 2·3n -1=a 3·2·3n -2=3a 2·3n -2=3b n -1,即b n b n -1=3,数列{b n }是首项为2,公比为3的等比数列,所以前n 项和为b 1(1-q n )1-q =3(1-33)1-3=3n +1-32,故选D.【答案】 D题组训练一 等差、等比数列的基本运算1.设等差数列{a n }的前n 项和为S n ,若a 3+a 5=4,S 15=60则a 20等于( ) A .4 B .6 C .10 D .12 【解析】 等差数列{a n }的前n 项和为S n , ∈a 3+a 5=4,S 15=60,∈⎩⎪⎨⎪⎧a 1+2d +a 1+4d =415a 1+15×142d =60, 解得a 1=12,d =12,∈a 20=a 1+19d =12+19×12=10.故选C.【答案】 C2.在等差数列{a n }中,2(a 1+a 3+a 5)+3(a 8+a 10)=36,则a 6等于( ) A .8 B .6 C .4D .3【解析】 由等差数列的性质可知,2(a 1+a 3+a 5)+3(a 8+a 10)=2×3a 3+3×2a 9=6(a 3+a 9)=6×2a 6=12a 6=36,∈a 6=3.故选D.【答案】 D3.已知等比数列{a n }的前n 项和为S n ,a 1+a 3=30,S 4=120,设b n =1+log 3a n ,那么数列{b n }的前15项和为( )A .152B .135C .80D .16【解析】 设等比数列{a n }的公比为q ,由a 1+a 3=30,a 2+a 4=S 4-(a 1+a 3)=90,所以公比q =a 2+a 4a 1+a 3=3,首项a 1=301+q 2=3,所以a n =3n ,b n =1+log 33n =1+n ,则数列{b n }是等差数列,前15项的和为15×(2+16)2=135,故选B. 【答案】 B题型二 等差、等比数列的性质及应用 【题型要点】(1)解决此类问题的关键是抓住项与项之间的关系及项的序号之间的关系,从这些特点入手选择恰当的性质进行求解.(2)等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形.【例4】已知数列{a n },{b n }满足b n =log 2a n ,n ∈N *,其中{b n }是等差数列,且a 8·a 2 008=14,则b 1+b 2+b 3+…+b 2 015等于( ) A .log 22 015B .2 015C .-2 015D .1 008【解析】 ∈数列{a n },{b n }满足b n =log 2a n ,n ∈N *,其中{b n }是等差数列,∈数列{a n }是等比数列,由a 8·a 2 008=14,可得a 21 008=14,即a 1 008=12,∈a 1·a 2 015=a 2·a 2 014=…=a 1 007·a 1009=a 21 008=14,∈b 1+b 2+b 3+…+b 2 015=log 2(a 1·a 2·…·a 2 015)=log 2201521⎪⎭⎫ ⎝⎛=-2 015.【答案】C2.各项均为正数的等比数列{a n }的前n 项和为S n ,若S 4=10,S 12=130,则S 8等于( ) A .-30 B .40 C .40或-30D .40或-50【解析】 ∈数列{a n }为等比数列且数列{a n }的前n 项和为S n ,∈S 4,S 8-S 4,S 12-S 8也构成等比数列.∈(S 8-S 4)2=S 4·(S 12-S 8),∈S 4=10,S 12=130,各项均为正数的等比数列{a n }, ∈(S 8-10)2=10·(130-S 8),∈S 8=40.故选B. 【答案】 B3.等比数列{a n }的首项为32,公比为-12,前n 项和为S n ,则当n ∈N *时,S n -1S n的最大值与最小值之和为( )A .-23B .-712C.14D.56【解析】 依题意得,S n =⎪⎭⎫ ⎝⎛--⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-21121123n=1-n⎪⎭⎫⎝⎛-21.当n 为奇数时,S n =1+12n 随着n 的增大而减小,1<S n =1+12n ≤S 1=32,S n-1S n 随着S n 的增大而增大,0<S n -1S n ≤56;当n 为偶数时,S n =1-12n 随着n 的增大而增大,34=S 2≤S n =1-12n <1,S n -1S n 随着S n 的增大而增大,-712≤S n -1S n <0.因此S n -1S n 的最大值与最小值分别为56、-712,其最大值与最小值之和为56-712=312=14,选C.【答案】 C题组训练二 等差、等比数列的性质及应用1.在等比数列{a n }中,a 3,a 15是方程x 2-7x +12=0的两根,则a 1a 17a 9的值为( )A .2 3B .4C .±2 2D .±4【解析】 ∈a 3,a 15是方程x 2-7x +12=0的两根,∈a 3a 15=12,a 3+a 15=7,∈{a n }为等比数列,又a 3,a 9,a 15同号,∈a 9>0,∈a 9=a 3a 15=23,∈a 1a 17a 9=a 29a 9=a 9=2 3.故选A.【答案】 A2.设公差为d 的等差数列{a n }的前n 项和为S n ,若a 1=1,-217<d <-19,则当S n 取最大值时n 的值为________.【解析】 因为等差数列{a n }的公差d 为负值,所以{a n }是递减数列.又a 1=1,所以由a n =a 1+(n -1)d >0得n <d -a 1d ,即n <1-1d ,因为-217<d <-19,所以192<1-1d <10,所以n ≤9,即当n ≤9时,a n >0,当n ≥10时,a n <0.所以当S n 取得最大值时n 的值为9.【答案】 93.若{a n }是等差数列,首项a 1>0,a 2 016+a 2 017>0,a 2 016·a 2 017<0,则使前n 项和S n>0成立的最大正整数n 是( )A .2 016B .2 017C .4 032D .4 033【解析】 因为a 1>0,a 2 016+a 2 017>0,a 2 016·a 2 017<0,所以d <0,a 2 016>0,a 2 017<0,所以S 4 032=4 032(a 1+a 4 032)2=4 032(a 2 016+a 2 017)2>0,S 4 033=4 033(a 1+a 4 033)2=4 033a 2017<0,所以使前n 项和S n >0成立的最大正整数n 是4 032,故选C.【答案】 C题型三 等差、等比数列的综合问题 【题型要点】关于等差、等比数列的综合问题多属于两者运算的综合题以及相互之间的转化,关键是求出两个数列的基本量:首项和公差(或公比),灵活运用性质转化条件,简化运算,准确记忆相关的公式是解决此类问题的关键.【例3】已知等差数列{a n }的公差为-1,且a 2+a 7+a 12=-6. (1)求数列{a n }的通项公式a n 与前n 项和S n ;(2)将数列{a n }的前4项抽去其中一项后,剩下三项按原来顺序恰为等比数列{b n }的前3项,记{b n }的前n 项和为T n ,若存在m ∈N *,使对任意n ∈N *,总有S n <T m +λ恒成立,求实数λ的取值范围.【解析】 (1)由a 2+a 7+a 12=-6,得a 7=-2,∈a 1=4, ∈a n =5-n ,从而S n =n (9-n )2.(2)由题意知b 1=4,b 2=2,b 3=1,设等比数列{b n }的公比为q ,则q =b 2b 1=12,∈T m =2112114-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-m =8⎪⎭⎫ ⎝⎛-m )21(1, ∈m⎪⎭⎫⎝⎛21随m 增加而递减, ∈{T m }为递增数列,得4≤T m <8. 又S n =n (9-n )2=-12(n 2-9n )=-12⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛-481292n ,故(S n )max =S 4=S 5=10,若存在m ∈N *,使对任意n ∈N *总有S n <T m +λ, 则10<8+λ,得λ>2.即实数λ的取值范围为(2,+∞). 题组训练三 等差、等比数列的综合问题已知数列{a n }中,a 1=1,a n ·a n +1=n⎪⎭⎫ ⎝⎛21,记T 2n 为{a n }的前2n 项的和,b n =a 2n +a 2n -1,n ∈N *.(1)判断数列{b n }是否为等比数列,并求出b n ; (2)求T 2n .【解析】 (1)∈a n ·a n +1=n⎪⎭⎫⎝⎛21,∈a n +1·a n +2=121+⎪⎭⎫⎝⎛n ,∈a n +2a n =12,即a n +2=12a n .∈b n =a 2n +a 2n -1,∈b n +1b n =a 2n +2+a 2n +1a 2n +a 2n -1=12a 2n +12a 2n -1a 2n +a 2n -1=12所以{b n }是公比为12的等比数列.∈a 1=1,a 1·a 2=12,∈a 2=12∈b 1=a 1+a 2=32.∈b n =32×121-⎪⎭⎫⎝⎛n =32n . (2)由(1)可知a n +2=12a n ,所以a 1,a 3,a 5,…是以a 1=1为首项,以12为公比的等比数列;a 2,a 4,a 6,…是以a 2=12为首项,以12为公比的等比数列. ∈T 2n =(a 1+a 3+…+a 2n -1)+(a 2+a 4+…+a 2n )=[]21121121211211-⎪⎭⎫ ⎝⎛-+-⎪⎭⎫⎝⎛-nn =3-32n .题型四 数列与其他知识的交汇 【题型要点】数列在中学教材中既有相对独立性,又有较强的综合性,很多数列问题一般转化,特殊数列求解,一些题目常与函数、向量、三角函数、解析几何等知识交汇结合,考查数列的基本运算与应用.【例4】 已知等差数列{a n }的前n 项和为S n ,若OB →=a 1OA →+a 2 016OC →,且A ,B ,C 三点共线(该直线不过点O ),则S 2 016等于( )A .1 007B .1 008C .2 015D .2 016 【解析】 ∈A 、B 、C 三点共线∈AB →=λAC →∈OB →-OA →=λ(OC →-OA →),OB →=(1-λ)OA →+λOC → 又∈OB →=a 1·OA →+a 2 016OC →,∈a 1=1-λ,a 2 016=λ ∈a 1+a 2 016=1∈S 2 016=2 016(a 1+a 2 016)2=1 008,∈选B.【答案】 B题组训练四 数列与其他知识的交汇1.在由正数组成的等比数列{a n }中,若a 3a 4a 5=3π,则sin(log 3a 1+log 3a 2+…+log 3a 7)的值为( )A.12B.32C .1D .-32【解析】 因为a 3a 4a 5=3π=a 34,所以a 4=3π3,即log 3a 1+log 3a 2+…+log 3a 7=log 3(a 1a 2…a 7)=log 3a 74=7log 33π3=7π3,所以sin(log 3a 1+log 3a 2+…+log 3a 7)=32. 【答案】 B2.已知各项都为正数的等比数列{a n }满足a 7=a 6+2a 5,存在两项a m ,a n 使得 a m ·a n =4a 1,则1m +4n的最小值为( )A.32B.53C.256D.43【解析】 由a 7=a 6+2a 5,得a 1q 6=a 1q 5+2a 1q 4,整理得q 2-q -2=0,解得q =2或q=-1(不合题意,舍去),又由a m ·a n =4a 1,得a m a n =16a 21,即a 212m+n -2=16a 21,即有m +n-2=4,亦即m +n =6,那么1m +4n =16(m +n )⎪⎭⎫⎝⎛+n m 41=16⎪⎪⎭⎫ ⎝⎛+⋅≥⎪⎭⎫ ⎝⎛++5426154m n n m m n n m =32,当且仅当4m n =n m ,即n =2m =4时取得最小值32.【答案】 A3.艾萨克·牛顿(1643年1月4日-1727年3月31日)英国皇家学会会长,英国著名物理学家,同时在数学上也有许多杰出贡献,牛顿用“作切线”的方法求函数f (x )的零点时给出一个数列{}x n 满足x n +1=x n -f (x n )f ′(x n ),我们把该数列称为牛顿数列.如果函数f (x )=ax 2+bx +c (a >0)有两个零点1,2,数列{}x n 为牛顿数列,设a n =ln x n -2x n -1,已知a 1=2,x n >2,则{}a n 的通项公式a n =________.【解析】 ∈ 函数f (x )=ax 2+bx +c (a >0)有两个零点1,2,∈⎩⎪⎨⎪⎧ a +b +c =0,4a +2b +c =0, 解得⎩⎪⎨⎪⎧c =2a ,b =-3a . ∈f (x )=ax 2-3ax +2a ,则f ′(x )=2ax -3a .则x n +1=x n -ax 2n -3ax n +2a 2ax n -3a =x n -x 2n -3x n +22x n -3=x 2n -22x n -3,∈x n +1-2x n +1-1=x 2n -22x n-3-2x 2n -22x n -3-1=x 2n -2-2(2x n -3)x 2n -2-(2x n -3)=212⎪⎪⎭⎫⎝⎛--n n x x , 则数列a n 是以2为公比的等比数列,又∈a 1=2 ,∈ 数列{}a n 是以2为首项,以2为公比的等比数列,则a n=2·2n-1=2n.【答案】2n【专题训练】一、选择题1.等比数列{a n}中,a4=2,a7=5,则数列{lg a n}的前10项和等于()A.2B.lg 50C.10D.5【解析】∈等比数列{a n}中,a4=2,a7=5,∈a1a10=a2a9=…=a4a7=10,∈数列{lg a n}的前10项和S=lg a1+lg a2+…+lg a10=lg a1a2…a10=lg 105=5,故选D【答案】D2.在正项等比数列{a n}中,已知a3a5=64,则a1+a7的最小值为()A.64 B.32C.16 D.8【解析】在正项等比数列{a n}中,∈a3a5=64,∈a3a5=a1a7=64,∈a1+a7≥2a1a7=264=2×8=16,当且仅当a1=a7=8时取等号,∈a1+a7的最小值为16,故选C.【答案】C3.一个等比数列的前三项的积为2,最后三项的积为4,且所有项的积为64,则该数列的项数是()A.13 B.12C.11 D.10【解析】设等比数列为{a n},其前n项积为T n,由已知得a1a2a3=2,a n a n-1a n-2=4,可得(a1a n)3=2×4,a1a n=2,∈T n=a1a2…a n,∈T2n=(a1a2…a n)2=(a1a n)(a2a n-1)…(a n a1)=(a1a n)n =2n=642=212,∈n=12.【答案】 B4.在数列{a n }中,若a 1=2,且对任意正整数m ,k ,总有a m +k =a m +a k ,则{a n }的前n 项和S n 等于( )A .n (3n -1)B.n (n +3)2C .n (n +1)D.n (3n +1)2【解析】 依题意得a n +1=a n +a 1,即有a n +1-a n =a 1=2,所以数列{a n }是以2为首项,2为公差的等差数列,a n =2+2(n -1)=2n ,S n =n (2+2n )2=n (n +1),选C.【答案】 C5.记S n 为正项等比数列{a n }的前n 项和,若S 12-S 6S 6-7·S 6-S 3S 3-8=0,且正整数m ,n满足a 1a m a 2n =2a 35,则1m +8n的最小值是( ) A.157 B.95 C.53D.75【解析】 ∈{a n }是等比数列,设{a n }的公比为q , ∈S 12-S 6S 6=q 6,S 6-S 3S 3=q 3,∈q 6-7q 3-8=0,解得q =2(负值舍去).又a 1a m a 2n =2a 35,∈a 31·2m +2n -2=2(a 124)3=a 31213,∈m +2n =15,∈1m +8n =115⎪⎭⎫⎝⎛+n m 81(m +2n )=17+2n m +8m n 15≥17+22n m ×8m n 15=53,当且仅当2n m =8mn,即m =3,n =6时等号成立,∈1m +8n 的最小值是53,故选C. 【答案】 C6.数列{}a n 是以a 为首项,b 为公比的等比数列,数列{}b n 满足b n =1+a 1+a 2+…+a n (n =1,2,…),数列{}c n 满足c n =2+b 1+b 2+…+b n (n =1,2,…),若{}c n 为等比数列,则a +b 等于( )A. 2 B .3 C. 5D .6【解析】 由题意知,当b =1时,{c n }不是等比数列,所以b ≠1.由a n =ab n -1,则b n =1+a (1-b n )1-b =1+a 1-b -ab n 1-b ,得c n =2+nb a ⎪⎭⎫ ⎝⎛-+11-a 1-b ·b (1-b n )1-b =2-ab (1-b )2+1-b +a 1-b n +abn +1(1-b )2,要使{}c n为等比数列,必有⎩⎪⎨⎪⎧2-ab(1-b )2=0,1-b +a1-b =0,得⎩⎪⎨⎪⎧a =1,b =2,a +b =3,故选B.【答案】 B 二、填空题7.数列{a n }的通项a n =n 2·⎪⎭⎫ ⎝⎛-3sin 3cos22ππn n ,其前n 项和为S n ,则S 30=________. 【解析】 由题意可知,a n =n 2·cos 2n π3,若n =3k -2,则a n =(3k -2)2·⎪⎭⎫⎝⎛-21=-9k 2+12k -42(k ∈N *);若n =3k -1,则a n =(3k -1)2·⎪⎭⎫ ⎝⎛-21=-9k 2+6k -12(k ∈N *);若n =3k ,则a n =(3k )2·1=9k 2(k ∈N *),∈a 3k -2+a 3k -1+a 3k =9k -52,k ∈N *,∈S 30=9-52+90-522×10=470.【答案】 4708.已知数列{a n }满足a 1=2,且a n =2na n -1a n -1+n -1(n ≥2,n ∈N *),则a n =________.【解析】 由a n =2na n -1a n -1+n -1,得n a n =n -12a n -1+12,于是n a n -1=12⎪⎪⎭⎫ ⎝⎛---111n a n (n ≥2,n ∈N *). 又1a 1-1=-12,∈数列⎭⎬⎫⎩⎨⎧-1nan 是以-12为首项,12为公比的等比数列,故n a n -1=-12n ,∈a n =n ·2n2n -1(n ∈N *).【答案】 n ·2n2n -19.在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增一十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢.问:几日相逢?( )A .8日B .9日C .12日D .16日【解析】由题可知,良马每日行程a n 构成一个首项为103,公差13的等差数列,驽马每日行程b n 构成一个首项为97,公差为-0.5的等差数列,则a n =103+13(n -1)=13n +90,b n =97-0.5(n -1)=97.5-0.5n ,则数列{a n }与数列{b n }的前n 项和为1125×2=2250,又∈数列{a n }的前n 项和为n 2×(103+13n +90),数列{b n }的前n 项和为n 2×(97+97.5-0.5n ),n 2(103+3n +90)+n2(97+97.5-0.5n )=2250,整理得:25n 2+775n -9 000=0,即n 2+31n -360=0,解得:n =9或n =-40(舍),即九日相逢.故选B.【答案】B10.数列{log k a n }是首项为4,公差为2的等差数列,其中k >0,且k ≠1.设c n =a n lg a n ,若{c n }中的每一项恒小于它后面的项,则实数k 的取值范围为________.【解析】 由题意得log k a n =2n +2,则a n =k2n +2,∈a n +1a n =k 2(n +1)+2k2n +2=k 2,即数列{a n }是以k 4为首项,k 2为公比的等比数列,c n =a n lg a n =(2n +2)·k 2n +2lg k ,要使c n <c n +1对一切n ∈N *恒成立,即(n +1)lg k <(n +2)·k 2·lg k 对一切n ∈N *恒成立;当k >1时,lg k >0,n +1<(n +2)k 2对一切n ∈N *恒成立;当0<k <1时,lg k <0,n +1>(n +2)k 2对一切n ∈N *恒成立,只需k 2<⎪⎭⎫ ⎝⎛++21n n min .∈n +1n +2=1-1n +2单调递增,∈当n =1时,n +1n +2取得最小值,即⎪⎭⎫⎝⎛++21n n min =23,∈k 2<23,且0<k <1,∈0<k <63.综上,k ∈⎪⎪⎭⎫ ⎝⎛36,0∈(1,+∞).【答案】 ⎪⎪⎭⎫⎝⎛36,0∈(1,+∞) 三、解答题11.已知数列{}a n 的前n 项和为S n ,且S n =2a n -3n (n ∈N *). (1)求a 1,a 2,a 3的值;(2)是否存在常数λ,使得数列{a n +λ}为等比数列?若存在,求出λ的值和通项公式a n ;若不存在,请说明理由.【解】 (1)当n =1时,由S 1=2a 1-3×1,得a 1=3; 当n =2时,由S 2=2a 2-3×2,可得a 2=9; 当n =3时,由S 3=2a 3-3×3,得a 3=21.(2)令(a 2+λ)2=(a 1+λ)·(a 3+λ),即(9+λ)2=(3+λ)·(21+λ),解得λ=3. 由S n =2a n -3n 及S n +1=2a n +1-3(n +1),两式相减,得a n +1=2a n +3.由以上结论得a n +1+3=(2a n +3)+3=2(a n +3),所以数列{a n +3}是首项为6,公比为2的等比数列,因此存在λ=3,使得数列{a n +3}为等比数列,所以a n +3=(a 1+3)×2n -1,a n =3(2n -1)(n ∈N *).12.已知数列{a n }的前n 项和为S n ,且S n -1=3(a n -1),n ∈N *. (1)求数列{a n }的通项公式;(2)设数列{b n }满足a n +1=⎪⎭⎫⎝⎛23a n ·b n ,若b n ≤t 对于任意正整数n 都成立,求实数t 的取值范围.【解】 (1)由已知得S n =3a n -2,令n =1,得a 1=1,又a n +1=S n +1-S n =3a n +1-3a n ∈a n+1=32a n ,所以数列{a n }是以1为首项,32为公比的等比数列,所以a n =123-⎪⎭⎫⎝⎛n .(2)由a n +1=⎪⎭⎫ ⎝⎛23a n ·b n ,得b n =1a n log 32a n +1=(23)n -1log 32(32)n =n ·123-⎪⎭⎫⎝⎛n ,所以b n +1-b n =(n +1)·n ⎪⎭⎫ ⎝⎛32-n ·132-⎪⎭⎫⎝⎛n =2n -13n (2-n ),所以(b n )max =b 2=b 3=43,所以t ≥43.。
2020年高考数学二轮复习:06 等差数列与等比数列一、单选题(共12题;共24分)1.在等差数列中,,则数列的公差为()A. B. C. 1 D. 2【答案】A【考点】等差数列的通项公式2.已知数列为等比数列,,数列的前项和为,则等于()A. B. C. D.【答案】A【考点】等比数列的通项公式,等比数列的前n项和3.已知数列为各项均为正数的等比数列,是它的前项和,若,且,则=()A. 32B. 31C. 30D. 29【答案】B【考点】等比数列的前n项和,等比数列的性质4.数列的通项公式,其前项和为,则()A. B. C. D.【答案】A【考点】函数的周期性,等差数列的前n项和5.已知数列满足,且成等比数列.若的前n项和为,则的最小值为()A. B. C. D.【答案】 D【考点】等差数列的前n项和,等比数列的性质6.已知为等差数列,其公差为-2,且是与的等比中项,为的前n项和,,则的值为()A. -100B. -90C. 90D. 110【答案】 D【考点】等差数列的前n项和,等比数列的性质7.在中,角、、所对的边分别为、、,若、、成等差数列,且,则()A. B. C. D.【答案】A【考点】等差数列的性质,任意角三角函数的定义,正弦定理8.在等比数列中,,,且前项和,则此数列的项数等于()A. B. C. D.【答案】B【考点】等比数列的前n项和,等比数列的性质9.在等差数列中,已知,则该数列前9项和()A. 18B. 27C. 36D. 45【答案】 D【考点】等差数列的前n项和,等差数列的性质10.等比数列的公比,则等于()A. B. -3 C. D. 3【答案】C【考点】等比数列的性质11.已知数列满足,且是函数的极值点,设,记表示不超过的最大整数,则()A. 2019 B. 2018 C. 1009 D. 1008【答案】 D【考点】利用导数研究函数的单调性,等比数列的通项公式,数列的求和12.明代朱载堉创造了音乐学上极为重要的“等程律”.在创造律制的过程中,他不仅给出了求解三项等比数列的等比中项的方法,还给出了求解四项等比数列的中间两项的方法.比如,若已知黄钟、大吕、太簇、夹钟四个音律值成等比数列,则有,,.据此,可得正项等比数列中,()A. B. C. D.【答案】C【考点】等比数列的通项公式二、填空题(共5题;共5分)13.已知数列为正项等差数列,其前2020项和,则的最小值为________. 【答案】4【考点】基本不等式在最值问题中的应用,等差数列的前n项和14.若数列{}的前项和,则此数列的通项公式________.【答案】【考点】等差数列的通项公式15.已知数列的各项均为正数,其前项和为,且满足,则________.【答案】【考点】数列的概念及简单表示法,数列递推式16.已知等差数列的前项和是,,且成等比数列,则________. 【答案】【考点】等差数列的通项公式,等差数列的前n项和,等比数列的性质17.我国古代庄周所著的《庄子天下篇》中引用过一句话:“一尺之棰,日取其半,万世不竭”,其含义是:一根一尺长的木棒,每天截下其一半,这样的过程可以无限地进行下去.若把“一尺之棰”的长度记为1个单位,则第天“日取其半”后,记木棒剩下部分的长度为,则________【答案】【考点】数列的概念及简单表示法,归纳推理三、解答题(共4题;共35分)18.已知等差数列和等比数列满足a1=b1=1,a2+a4=10,b2b4=a5.(Ⅰ)求的通项公式;(Ⅱ)求和:.【答案】解:(Ⅰ)设等差数列{a n}的公差为d.因为a2+a4=10,所以2a1+4d=10.解得d=2.所以a n=2n−1.(Ⅱ)设等比数列的公比为q.因为b2b4=a5,所以b1qb1q3=9.解得q2=3.所以.从而【考点】数列的求和,等差数列与等比数列的综合19.已知数列满足,且时,,,成等差数列.(1)求证:数列为等比数列;(2)求数列的前项和.【答案】(1)证明:由题意,当时,,,成等差数列,则,即,,又,数列是以1为首项,2为公比的等比数列.(2)解:由(1),知,即,.【考点】等比关系的确定,数列的求和,等差数列的性质20.已知公差为的等差数列中,,且成等比数列(1)求数列的通项公式;(2)若数列的前项和为,且,求的值.【答案】(1)解:因为成等比数列,所以,即,将代入得,又,解得,所以(2)解:=则【考点】等差数列的通项公式,等差数列的前n项和,等比数列的性质21.已知等差数列的首项为1,公差为1,等差数列满足.(1)求数列和数列的通项公式;(2)若,求数列的前项和.【答案】(1)解:由条件可知,,.,,,.由题意为等差数列,,解得,(2)解:由(1)知,,①则②①-②可得,.【考点】等差数列的通项公式,数列的求和,等差数列的性质。
姓名,年级:时间:§6。
3 等比数列及其前n项和【考点集训】考点一等比数列的定义及通项公式1。
(2019届河南濮阳模拟,6)已知等比数列{a n}各项均为正数,满足a1+a3=3,a3+a5=6,则a1a3+a2a4+a3a5+a4a6+a5a7=( )A.62 B。
62√2C。
61 D.61√2答案 A2.(2018湖北八校第一次联考,17)已知数列{a n}满足a1=1,a2=4,a n+2=4a n+1-4a n.(1)求证:{a n+1-2a n}是等比数列;(2)求{a n}的通项公式.解析(1)证明:由a n+2=4a n+1-4a n得a n+2-2a n+1=2a n+1-4a n=2(a n+1-2a n)=22(a n—2a n-1)=…=2n(a2-2a1)≠0,∴a n+2-2a n+1a n+1-2a n=2,∴{a n+1-2a n}是等比数列。
(2)由(1)可得a n+1-2a n=2n-1(a2-2a1)=2n,∴a n+12n+1-a n2n=12,∴{a n2n}是首项为12,公差为12的等差数列,∴a n2n=n2,则a n=n·2n-1.考点二等比数列的性质及其应用1.(2018安徽马鞍山第二次教学质量监测,5)已知等比数列{a n}满足a1=1,a3·a5=4(a4—1),则a7的值为()A.2 B。
4 C。
92D。
6答案 B2。
(2019届河北石家庄新华区模拟,9)已知正数组成的等比数列{a n}的前8项的积是81,那么a1+a8的最小值是()A.2√3B.2√2C.8D.6答案 A考点三等比数列的前n项和1.(2018广东佛山教学质量检测(二),16)数列{a n}满足a1+3a2+…+(2n-1)a n=3—2n+32n,n∈N*,则a1+a2+…+a n= .答案1—12n2.(2019届浙江温州模拟,15)设等比数列{a n}的前n项和为S n,8a2-a5=0,则公比q的值为,若—S n2n有最大值—2,则a1的值为.答案2;43。
第1讲 等差数列与等比数列「考情研析」 1.从具体内容上,主要考查等差数列、等比数列的基本计算和基本性质及等差、等比数列中项的性质、判定与证明. 2.从高考特点上,难度以中、低档题为主,近几年高考题一般设置一道选择题和一道解答题,分值分别为5分和12分.核心知识回顾1.等差数列(1)通项公式:□01a n =a 1+(n -1)d =a m +(n -m )d . (2)等差中项公式:□022a n =a n -1+a n +1(n ∈N *,n ≥2). (3)前n 项和公式:□03S n =n a 1+a n2=na 1+n n -1d2.2.等比数列(1)等比数列的通项公式:□01a n =a 1q n -1=a m q n -m . (2)等比中项公式:□02a 2n =a n -1·a n +1(n ∈N *,n ≥2).(3)等比数列的前n 项和公式:□03S n =⎩⎪⎨⎪⎧na 1q =1,a 1-a n q 1-q=a 11-q n1-q q ≠1.3.等差数列的性质(n ,m ,l ,k ,p 均为正整数)(1)若m +n =l +k ,则□01a m +a n =a l +a k (反之不一定成立);特别地,当m +n =2p 时,有□02a m +a n =2a p .(2)若{a n },{b n }是等差数列,则{ka n +tb n }(k ,t 是非零常数)是□03等差数列. (3)等差数列的“依次每m 项的和”即S m ,□04S 2m -S m ,□05S 3m -S 2m ,…仍是等差数列. (4)等差数列{a n }当项数为2n 时,S 偶-S 奇=□06nd ,S 奇S 偶=□07a n a n +1,项数为2n -1时,S 奇-S 偶=□08a 中=□09a n ,S 2n -1=(2n -1)a n 且S 奇S 偶=□10n n -1.(其中S 偶表示所有的偶数项之和,S 奇表示所有的奇数项之和)4.等比数列的性质(n ,m ,l ,k ,p 均为正整数)(1)若m +n =l +k ,则□01a m ·a n =a l ·a k (反之不一定成立);特别地,当m +n =2p 时,有□02a m ·a n =a 2p .(2)当n 为偶数时,S 偶S 奇=□03q (公比).(其中S 偶表示所有的偶数项之和,S 奇表示所有的奇数项之和)(3)等比数列“依次m 项的和”,即S m ,□04S 2m -S m , □05S 3m -S 2m ,…(S m ≠0)成等比数列.热点考向探究考向1 等差数列、等比数列的运算例1 (1)(2019·陕西榆林高考第三次模拟)在等差数列{a n }中,其前n 项和为S n ,且满足若a 3+S 5=12,a 4+S 7=24,则a 5+S 9=( )A .24B .32C .40D .72答案 C解析 ∵a 3+S 5=6a 3=12,a 4+S 7=8a 4=24,∴a 3=2,a 4=3,∴a 5=4.∴a 5+S 9=10a 5=40,故选C.(2)在等差数列{a n }中,已知a 4=5,a 3是a 2和a 6的等比中项,则数列{a n }的前5项的和为( )A .15B .20C .25D .15或25答案 D解析 设公差为d ,∵a 3为a 2,a 6的等比中项,∴a 23=a 2·a 6,即(a 4-d )2=(a 4-2d )(a 4+2d ),∴5d (d -2)=0,∴d =0或d =2.∴5-d =5或3,即a 3=5或3,∴S 5=5a 3=25或15.故选D.(3)已知正项数列{a n }满足a 2n +1-6a 2n =a n +1a n ,若a 1=2,则数列{a n }的前n 项和为________. 答案 3n-1解析 ∵a 2n +1-6a 2n =a n +1a n ,∴(a n +1-3a n )(a n +1+2a n )=0,∵a n >0,∴a n +1=3a n ,∴{a n }为等比数列,且首项为2,公比为3,∴S n =3n-1.利用等差数列、等比数列的通项公式、前n 项和公式,能够在已知三个元素的前提下求解另外两个元素,其中等差数列的首项和公差、等比数列的首项和公比为最基本的量,解题中首先要注意求解最基本的量.1.在各项为正数的等比数列{a n }中,S 2=9,S 3=21,则a 5+a 6=( ) A .144 B .121 C .169 D .148答案 A解析 由题意可知,⎩⎪⎨⎪⎧a 1+a 2=9,a 1+a 2+a 3=21,即⎩⎪⎨⎪⎧a 11+q =9,a 11+q +q2=21,解得⎩⎪⎨⎪⎧q =2,a 1=3或⎩⎪⎨⎪⎧q =-23,a 1=27(舍去).∴a 5+a 6=a 1q 4(1+q )=144.故选A.2.(2019·辽宁沈阳郊联体高三一模)我国南北朝时的数学著作《张邱建算经》有一道题为:“今有十等人,每等一人,宫赐金以等次差降之,上三人先入,得金四斤,持出,下三人后入得金三斤,持出,中间四人未到者,亦依次更给,问各得金几何?”则在该问题中,五等人与六等人所得黄金数之和为( )A.13 B.76C.73D.67答案 C解析 设a n 为第n 等人的得金数,则{a n }为等差数列,由题设可知a 1+a 2+a 3=4,a 8+a 9+a 10=3,故a 2=43,a 9=1,而a 5+a 6=a 2+a 9=73.故选C.3.(2019·安徽太和第一中学高一调研)定义:在数列{a n }中,若满足a n +2a n +1-a n +1a n=d (n ∈N *,d 为常数),称{a n }为“等差比数列”.已知在“等差比数列”{a n }中,a 1=a 2=1,a 3=3,则a 2022a 2020=( ) A .4×20202-1 B .4×20192-1 C .4×20222-1 D .4×20192答案 A解析 ∵a 1=a 2=1,a 3=3,∴a 3a 2-a 2a 1=2,∴⎩⎨⎧⎭⎬⎫a n +1a n 是以1为首项,2为公差的等差数列,∴a n +1a n=2n -1, ∴a 2022a 2020=a 2022a 2021·a 2021a 2020=(2×2021-1)×(2×2020-1)=4×20202-1.故选A. 考向2 等差数列、等比数列的判定与证明例2 已知数列{a n }中,a 1=1,其前n 项的和为S n ,且满足a n =2S 2n 2S n -1(n≥2,n∈N *).(1)求证:数列⎩⎨⎧⎭⎬⎫1S n 是等差数列;(2)证明:13S 1+15S 2+17S 3+…+12n +1S n <12.证明 (1)当n ≥2时,S n -S n -1=2S 2n 2S n -1,S n -1-S n =2S n ·S n -1,1S n -1S n -1=2,所以数列⎩⎨⎧⎭⎬⎫1S n 是以1为首项,2为公差的等差数列.(2)由(1)可知,1S n =1S 1+(n -1)·2=2n -1,所以S n =12n -1.13S 1+15S 2+17S 3+…+12n +1S n =11×3+13×5+15×7+…+12n -12n +1=12×⎝ ⎛⎭⎪⎫1-13+13-15+15-17+…+12n -1-12n +1=12×⎝ ⎛⎭⎪⎫1-12n +1<12.(1)判断或者证明数列为等差数列、等比数列最基本的方法是用定义判断或证明,其他方法最后都会回到定义,如证明等差数列可以证明通项公式是n 的一次函数,但最后还得使用定义才能说明其为等差数列.(2)证明数列{a n }为等比数列时,不能仅仅证明a n +1=qa n ,还要说明a 1≠0,才能递推得出数列中的各项均不为零,最后断定数列{a n }为等比数列.(3)证明等差、等比数列,还可利用等差、等比数列的中项公式.(2019·江西八所重点中学4月联考)设数列{a n }满足a 1=1,a n +1=44-a n (n ∈N *).(1)求证:数列⎩⎨⎧⎭⎬⎫1a n -2是等差数列; (2)设b n =a 2na 2n -1,求数列{b n }的前n 项和T n . 解 (1)证明:∵a n +1=44-a n ,∴1a n +1-2-1a n -2=144-a n-2-1a n -2=4-a n 2a n -4-1a n -2=2-a n 2a n -4=-12为常数,又a 1=1,∴1a 1-2=-1,∴数列⎩⎨⎧⎭⎬⎫1a n -2是以-1为首项,-12为公差的等差数列.(2)由(1)知,1a n -2=-1+(n -1)⎝ ⎛⎭⎪⎫-12=-n +12,∴a n =2-2n +1=2n n +1,∴b n =a 2na 2n -1=4n 2n +122n -12n =4n 22n -12n +1=1+12n -12n +1=1+12⎝ ⎛⎭⎪⎫12n -1-12n +1,∴T n =b 1+b 2+b 3+…+b n =n +12⎝ ⎛⎭⎪⎫1-13+13-15+15-17+…+12n -1-12n +1=n +12⎝ ⎛⎭⎪⎫1-12n +1=n +n 2n +1,所以数列{b n }的前n 项和T n =n +n2n +1.考向2 数列中a n 与S n 的关系问题例3 设S n 是数列{a n }的前n 项和,已知a 1=3,a n +1=2S n +3(n ∈N *). (1)求数列{a n }的通项公式;(2)令b n =(2n -1)a n ,求数列{b n }的前n 项和T n . 解 (1)当n ≥2时,由a n +1=2S n +3,得a n =2S n -1+3, 两式相减,得a n +1-a n =2S n -2S n -1=2a n , ∴a n +1=3a n ,∴a n +1a n=3. 当n =1时,a 1=3,a 2=2S 1+3=2a 1+3=9,则a 2a 1=3. ∴数列{a n }是以3为首项,3为公比的等比数列. ∴a n =3×3n -1=3n.(2)由(1),得b n =(2n -1)a n =(2n -1)×3n. ∴T n =1×3+3×32+5×33+…+(2n -1)×3n,① 3T n =1×32+3×33+5×34+…+(2n -1)×3n +1,②①-②,得-2T n =1×3+2×32+2×33+…+2×3n -(2n -1)×3n +1=3+2×(32+33+…+3n )-(2n -1)×3n +1=3+2×321-3n -11-3-(2n -1)×3n +1=-6-(2n -2)×3n +1.∴T n =(n -1)×3n +1+3.由a n 与S n 的关系求通项公式的注意点(1)应重视分类讨论思想的应用,分n =1和n ≥2两种情况讨论,特别注意a n =S n -S n -1成立的前提是n ≥2.(2)由S n -S n -1=a n 推得a n ,当n =1时,a 1也适合,则需统一表示(“合写”). (3)由S n -S n -1=a n 推得a n ,当n =1时,a 1不适合,则数列的通项公式应分段表示(“分写”),即a n =⎩⎪⎨⎪⎧S 1n =1,S n -S n -1n ≥2.(2019·福建泉州5月质检)设数列{a n }的前n 项和为S n ,已知S 1=2,a n +1=S n +2. (1)证明:{a n }为等比数列;(2)记b n =log 2a n ,数列⎩⎨⎧⎭⎬⎫λb n b n +1的前n 项和为T n ,若T n ≥10恒成立,求λ的取值范围. 解 (1)证明:由已知,得a 1=S 1=2,a 2=S 1+2=4, 当n ≥2时,a n =S n -1+2,所以a n +1-a n =(S n +2)-(S n -1+2)=a n ,所以a n +1=2a n (n ≥2). 又a 2=2a 1,所以a n +1a n=2(n ∈N *), 所以{a n }是首项为2,公比为2的等比数列. (2)由(1)可得a n =2n,所以b n =n . 则λb n b n +1=λn n +1=λ⎝ ⎛⎭⎪⎫1n -1n +1, T n =λ⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1=λ⎝ ⎛⎭⎪⎫1-1n +1, 因为T n ≥10,所以λn n +1≥10,从而λ≥10n +1n, 因为10n +1n =10⎝ ⎛⎭⎪⎫1+1n ≤20,所以λ的取值范围为[20,+∞).真题押题 『真题模拟』1.(2019·湖南六校高三联考)已知公差d ≠0的等差数列{a n }满足a 1=1,且a 2,a 4-2,a 6成等比数列,若正整数m ,n 满足m -n =10,则a m -a n =( )A .10B .20C .30D .5或40答案 C解析 由题意,知(a 4-2)2=a 2a 6,因为{a n }为等差数列,所以(3d -1)2=(1+d )(1+5d ),因为d ≠0,解得d =3,从而a m -a n =(m -n )d =30.故选C .2.(2019·全国卷Ⅲ)已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3=( )A .16B .8C .4D .2答案 C解析 由题意知⎩⎪⎨⎪⎧a 1>0,q >0,a 1+a 1q +a 1q 2+a 1q 3=15,a 1q 4=3a 1q 2+4a 1,解得⎩⎪⎨⎪⎧a 1=1,q =2,∴a 3=a 1q 2=4.故选C .3.(2019·安徽宣城高三第二次调研)我国明代珠算家程大位的名著《直指算法统宗》中有如下问题:“今有白米一百八十石,令三人从上及和减率分之,只云甲多丙米三十六石,问:各该若干?”其意思为:“今有白米一百八十石,甲、乙、丙三人来分,他们分得的白米数构成等差数列,只知道甲比丙多分三十六石,那么三人各分得多少白米?”请问:乙应该分得________白米( )A .96石B .78石C .60石D .42石答案 C解析 今有白米一百八十石,甲、乙、丙三个人来分,他们分得的米数构成等差数列,只知道甲比丙多分三十六石.设此等差数列为{a n },公差为d ,其前n 项和为S n ,∴d =a 3-a 13-1=-362=-18,S 3=3a 1+3×22×(-18)=180,解得a 1=78.∴a 2=a 1+d =78-18=60.∴乙应该分得60石.故选C .4.(2019·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则( ) A .a n =2n -5 B .a n =3n -10 C .S n =2n 2-8n D .S n =12n 2-2n答案 A解析 设等差数列{a n }的首项为a 1,公差为d .由S 4=0,a 5=5可得⎩⎪⎨⎪⎧a 1+4d =5,4a 1+6d =0,解得⎩⎪⎨⎪⎧a 1=-3,d =2.所以a n =-3+2(n -1)=2n -5,S n =n ×(-3)+n n -12×2=n 2-4n .故选A .5.(2019·新疆高三第一次诊断)已知数列{a n }为等差数列,a 3=3,a 1+a 2+…+a 6=21,数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为S n ,若对一切n ∈N *,恒有S 2n -S n >m16,则m 能取到的最大正整数是________.答案 7解析 设数列{a n }的公差为d ,由题意得,⎩⎪⎨⎪⎧a 1+2d =3,6a 1+15d =21,解得⎩⎪⎨⎪⎧a 1=1,d =1,∴a n =n ,且1a n =1n,∴S n =1+12+13+…+1n ,令T n =S 2n -S n =1n +1+1n +2+…+12n, 则T n +1=1n +2+1n +3+…+12n +2, 即T n +1-T n =12n +2+12n +1-1n +1>12n +2+12n +2-1n +1=0,∴T n +1>T n ,则T n 随着n 的增大而增大,即T n 在n =1处取最小值, ∴T 1=S 2-S 1=12,∵对一切n ∈N *,恒有S 2n -S n >m16成立,∴12>m16即可,解得m <8, 故m 能取到的最大正整数是7.『金版押题』6.设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=12S n +1S n ,则数列{S n }的通项公式为________.答案 -2n +1解析 由已知得a n +1=S n +1-S n =12S n +1S n ,所以1S n +1-1S n =-12,所以⎩⎨⎧⎭⎬⎫1S n 是以-1为首项,-12为公差的等差数列.所以1S n =-1-12(n -1)=-12n -12.故S n =-2n +1. 7.给出一个直角三角形数阵(如下),满足每一列的数成等差数列,从第三行起,每一行的数成等比数列,且每一行的公比相等,记第i 行第j 列的数为a ij (i ≥j ,i ,j ∈N *),则a n 4=________.14 12,14 34,38,316… 答案n32解析 因为每一列的数成等差数列,且第一列公差为12-14=14,所以a i 1=14+(i -1)14=i4,因为从第三行起,每一行的数成等比数列,且每一行的公比相等为3834=12,所以a ij =a i 1⎝ ⎛⎭⎪⎫12j -1=i 4⎝ ⎛⎭⎪⎫12j -1(i ≥3),因此a n 4=n 4⎝ ⎛⎭⎪⎫124-1=n 32.8.已知正项等比数列{a n }满足:a 2a 8=16a 5,a 3+a 5=20,若存在两项a m ,a n 使得 a m a n =32,则1m +4n的最小值为________.答案 34解析 因为数列{a n }是正项等比数列,a 2a 8=16a 5,a 3+a 5=20, 所以a 2a 8=a 25=16a 5,a 5=16,a 3=4.由a 5=a 3q 2,得q =2(q =-2舍去),由a 5=a 1q 4,得a 1=1,所以a n =a 1q n -1=2n -1,因为a m a n =32,所以2m -12n -1=210,m +n =12,1m +4n =112(m +n )⎝ ⎛⎭⎪⎫1m +4n =112⎝ ⎛⎭⎪⎫5+n m +4m n ≥112⎝⎛⎭⎪⎫5+2n m ·4m n =34(m >0,n >0),当且仅当n =2m 时“=”成立,所以1m +4n 的最小值为34.配套作业一、选择题1.(2019·山东德州高三下学期联考)在等比数列{a n }中,a 1=1,a 5+a 7a 2+a 4=8,则a 6的值为( )A .4B .8C .16D .32答案 D解析 设等比数列{a n }的公比为q ,∵a 1=1,a 5+a 7a 2+a 4=8,∴a 1q 4+q 6a 1q +q3=8,解得q =2,则a 6=25=32.故选D . 2.已知等比数列{a n }满足a 1a 2=1,a 5a 6=4,则a 3a 4=( ) A .2 B .±2 C . 2 D .± 2答案 A解析 ∵a 1a 2,a 3a 4,a 5a 6成等比数列,即(a 3a 4)2=(a 1a 2)(a 5a 6),∴(a 3a 4)2=4,a 3a 4与a 1a 2符号相同,故a 3a 4=2,故选A .3.(2019·安徽蚌埠高三下学期第二次检测)等差数列{a n }的公差为d ,若a 1+1,a 2+1,a 4+1成以d 为公比的等比数列,则d =( )A .2B .3C .4D .5答案 A解析 将a 1+1,a 2+1,a 4+1转化为a 1,d 的形式为a 1+1,a 1+1+d ,a 1+1+3d ,由于这三个数成以d 为公比的等比数列,故a 1+1+d a 1+1=a 1+1+3d a 1+1+d =d ,化简得a 1+1=d ,代入a 1+1+da 1+1=d ,得2dd=2=d ,故选A .4.设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9=( ) A .63 B .45 C .36 D .27答案 B解析 解法一:设等差数列{a n }的公差为d ,由S 3=9,S 6=36,得⎩⎪⎨⎪⎧3a 1+3×22d =9,6a 1+6×52d =36,即⎩⎪⎨⎪⎧a 1+d =3,2a 1+5d =12,解得⎩⎪⎨⎪⎧a 1=1,d =2,所以a 7+a 8+a 9=3a 8=3(a 1+7d )=3×(1+7×2)=45.解法二:由等差数列的性质知S 3,S 6-S 3,S 9-S 6成等差数列,即9,27,S 9-S 6成等差数列,所以S 9-S 6=45,即a 7+a 8+a 9=45.5.已知S n 为等比数列{a n }的前n 项和,若S 3,S 9,S 6成等差数列,则( ) A .S 6=-2S 3 B .S 6=-12S 3C .S 6=12S 3D .S 6=2S 3答案 C解析 设等比数列{a n }的公比为q ,则S 6=(1+q 3)S 3,S 9=(1+q 3+q 6)S 3,因为S 3,S 9,S 6成等差数列,所以2(1+q 3+q 6)S 3=S 3+(1+q 3)S 3,解得q 3=-12,故S 6=12S 3.6.(2019·陕西西安高三第一次质检)已知函数y =f (x +1)的图象关于y 轴对称,且函数f (x )在(1,+∞)上单调,若数列{a n }是公差不为0的等差数列,且f (a 4)=f (a 18),则{a n }的前21项之和为( )A .0B .252C .21D .42答案 C解析 函数y =f (x +1)的图象关于y 轴对称,平移可得y =f (x )的图象关于x =1对称,且函数f (x )在(1,+∞)上单调,由数列{a n }是公差不为0的等差数列,且f (a 4)=f (a 18),可得a 4+a 18=2,所以a 1+a 21=a 4+a 18=2,可得数列{a n }的前21项和S 21=21a 1+a 212=21.故选C .二、填空题7.已知数列{a n }的前n 项和为S n ,a 1=1,2S n =a n +1,则S n =________. 答案 3n -1解析 由2S n =a n +1得2S n =a n +1=S n +1-S n ,所以3S n =S n +1,即S n +1S n=3,所以数列{S n }是以S 1=a 1=1为首项,q =3为公比的等比数列,所以S n =3n -1.8.设等比数列{a n }满足a 1+a 2=-1,a 1-a 3=-3,则a 4=________. 答案 -8解析 设等比数列{a n }的公比为q , ∵a 1+a 2=-1,a 1-a 3=-3, ∴a 1(1+q )=-1, ①a 1(1-q 2)=-3. ②∵a 1+a 2=-1≠0,∴q ≠-1,即1+q ≠0. ②÷①,得1-q =3,∴q =-2. ∴a 1=1,∴a 4=a 1q 3=1×(-2)3=-8.9.(2019·山西太原第五中学高三阶段检测)各项均为正数的数列{a n }和{b n }满足:a n ,b n ,a n +1成等差数列,b n ,a n +1,b n +1成等比数列,且a 1=1,a 2=3,则数列{a n }的通项公式为________.答案 a n =n n +12解析 由题设可得a n +1=b n b n +1,a n =b n b n -1,得2b n =a n +a n +1⇒2b n =b n b n -1+b n b n +1,即2b n =b n -1+b n +1,又a 1=1,a 2=3⇒2b 1=4⇒b 1=2,则{b n }是首项为2的等差数列.由已知得b 2=a 22b 1=92,则数列{b n }的公差d =b 2-b 1=322-2=22,所以b n =2+(n -1)22=2n +12,即b n =n +12.当n =1时,b 1=2,当n ≥2时,b n -1=n2,则a n =b n b n -1=n n +12,a 1=1符合上式,所以数列{a n }的通项公式为a n =n n +12.10.已知数列{a n }满足13a 1+132a 2+…+13n a n =3n +1,则a n =________,a 1+a 2+a 3+…+a n =________.答案 ⎩⎪⎨⎪⎧12,n =1,3n +1,n ≥2⎩⎪⎨⎪⎧12,n =1,3n +2-32,n ≥2解析 由题意可得,当n =1时,13a 1=4,解得a 1=12.当n ≥2时,13a 1+132a 2+…+13n -1a n-1=3n -2,所以13n a n =3,n ≥2,即a n =3n +1,n ≥2,又当n =1时,a n =3n +1不成立,所以a n=⎩⎪⎨⎪⎧12,n =1,3n +1,n ≥2.当n ≥2时,a 1+a 2+…+a n =12+33-3n +21-3=3n +2-32.三、解答题11.(2019·广东茂名五大联盟学校高三3月联考)设数列{a n }的前n 项和为S n ,且满足a n -12S n -1=0(n ∈N *).(1)求数列{a n }的通项公式;(2)是否存在实数λ,使得数列{S n +(n +2n)λ}为等差数列?若存在,求出λ的值;若不存在,请说明理由.解 (1)由a n -12S n -1=0(n ∈N *),可知当n =1时,a 1-12a 1-1=0,即a 1=2.又由a n -12S n -1=0(n ∈N *).可得a n +1-12S n +1-1=0,两式相减,得⎝ ⎛⎭⎪⎫a n +1-12S n +1-1-⎝ ⎛⎭⎪⎫a n -12S n -1=0,即12a n +1-a n =0,即a n +1=2a n . 所以数列{a n }是以2为首项,2为公比的等比数列, 故a n =2n(n ∈N *).(2)由(1)知,S n =a 11-q n 1-q=2(2n-1),所以S n +(n +2n )λ=2(2n -1)+(n +2n)λ 若数列{S n +(n +2n)λ}为等差数列,则S 1+(1+2)λ,S 2+(2+22)λ,S 3+(3+23)λ成等差数列, 即有2[S 2+(2+22)λ]=[S 1+(1+2)λ]+[S 3+(3+23)λ], 即2(6+6λ)=(2+3λ)+(14+11λ),解得λ=-2. 经检验λ=-2时,{S n +(n +2n)λ}成等差数列, 故λ的值为-2.12.(2019·江西上饶市高三二模)已知首项为1的等比数列{a n }满足a 2+a 4=3(a 1+a 3),等差数列{b n }满足b 1=a 2,b 4=a 3,数列{b n }的前n 项和为S n .(1)求数列{a n },{b n }的通项公式;(2)若数列{c n }满足c 1a 1+c 2a 2+c 3a 3+…+c n a n=S n ,求{c n }的前n 项和T n . 解 (1)设{a n }的通项公式为a n =a 1qn -1,∴a 1q +a 1q 3=3(a 1+a 1q 2),∴q =3.∵a 1=1,∴a n =3n -1,∴a 2=3,a 3=9,∴b 1=3,b 4=9. 设{b n }的公差为d ,∴d =b 4-b 13=2,∴b n =2n +1.(2)∵b n =2n +1,∴S n =n 3+2n +12=n 2+2n ,当n =1,c 1a 1=3,c 1=3,当n ≥2,c 1a 1+c 2a 2+…+c n a n=n 2+2n ,c 1a 1+c 2a 2+…+c n -1a n -1=(n -1)2+2(n -1), 两式相减,得c na n=2n +1,∴c n =(2n +1)·3n -1,经检验,n =1时上式也成立.综上,c n =(2n +1)·3n -1,n ∈N *.T n =3×30+5×31+…+(2n +1)·3n -1,∴3T n =3×31+5×32+…+(2n +1)·3n, 两式相减-2T n =3-(2n +1)·3n +2×31+2×32+…+2×3n -1=3-(2n +1)·3n+61-3n -11-3=-2n ·3n.∴T n =n ·3n.13.已知数列{a n }的各项均为正数,记数列{a n }的前n 项和为S n ,数列{a 2n }的前n 项和为T n ,且3T n =S 2n +2S n ,n ∈N *.(1)求a 1的值;(2)求数列{a n }的通项公式.解 (1)由3T 1=S 21+2S 1,得3a 21=a 21+2a 1,即a 21-a 1=0. 因为a 1>0,所以a 1=1.(2)因为3T n =S 2n +2S n , ① 所以3T n +1=S 2n +1+2S n +1, ② ②-①,得3a 2n +1=S 2n +1-S 2n +2a n +1, 即3a 2n +1=(S n +a n +1)2-S 2n +2a n +1. 因为a n +1>0, 所以a n +1=S n +1, ③ 所以a n +2=S n +1+1, ④④-③,得a n +2-a n +1=a n +1,即a n +2=2a n +1,所以当n ≥2时,a n +1a n=2. 又由3T 2=S 22+2S 2,得3(1+a 22)=(1+a 2)2+2(1+a 2), 即a 22-2a 2=0.因为a 2>0,所以a 2=2,所以a 2a 1=2,所以对任意的n ∈N *,都有a n +1a n=2成立, 所以数列{a n }的通项公式为a n =2n -1,n ∈N *.14.(2019·河北省中原名校联盟高三联考)已知正项等比数列{a n }中,a 1=12,且a 2,a 3,a 4-1成等差数列.(1)求数列{a n }的通项公式; (2)若b n =2log 2a n +4,求数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和T n .解 (1)设等比数列{a n }的公比为q . 因为a 2,a 3,a 4-1成等差数列.所以2a 3=a 2+a 4-1,得2a 1q 2=a 1q +a 1q 3-1. 又a 1=12,则2×12q 2=12q +12q 3-1,即q 2=12q +12q 3-1.所以2q 2=q +q 3-2,所以2q 2+2=q +q 3,所以2(q 2+1)=q (q 2+1).所以(q 2+1)(2-q )=0. 显然q 2+1≠0,所以2-q =0,解得q =2. 故数列{a n }的通项公式a n =a 1·q n -1=12·2n -1=2n -2. (2)由(1)知,b n =2log 22n -2+4=2(n -2)+4=2n .所以1b n b n +1=12n ·2n +1=14⎝ ⎛⎭⎪⎫1n -1n +1.则T n =14⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1n +1=14⎝ ⎛⎭⎪⎫1-1n +1=n4n +1.。
§6.2等差数列及其前n项和【考点集训】考点一等差数列的定义及通项公式1.(2018陕西咸阳12月模拟,7)《张丘建算经》卷上一题大意为今有女善织,日益功疾,且从第二天起,每天比前一天多织相同量的布,现在一月(按30天计)共织布390尺,最后一天织布21尺,则该女第一天共织多少布?()A.3尺B.4尺C.5尺D.6尺答案C2.(2017安徽淮南一模,15)已知数列{a n}满足递推关系式a n+1=2a n+2n-1(n∈N*),且为等差数列,则λ的值是.答案-13.(2018河南开封定位考试,17)已知数列{a n}满足a1=,且a n+1=.(1)求证:数列是等差数列;(2)若b n=a n a n+1,求数列{b n}的前n项和S n.解析(1)证明:∵a=,∴=,n+1∴-=.∴数列是以2为首项,为公差的等差数列.(2)由(1)知a n=,∴b n==4-,∴S n=4--…-=4-=.考点二等差数列的性质(2019届湖北宜昌模拟,6)已知数列{a}满足=25·,且a2+a4+a6=9,则lo(a5+a7+a9)=()nA.-3B.3C.-D.答案A考点三等差数列的前n项和1.(2018安徽安庆调研,5)等差数列{a n}中,已知S15=90,那么a8=()A.12B.4C.3D.6答案D2.(2017河南部分重点中学二联,6)设S n是公差不为零的等差数列{a n}的前n项和,且a1>0,若S5=S9,则当S n最大时,n=()A.6B.7C.10D.9答案B3.(2019届福建龙岩永定区模拟,10)已知等差数列{a n},{b n}的前n项和分别为S n和T n,且=,则=()A.B.C.D.答案 D炼技法 【方法集训】方法1 等差数列的判定与证明的方法(2019届福建三明模拟,17)已知数列{a n }中,a n =2n-1. (1)证明:数列{a n }是等差数列;(2)若数列{a n }的前n 项和S n =25,求n.解析 (1)证明:∵a n+1-a n =2(n+1)-1-(2n-1)=2,a 1=1, ∴数列{a n }是等差数列,首项为1,公差为2. (2)由(1)得数列{a n }的前n 项和S n =n+ -×2=n 2,由S n =25得n 2=25,又n>0,解得n=5.方法2 等差数列前n 项和的最值问题的解决方法1.(2019届江西高安模拟,11)已知数列{a n }是等差数列,其前n 项和为S n ,满足a 1+3a 2=S 6,给出下列结论:(1)a 7=0;(2)S 13=0;(3)S 7最小;(4)S 5=S 8.其中正确结论的个数是( )A.1B.2C.3D.4答案 C2.(2019届福建龙岩新罗区模拟,12)已知等差数列{a n }的公差为-2,前n 项和为S n ,a 3,a 4,a 5为某三角形的三边长,且该三角形有一个内角为120°,若S n ≤S m 对任意的n ∈N *恒成立,则实数m=( ) A.7 B.6 C.5D.4答案 B3.(2019届福建龙岩新罗区模拟,16)等差数列{a n }中,S n 是它的前n 项和,且S 6<S 7,S 6>S 8,给出下列结论: ①数列{a n }的公差d<0;②S 9<S 6;③S 14<0;④S 7一定是S n 中的最大值. 其中正确的是 (填序号). 答案 ①②③④过专题【五年高考】A 组 统一命题·课标卷题组考点一 等差数列的定义及通项公式(2016课标全国Ⅱ,17,12分)等差数列{a n }中,a 3+a 4=4,a 5+a 7=6.(1)求{a n }的通项公式;(2)设b n =[a n ],求数列{b n }的前10项和,其中[x]表示不超过x 的最大整数,如[0.9]=0,[2.6]=2. 解析 (1)设数列{a n }的公差为d,由题意有2a 1+5d=4,a 1+5d=3. 解得a 1=1,d=.(3分) 所以{a n }的通项公式为a n =.(5分) (2)由(1)知,b n =.(6分) 当n=1,2,3时,1≤<2,b n =1; 当n=4,5时,2<<3,b n =2;当n=6,7,8时,3≤<4,bn=3;当n=9,10时,4<<5,bn=4.(10分)所以数列{bn}的前10项和为1×3+2×2+3×3+4×2=24.(12分)考点二等差数列的性质(2015课标Ⅱ,5,5分)设Sn 是等差数列{an}的前n项和.若a1+a3+a5=3,则S5=()A.5B.7C.9D.11答案A考点三等差数列的前n项和1.(2015课标Ⅰ,7,5分)已知{a n}是公差为1的等差数列,S n为{a n}的前n项和.若S8=4S4,则a10=()A. B. C.10 D.12答案B2.(2014课标Ⅱ,5,5分)等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=()A.n(n+1)B.n(n-1)C. D.-答案A3.(2018课标全国Ⅱ,17,12分)记S n为等差数列{a n}的前n项和,已知a1=-7,S3=-15.(1)求{a n}的通项公式;(2)求S n,并求S n的最小值.解析(1)设{an}的公差为d,由题意得3a1+3d=-15.由a1=-7得d=2.所以{an}的通项公式为a n=2n-9.(2)由(1)得S n=n2-8n=(n-4)2-16.所以当n=4时,Sn取得最小值,最小值为-16.B组自主命题·省(区、市)卷题组考点一等差数列的定义及通项公式1.(2016浙江,8,5分)如图,点列{A n},{B n}分别在某锐角的两边上,且|A n A n+1|=|A n+1A n+2|,A n≠A n+2,n∈N*,|B n B n+1|=|B n+1B n+2|,B n≠B n+2,n∈N*.(P≠Q表示点P与Q不重合)若d n=|A n B n|,S n为△A n B n B n+1的面积,则()A.{S n}是等差数列B.{}是等差数列C.{d n}是等差数列D.{}是等差数列答案A2.(2014辽宁,9,5分)设等差数列{a n}的公差为d.若数列{}为递减数列,则()A.d>0B.d<0C.a1d>0D.a1d<0答案D3.(2015北京,16,13分)已知等差数列{a n}满足a1+a2=10,a4-a3=2.(1)求{a n}的通项公式;(2)设等比数列{b n}满足b2=a3,b3=a7.问:b6与数列{a n}的第几项相等?解析(1)设等差数列{an}的公差为d.因为a4-a3=2,所以d=2.又因为a1+a2=10,所以2a1+d=10,故a1=4.所以an=4+2(n-1)=2n+2(n=1,2,…).(2)设等比数列{b n}的公比为q.因为b2=a3=8,b3=a7=16,所以q=2,b1=4.所以b6=4×26-1=128.由128=2n+2得n=63.所以b6与数列{an}的第63项相等.4.(2014浙江,19,14分)已知等差数列{a n}的公差d>0.设{a n}的前n项和为S n,a1=1,S2·S3=36.(1)求d及S n;(2)求m,k(m,k∈N*)的值,使得a m+a m+1+a m+2+…+a m+k=65.解析(1)由题意知(2a1+d)(3a1+3d)=36,将a1=1代入上式解得d=2或d=-5.因为d>0,所以d=2.从而an=2n-1,S n=n2(n∈N*).(2)由(1)得a m+a m+1+a m+2+…+a m+k=(2m+k-1)(k+1),所以(2m+k-1)(k+1)=65.由m,k∈N*知2m+k-1≥k+1>1,故-所以考点二等差数列的性质1.(2014重庆,2,5分)在等差数列{a n}中,a1=2,a3+a5=10,则a7=()A.5B.8C.10D.14答案B2.(2015陕西,13,5分)中位数为1010的一组数构成等差数列,其末项为2015,则该数列的首项为. 答案5考点三等差数列的前n项和1.(2017浙江,6,4分)已知等差数列{a n}的公差为d,前n项和为S n,则“d>0”是“S4+S6>2S5”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案C2.(2015安徽,13,5分)已知数列{a n}中,a1=1,a n=a n-1+(n≥2),则数列{a n}的前9项和等于.答案27C组教师专用题组考点一等差数列的定义及通项公式1.(2013安徽,7,5分)设S n为等差数列{a n}的前n项和,S8=4a3,a7=-2,则a9=()A.-6B.-4C.-2D.2答案A2.(2014陕西,14,5分)已知f(x)=,x≥0,若f1(x)=f(x),f n+1(x)=f(f n(x)),n∈N+,则f2014(x)的表达式为.答案f2014(x)=3.(2015福建,17,12分)等差数列{a n}中,a2=4,a4+a7=15.(1)求数列{a n}的通项公式;(2)设b n=-+n,求b1+b2+b3+…+b10的值.解析(1)设等差数列{an}的公差为d.由已知得解得所以an=a1+(n-1)d=n+2.(2)由(1)可得b n=2n+n.所以b1+b2+b3+…+b10=(2+1)+(22+2)+(23+3)+…+(210+10)=(2+22+23+...+210)+(1+2+3+ (10)=--+=(211-2)+55=211+53=2101.4.(2013课标Ⅰ,17,12分)已知等差数列{a n}的前n项和S n满足S3=0,S5=-5.(1)求{a n}的通项公式;(2)求数列-的前n项和.解析(1)设{an}的公差为d,则S n=na1+- d.由已知可得-解得a1=1,d=-1.故{an}的通项公式为a n=2-n.(2)由(1)知-=--=---,从而数列-的前n项和为--+-+…+---=-.5.(2013江西,17,12分)在△ABC中,角A,B,C的对边分别为a,b,c,已知sin Asin B+sin Bsin C+cos2B=1.(1)求证:a,b,c成等差数列;(2)若C=,求的值.解析(1)证明:由已知得sin Asin B+sin Bsin C=2sin2B,因为sin B≠0,所以sin A+sin C=2sin B,由正弦定理,有a+c=2b,即a,b,c成等差数列.(2)由C=,c=2b-a及余弦定理得(2b-a)2=a2+b2+ab,即有5ab-3b2=0,所以=.考点二 等差数列的性质(2013辽宁,4,5分)下面是关于公差d>0的等差数列{a n }的四个命题: p 1:数列{a n }是递增数列; p 2:数列{na n }是递增数列; p 3:数列是递增数列; p 4:数列{a n +3nd}是递增数列.其中的真命题为( ) A.p 1,p 2 B.p 3,p 4 C.p 2,p 3 D.p 1,p 4 答案 D考点三 等差数列的前n 项和1.(2014天津,5,5分)设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1=( ) A.2B.-2C.D.-答案 D2.(2014重庆,16,13分)已知{a n }是首项为1,公差为2的等差数列,S n 表示{a n }的前n 项和.(1)求a n 及S n ;(2)设{b n }是首项为2的等比数列,公比q 满足q 2-(a 4+1)q+S 4=0.求{b n }的通项公式及其前n 项和T n . 解析 (1)因为{a n }是首项a 1=1,公差d=2的等差数列,所以a n =a 1+(n-1)d=2n-1. 故S n =1+3+…+(2n-1)== -=n 2. (2)由(1)得a 4=7,S 4=16.因为q 2-(a 4+1)q+S 4=0,即q 2-8q+16=0,所以(q-4)2=0,从而q=4. 又因为b 1=2,{b n }是公比q=4的等比数列,所以b n =b 1q n-1=2×4n-1=22n-1. 从而{b n }的前n 项和T n =- -= (4n-1). 3.(2013浙江,19,14分)在公差为d 的等差数列{a n }中,已知a 1=10,且a 1,2a 2+2,5a 3成等比数列.(1)求d,a n ;(2)若d<0,求|a 1|+|a 2|+|a 3|+…+|a n |.解析 (1)由题意得5a 3·a 1=(2a 2+2)2,即d 2-3d-4=0.故d=-1或d=4.所以a n =-n+11,n ∈N *或a n =4n+6,n ∈N *.(2)设数列{a n }的前n 项和为S n .因为d<0,由(1)得d=-1,a n =-n+11,所以当n ≤11时, |a 1|+|a 2|+|a 3|+…+|a n |=S n =-n 2+n.当n ≥12时,|a 1|+|a 2|+|a 3|+…+|a n |=-S n +2S 11=n 2-n+110. 综上所述,|a 1|+|a 2|+|a 3|+…+|a n | = --【三年模拟】时间:45分钟 分值:60分一、选择题(每小题5分,共35分)1.(2018河南开封定位考试,5)等差数列{a n }的前n 项和为S n ,且a 1+a 5=10,S 4=16,则数列{a n }的公差为( ) A.1 B.2 C.3 D.4 答案 B2.(2017辽宁六校协作体期中,8)已知等差数列{a n},{b n}的前n项和分别为S n,T n,若对于任意的正整数n,都有=-,则-+=()A. B. C. D.答案A3.(2018云南玉溪模拟,9)若{a n}是等差数列,公差d<0,a1>0,且a2013(a2012+a2013)<0,则使数列{a n}的前n项和S n>0成立的最大正整数n是()A.4027B.4026C.4025D.4024答案D4.(2017广东惠州二调,7)设S n是等差数列{a n}的前n项和,若=,则=()A.1B.-1C.2D.答案A5.(2019届河北唐山模拟,8)已知数列{a n}的前n项和S n=2+λa n,且a1=1,则S5=()A.27B.C.D.31答案C6.(2019届浙江温州模拟,9)已知{a n},{b n}均为等差数列,且a2=4,a4=6,b3=3,b7=9,由{a n},{b n}的公共项组成新数列{c n},则c10=()A.18B.24C.30D.36答案C7.(2019届河北唐山模拟,6)设{a n}是任意等差数列,它的前n项和、前2n项和与前4n项和分别为X,Y,Z,则下列等式中恒成立的是()A.2X+Z=3YB.4X+Z=4YC.2X+3Z=7YD.8X+Z=6Y答案D二、填空题(共5分)8.(2018四川德阳一模,7)我国古代数学名著《张邱建算经》中有“分钱问题”:今有与人钱,初一人与三钱,次一人与四钱,次一人与五钱,以次与之,转多一钱,与讫,还敛聚与均分之,人得一百钱,问人几何?意思是:将钱分给若干人,第一人给3钱,第二人给4钱,第三人给5钱,以此类推,每人比前一人多给1钱,分完后,再把钱收回平均分给各人,结果每人分得100钱,问有多少人?则题中的人数是.答案195三、解答题(共20分)9.(2018广东惠州一调,17)已知等差数列{a n}的公差不为0,前n项和为S n(n∈N*),S5=25,且S1,S2,S4成等比数列.(1)求a n与S n;(2)设b n=,求证:b1+b2+b3+…+b n<1.解析(1)设等差数列{a}的公差为d(d≠0),n则由S=25可得a3=5,即a1+2d=5①,5又S,S2,S4成等比数列,且S1=a1,S2=2a1+d,S4=4a1+6d,1所以(2a+d)2=a1(4a1+6d),整理得2a1d=d2,1因为d≠0,所以d=2a②,1联立①②,解得a=1,d=2,1所以a=1+2(n-1)=2n-1,S n=-=n2.n(2)证明:由(1)得b n==-,所以b1+b2+b3+…+b n=-+-+…+-=1-.又∵n∈N*,∴1-<1.∴b1+b2+b3+…+b n<1.10.(2019届河北曲周模拟,17)等差数列{a n}中,公差d<0,a2+a6=-8,a3a5=7.(1)求{a n}的通项公式;(2)记T n为数列{b n}前n项的和,其中b n=|a n|,n∈N*,若T n≥1464,求n的最小值.解析(1)∵等差数列{an}中,公差d<0,a2+a6=-8,∴a2+a6=a3+a5=-8,又∵a3a5=7,∴a3,a5是一元二次方程x2+8x+7=0的两个根,且a3>a5,解方程x2+8x+7=0,得a3=-1,a5=-7,∴--解得a1=5,d=-3.∴a n=5+(n-1)×(-3)=-3n+8.(2)由(1)知{a n}的前n项和S n=5n+-×(-3)=-n2+n.∵b n=|a n|,∴b1=5,b2=2,b3=|-1|=1,b4=|-4|=4,当n≥3时,bn=|a n|=3n-8.当n<3时,T1=5,T2=7;当n≥3时,Tn=-S n+2S2=-+14.∵T n≥1464,∴T n=-+14≥1464,即(3n-100)(n+29)≥0,解得n≥,∴n的最小值为34.。
等差、等比数列的概念与性质
(40分钟)
一、选择题
1.(2020·成都模拟)已知数列{a n}是等差数列,且a7-2a4=-1,a3=0,则公差d等于
( )
A.-2
B.-
C.
D.2
2.(2020·天津模拟)在等差数列{a n}中,若a2+a4+a6+a8+a10=80,则a7-a8的值
为( )
A.4
B.6
C.8
D.10
3.(2020·黄冈模拟)等比数列前n项和为S n,有人算得S1=8,S2=20,S3=36,S4=65,后来发现有一个数算错了,错误的是( )
A.S1
B.S2
C.S3
D.S4
4.(2020·安庆模拟)如果数列a1,,,…,,…是首项为1,公比为-的等比数列,则a5等于( )
A.32
B.64
C.-32
D.-64
5.(2020·辽宁高考)下面是关于公差d>0的等差数列{a n}的四个命题:
p1:数列{a n}是递增数列;p2:数列{na n}是递增数列;
p3:数列是递增数列;p4:数列{a n+3nd}是递增数列.
其中真命题为( )
A.p1,p2
B.p3,p4
C.p2,p3
D.p1,p4
6.已知a n=,把数列{a n}的各项排列成如下的三角形状,
a1
a2a3a4
a5a6a7a8a9
……
记A(m,n)表示第m行的第n个数,则A(10,12)=( )
A. B.
C. D.
二、填空题
7.(2020·广东高考)在等差数列{a n}中,已知a3+a8=10,则3a5+a7= .
8.数列{a n}是首项a1=4的等比数列,且4a1,a5,-2a3成等差数列,则
a2 013= .
9.(2020·烟台模拟)数列{a n}的首项为1,数列{b n}为等比数列且b n=,若b10b11=2,则a21= .
三、解答题
10.设{a n}是公比不为1的等比数列,其前n项和为S n,且a5,a3,a4成等差数列.
(1)求数列{a n}的公比.
(2)证明:对任意k∈N*,S k+2,S k,S k+1成等差数列.
11.(2020·乐山模拟)已知数列{a n}的前n项和为S n,a1=t,2a n+1=-3S n+4(n∈N*)
(1)当t为何值时,数列{a n}是等比数列?
(2)在(1)的条件下,设b n=λa n-n2,若数列{b n}中有b1>b2,b3>b4,…,b2n-1>b2n…成立,求实数λ的取值范围.
12.(2020·湖北高考)已知S n是等比数列{a n}的前n项和,S4,S2,S3成等差数列,且a2+a3+a4=-18.
(1)求数列{a n}的通项公式.
(2)是否存在正整数n,使得S n≥2 013?若存在,求出符合条件的所有n的集合;若不存在,说明理由.
答案解析
1.【解析】选B.由已知得即
2.【解析】选C.a2+a4+a6+a8+a10=5a6=80,
所以a6=16,则a7-a8=(2a7-a8)
=(a6+a8-a8)=a6=8.
3.【解析】选C.根据题意,由于等比数列前n项和为S n,S1=8,S2=20,S3=36,如果S1=8,S2-S1=12,所以q=,所以a3=12×=18,a4=18×=27,故S3=38,S4=65,故可知错误的是S3,选C.
4.【解析】选A.a5=····a1
=1·(-)4×1·(-)3×1·(-)2×1·(-)×1=32.
5.【解析】选D.
命题判断过程结论p1:数列{a n}是递增数
列
由a n+1-a n=d>0,知数列{a n}是递增数列真命题
p2:数列{na n}是递增数列由(n+1)a n+1-na n
=(n+1)(a1+nd)-n[a1+(n-1)d]
=a1+2nd,仅由d>0是无法判断a1+2nd的正负的,因而不能判
定(n+1)a n+1,na n的大小关系
假命题
p3:数列{}是递增数列显然,当a n=n时,=1,数列是常数数列,不是递增数
列
假命题
p4:数列{a n+3nd}是递增数列数列的第n+1项减去数列的第n项
[a n+1+3(n+1)d]-(a n+3nd)=(a n+1-a n)+
[3(n+1)d-3nd]=d+3d=4d>0.
所以a n+1+3(n+1)d>a n+3nd,
即数列{a n+3nd}是递增数列
真命题
6.【解析】选A.前9行共有1+3+5+…+17==81项,
所以A(10,12)为数列中的第81+12=93项,所以a93=,选A.
【误区警示】解答本题时易把前9行包含的数列{a n}的项数求错.
7.【解析】设公差为d,则a3+a8=2a1+9d=10,3a5+a7=4a1+18d=2(2a1+9d)=20. 答案:20
8.【解析】设公比为q,则a5=a1q4,a3=a1q2.
又4a1,a5,-2a3成等差数列,
所以2a5=4a1-2a3,即2a1q4=4a1-2a1q2,
所以得:q4+q2-2=0,解得q2=1或q2=-2(舍去),
所以q=±1,
所以a2 013=4·(±1)2 013-1=4.
答案:4
9.【解析】因为b10b11=2,所以b1b2…b20=(b10b11)10=210.
又b n=,所以b1b2…b20=··…=,
即=210,
所以a21=210=1 024.
答案:1 024
10.【解析】(1)设数列{a n}的公比为q(q≠0,q≠1),
由a5,a3,a4成等差数列,得2a3=a5+a4,即2a1q2=a1q4+a1q3,
由a1≠0,q≠0得q2+q-2=0,解得q1=-2,q2=1(舍去),
所以q=-2.
(2)对任意k∈N*,
S k+2+S k+1-2S k=(S k+2-S k)+(S k+1-S k)
=a k+1+a k+2+a k+1=2a k+1+a k+1·(-2)=0,
所以对任意k∈N*,S k+2,S k,S k+1成等差数列.
11.【解析】(1)由2a n+1=-3S n+4得
2a n=-3S n-1+4(n≥2),两式相减得
2a n+1-2a n=-3a n,
所以a n+1=-a n(n≥2),
要使n≥1时,{a n}为等比数列,只需==-,
所以t=2.
(2)由(1)得a n=2·,
因为b n=λa n-n2=2λ-n2且b2n-1>b2n,
所以2λ-(2n-1)2>2λ-(2n)2,
即2λ>(2n-1)2-(2n)2,
因此有λ>-,而-单调递减,
当n=1时取得最大值为-1,所以λ>-1.
【变式备选】设数列{a n}的前n项和S n=n2,数列{b n}满足b n=(m∈N*).
(1)若b1,b2,b8成等比数列,试求m的值.
(2)是否存在m,使得数列{b n}中存在某项b t满足b1,b4,b t(t∈N*,t≥5)成等差数列?若存在,请指出符合题意的m的个数;若不存在,请说明理由.
【解析】(1)因为S n=n2,所以当n≥2时,a n=S n-S n-1=2n-1.
又当n=1时,a1=S1=1,适合上式,所以a n=2n-1(n∈N*),
所以b n=,则b1=,b2=,b8=,由=b1b8,得=×,解得m=0(舍)或m=9,所以m=9.
(2)假设存在m,使得b1,b4,b t(t∈N*,t≥5)成等差数列,即2b4=b1+b t,则
2×=+,化简得t=7+,
所以当m-5=1,2,3,4,6,9,12,18,36时,分别存在t=43,25,19,16,13,11,10,9,8符合题意,
即存在这样的m,且符合题意的m共有9个.
12.【解题提示】(1)由条件S4,S2,S3成等差数列和a2+a3+a4=-18列出方程组,解出首项和公比,运用等比数列通项公式得出{a n}的通项公式.(2)假设存在正整数n,使得S n≥2 013,解不等式,求n的解集.
【解析】(1)设数列的公比为q,则a1≠0,q≠0.由题意得
即
解得
故数列的通项公式为a n=3.
(2)由(1)有S n=
=1-.
若存在n,使得S n≥2 013,则1-≥2 013,即≤-2 012.
当n为偶数时,>0,上式不成立;
当n为奇数时,=-2n≤-2 012,
即2n≥2 012,则n≥11.
综上,存在符合条件的正整数n,且所有这样的n的集合为
.。