2018六年级按比例分配经典题
- 格式:doc
- 大小:54.00 KB
- 文档页数:4
六年级数学比和按比例分配试题答案及解析1.男生人数占全班的,男生与女生人数的比是()A.3:5B.5:3C.2:3D.3:2【答案】D【解析】把全班的人数看作单位“1”,男生人数就是1乘,女生人数就是1减,再用男生人数比上女生人数即可解答.解:1×,1﹣,=3:2,答:男生与女生人数的比是3:2.故选:D.【点评】解答本题关键是:判断出单位“1”,求出男生人数和女生人数是几分之几,进而根据比的意义解答即可.2.学校运来200棵树苗,老师栽种了10%,余下的按5:4:3分配给甲、乙、丙三个班级,丙班分到多少棵?【答案】45棵【解析】要求余下的按5:4:3分配给甲、乙、丙三个班级,丙班分到多少棵,现要求出余下多少棵树,栽种了10%,还余下这批树苗总数的(1﹣10%),根据一个数乘分数的意义即可求出,然后运用按比例分配知识进行解答即可.解:200×(1﹣10%),=200×90%,=180(棵);丙:180×=45(棵);答:丙班分得45棵.【点评】解答此题抓住题目特点判定类型,根据按比例分配知识进行解答即可得出结论.3.六年级学生报名参加数学兴趣小组,参加的同学是六年级总人数的,后来有20人参加,这时参加的同学与未参加的人数的比是3:4.六年级一共有人.【答案】210.【解析】首先根据题意,可得后来参加数学兴趣小组的同学占六年级学生人数的分率是,然后求出20占六年级学生人数的分率是多少,最后根据分数除法的意义,用20除以它占六年级学生人数的分率,求出六年级一共有多少人即可.解:20==210(人)答:六年级一共有210人.故答案为:210.【点评】此题主要考查了比的应用,解答此题的关键是求出20占六年级学生人数的分率是多少.4. 5比4多 %,4比5少 %.【答案】25,20.【解析】谁是谁的几分之几,用除法进行计算,谁比谁多或少多少,运用比多比少的解答方法进行计算.解:(1)(5﹣4)÷4=25%;(2)(5﹣4)÷5=20%;答:5比4多 25%,4比5少 20%.故答案为:25,20.【点评】本题是一道简单的填空题,谁是谁的几分之几用除法进行计算.谁比谁多或少用除法计算.5.一列火车4小时行驶了600千米,那么这列火车行驶的路程和时间的最简单的整数比是,比值是.【答案】150:1,150.【解析】根据题意,求出路程和时间的比,然后化为最简整数比;求比值,根据比值的含义,用比的前项除以比的后项解答即可.解:火车4小时行驶了600千米,路程和时间的最简整数比是600:4=150:1,比值是:600:4=600÷4=150;故答案为:150:1,150.【点评】此题考查比的意义,注意求比值与化简比的区别.6.一件工程,甲做需要6天完成,乙做需要10天完成.甲与乙所用工作时间的比是,甲与乙工作效率的比是.【答案】3:5,5:3.【解析】依据比的意义即可解答,求工作效率比时根据工作总量一定,工作效率和工作时间成反比即可解答.解:工作时间的比是6:10=3:5,工作效率的比是10:6=5:3.故答案为:3:5,5:3.【点评】本题解答比较简便,只要明确方法,代入数据即可解答.7. A除以B的商是,则A:B=8:9..(判断对错)【答案】×【解析】两个数相除又叫两个数的比.前项相当于被除数,后项相当于除数,比号相当于除号,通过计算可以得出正确答案.解:A:B=A÷B==9:8,所以原题说法.故答案为:×.【点评】此题考查了比的意义,要明确被除数、除数和商三者之间的关系.8.如果把3:7的前项加上9,要使它的比值不变,后项应()A.加上9 B.加上21 C.减去9【答案】B【解析】根据3:7的前项加上9,可知比的前项由3变成12,相当于前项乘4;根据比的性质,要使比值不变,后项也应该乘4,由7变成28,也可以认为是后项加上28﹣7=21;据此进行选择解:3:7的前项加上9,可知比的前项由3变成12,相当于前项乘4;要使比值不变,后项也应该乘4,由7变成28,即后项加上28﹣7=21;故选:B.【点评】此题考查比的性质的运用,比的前项和后项同时乘或除以相同的数(0除外),比值才不变.9.甲数的等于乙数的,甲数与乙数的比是6:5 .(判断对错)【答案】√【解析】根据题意,设甲数是x,乙数是y,根据题目给出的条件,求出甲数与乙数的关系,再根据比的意义,求出甲数与乙数的比,如果符合题目给出的比,则正确,否则错误.解:设甲数是x,乙数是y,根据题意可得,x=yx=yx=y则甲数与乙数的比是:x:y=y:y=:1=():(1×5)=6:5,符合题目.故:√.【点评】根据题意,设出甲乙两数,由题目给出的条件,求出甲乙两数的关系,再根据比的意义,求出甲数与乙数的比,然后判断正误.10.甲、乙、丙三人环湖跑步锻炼,同时从湖边一固定点出发,乙、丙二人同向,甲与乙丙反向,在甲第一次遇上乙后1.25分钟第一次遇上丙,再经过3.75分钟第二次遇乙.已知甲速遇乙速的比是3:2,湖的周长是2000米.求甲、乙、丙三人的速度每分钟各是多少米?【答案】甲每分钟跑240米,乙每分钟跑160米,丙每分钟跑80米.【解析】在甲第一次遇上乙后1.25分钟第一次遇上丙,再经过3.75分钟第二次遇乙,则甲乙二人相时间为1.25+3.75=5分钟,两人相遇时共行了一周即2000米,所以两人的速度和为每分钟2000÷5=400米.甲乙两人的速度比为3:2.由此可知甲的速度为每分钟400×=240米.由于甲与乙相遇时间为5分钟,甲第一次遇上乙后1.25分钟第一次遇上丙,则甲丙的相遇时间为5+1.25=6.25分钟,则丙的速度为每分钟2000÷6.25﹣240米.解:甲的速度为每分钟:2000÷(1.25+3.75)×=2000÷5×,=240(米);乙的速度为每分钟:2000÷5﹣240=4000﹣240,=160(米).丙的速度为每分钟:2000÷6.25﹣240=320﹣240,=80(米).答:甲每分钟跑240米,乙每分钟跑160米,丙每分钟跑80米.【点评】根据“甲第一次遇上乙后1.25分钟第一次遇上丙,再经过3.75分钟第二次遇乙”求出甲乙的相遇时间,进而求出两人的速度和是完成本题的关键.11.把15分:时化成最简单整数比是,比值是.【答案】1:3,.【解析】(1)首先把时化成分钟数,用乘进率60;然后根据比的基本性质作答,即比的前项和后项同时乘一个数或除以一个数(0除外)比值不变;(2)用比的前项除以后项即可.解:×60=45(分),所以时=45分;(1)15分:时,=15:45,=(15÷15):(45÷15),=1:3;(2)15分:时,=15÷45,=.故答案为:1:3,.【点评】此题主要考查了化简比和求比值的方法,另外还要注意化简比的结果是一个比,它的前项和后项都是整数,并且是互质数;而求比值的结果是一个商,可以是整数、小数和分数.12.如果a×=b×(a、b都不等于0),那么a:b=6:5.(判断对错)【答案】√【解析】依据比例的基本性质,即两内项之积等于两外项之积,即可进行解答.解:因为a×=b×,所以a:b=:=6:5;所以原计算正确;故答案为:√.【点评】此题主要考查比例的基本性质的灵活应用.13.参加某次数学竞赛的女生和男生人数的比是1:3,这次竞赛的平均成绩是82分,其中男生的平均成绩是80分,女生的平均成绩是()A.82分B.86分C.87分D.88分【答案】D【解析】根据题意,可找出数量间的相等关系:女生的平均成绩×1+男生的平均成绩×3=全班平均成绩×4,设女生的平均成绩是x,列并解方程即可.解:设女生的平均成绩是x,因为总成绩不变,由题意得,x×1+3×80=82×(1+3),x+240=328,x=328﹣240,x=88;或:[82×(1+3)﹣80×3]÷1,=(328﹣240)÷1,=88(分);答:女生的平均成绩是88分.故选:D.【点评】解答此题关键是先求出全班的总成绩和男生的总成绩,然后求出女生的总成绩,进而求出女生的平均成绩.14.用一根长是44cm的铁丝围成一个三角形,三条边长度的比是3:5:3,这个三角形最长的边是________ cm,这个三角形是三角形.【答案】20,等腰.【解析】这个三角形三条边的长度比是3:5:3,最长的边占周长的,根据一个数乘分数的意义,用铁丝总长乘最长边占得分率即可得这个三角形最长的边,再根据有两边占的份数相等,可得这个三角形是等腰三角形.解:44×=44×=20(cm),因为两边占的份数相等都为3份,可得这个三角形是等腰三角形.故答案为:20,等腰.【点评】此题考查的目的是理解掌握按比例分配应用题的结构特征及解答规律.15.某林场中松树比柏树多240棵,松、柏棵数之比为5:3,求该林场松柏一共多少棵?【答案】960棵【解析】解;240÷(5﹣3)×(5+3)=240÷2×8=120×8=960(棵);答:该林场松柏一共960棵.16.小明家里的菜地共800㎡,他爸爸准备用种西红柿,剩下的按3:1的面积比种黄瓜和茄子,那么种黄瓜的面积比种茄子的面积多多少㎡?【答案】240平方米【解析】解:800﹣800×=800﹣320=480(平方米)480÷(3+1)×(3﹣1)=480÷4×2=120×2=240(平方米)答:种黄瓜的面积比种茄子的面积多240平方米.17.比例尺是的地图上,量得北京到广州的距离是6厘米,北京到广州的实际距离大约是()A.1800米B.180千米C.1800千米D.18000米【答案】C【解析】要求北京到广州的实际距离大约是多少千米,根据“图上距离÷比例尺=实际距离”,代入数值,计算即可.解:6÷=180000000(厘米)180000000厘米=1800千米答:北京到广州的实际距离大约是1800千米.故选:C.【点评】此题有计算公式可用,根据图上距离、比例尺和实际距离三者的关系,进行分析解答即可得出结论.18.右图中,阴影部分的面积是大三角形面积的()A.B.C.D.无法确定【答案】B【解析】依据题意可知三角形平均分成了4部分,阴影部分占了一部分。
六年级奥数 按比例分配知识要点及解题基本方法:解答按比例分配的应用题,先要将各部分的比转化为各部分量占总量的几分之几,然后按求一个数的几分之几是多少的方法,分别求出各部分量。
解题步骤是:1、 先求出按比例分配的总数量;2、 再求出分配的比,并求出各个部分占总数量的几分之几;3、 用总数量乘以部分量占总数量的几分之几得到各部分量。
例1:某家场有耕地108公顷,其中粮田、棉田和其它作物的比是3:4:5,每种耕地各有多少公顷?练习:1、一个长方形与一个正方形的周长之比为6:5,长方形的长是宽的57,求长方形与正方形的面积之比。
2、第一队与第二队的人数比是3:2,第二队与第三队的为数之比是5:4,第一队与第三队的人数之比是多少?4、 六年级有男生150人,男生与女生的人数之比为5:4,六年级一共有多少人?例2、一块合金内铜和锌的比是2:3,现在再加入6克锌,共得新合金36克,求新合金内铜和锌的比。
(正确求出按比例分配的总数量是解决此题的关键)练习:1、小兰与小红所有的图书本数的比是5:3,小兰给小红15本后,两人的图书数一样多,原来两从共有图书多少本?2、数学小组和美术小组人数的比是5:3,数学小组比美术小组多24人,两组各多少人?例3:甲、乙两列火车同时从相距672千米的A 、B 两城相对开出,27小时两列火车相遇,已知甲、乙两列火车的速度比是7:9,求相遇时甲比乙少行多少千米?例4:小明与小红所有的图书的本数比5:3,小明给小红7本后,两人图书的本数同样多,原来两人共有图书多少本?例5、实验小学六年级学生分三组参加义务劳动。
第一组和第二组的人数之比是5:4,第二级和第三组的人数比是3:2.已知第一组人数比二、三组人数总和少15人。
问实验小学六年级共有多少人?(将两个比转化为三个量的连比是解比题的关键)例6:学校原有科技书。
文艺书共630本,其中科技书与文艺书的本数之比是1:4,后来又买来一些科技书,这时科技书与文艺书的本数字比是3:7.问:又买来科技书多少本、(抓住不变量是解决此类问题的有效途径)。
六年级比例练习题大全【一、题目:六年级比例练习题大全】一、简介六年级比例练习题是为了帮助学生巩固和提升比例概念与运算技能而设计的一套习题。
本练习题大全共收录了多个题型,并根据难易程度分为四个等级,旨在满足不同层次学生的需求。
以下将依次介绍各个等级的练习题,供学生们进行练习和巩固。
二、初级练习题1. 甲:乙 = 1:2,如果甲有18个苹果,那么乙有多少个苹果?2. 小明去年买了3个篮球和5个足球,今年他买了2个篮球和x个足球,两年一共花了多少钱?3. 所有学生的人数是1000人,其中男生占40%,女生占60%,男生和女生的人数各是多少人?三、中级练习题1. 3只小狗吃完20kg狗粮需要10天,如果有6只小狗,那么30kg 狗粮能够供养几天?2. 去年甲公司一共生产了10000台电视,其中15%不合格,今年该公司计划生产12000台电视,为了保持质量,不合格品数量不变,今年共有多少台电视合格?3. 小明将8部手机平均分配给他的4个朋友,每个朋友得到几部手机?四、高级练习题1. 甲公司去年的销售额是2000万元,今年销售额增长了25%,今年的销售额是多少?2. 甲、乙、丙三个工人一起修一条道路,甲一个人工作8天可以完成任务,乙一个人工作10天可以完成任务,丙一个人工作12天可以完成任务。
三个工人一起工作几天可以完成任务?3. 甲乙两个炒货摊位,甲摊位有15kg花生,乙摊位有12kg腰果。
甲乙两个摊位将他们的货物按比例混合后,混合均匀,甲摊位有多少kg的腰果?五、总结本练习题大全共收录了初级、中级、高级三个等级的练习题,涵盖了常见的六年级比例题型。
通过反复练习这些题目,学生们能够更好地理解和掌握比例概念、运算技巧,并提升解决实际问题的能力。
建议学生们根据自己的水平选择适合的等级进行练习,不断挑战自己,并结合教材中的知识巩固理论。
祝愿学生们在比例练习中取得优异的成绩!。
按比例分配1、有糖水200克,糖与水的比是1:4。
糖和水各有多少克?2、有6捆树苗,每捆15棵,把这些树苗按7:8分给六(1)、六(2)两个班栽。
每个班分得多少棵?3、一袋大米吃了与剩下的比是3:2。
吃了30千克。
剩下多少千克?4、一套服装720元,上衣与裤子的价格比是3:1,上衣和裤子分别是多少元?5、六(1)班男生与女生人数的比是4:5,男生有20人。
六(1)班共有多少人?6、配制什锦糖,所用的巧克力、水果糖、奶糖的比是1:3:4。
三种糖各有27千克,那么配制这种什锦糖时,当水果糖用完后,奶糖应增加多少千克?巧克力还剩多少千克?7、用96厘米长的铁丝围成一个长与宽的比是5:3的长方形。
长方形面积是多少平方厘米?8、甲、乙两车同时从相距462千米的两地相对开出,3小时后相遇。
甲、乙两车速度比是3:4。
甲、乙两车每小时分别行多少千米?9、配置一种盐水,盐和水的质量比是1:5,盐水有150克,盐有多少克?10、一个长方体的棱长总和是72厘米,长、宽、高的比是4:3:2。
这个长方体的体积是多少立方厘米?11、校园里松树比柏树多60棵,松树与柏树棵数的比是3:2。
校园里松树和柏树各有多少棵?12.李大伯共栽了240棵杨树和柳树,杨树与柳树棵数的比是5∶3,杨树、柳树各栽了多少棵?13.公鸡、母鸡的只数比是4∶7,母鸡有84只,公鸡有多少只?14.某种混凝土是黄沙、水泥、石子按4∶3∶5搅拌而成,一个建筑工地需混凝土65吨,需黄沙、水泥、石子各多少吨?15.一个直角三角形的两个锐角的度数比是2∶3,两个锐角分别是多少度?19.甲数、乙数、丙数的平均数是150,甲数、乙数、丙数的比是3∶5∶7,甲数、乙数、丙数分别是多少?。
2018六年级 按比例分配
知识要点及解题基本方法:
解答按比例分配的应用题,先要将各部分的比转化为各部分量占总量的几分之几,然后按求一个数的几分之几是多少的方法,分别求出各部分量。
解题步骤是:
1、 先求出按比例分配的总数量;
2、 再求出分配的比,并求出各个部分占总数量的几分之几;
3、 用总数量乘以部分量占总数量的几分之几得到各部分量。
例1:某家场有耕地108公顷,其中粮田、棉田和其它作物的比是3:4:5,每种耕地各有多少公顷?
练习:1、一个长方形与一个正方形的周长之比为6:5,长方形的长是宽的5
7,求长方形与正方形的面积之比。
2、第一队与第二队的人数比是3:2,第二队与第三队的为数之比是5:4,第一队与第三队的人数之比是多少?
例2、一块合金内铜和锌的比是2:3,现在再加入6克锌,共得新合金36克,求新合金内铜和锌的比。
(正确求出按比例分配的总数量是解决此题的关键)
练习:1、小兰与小红所有的图书本数的比是5:3,小兰给小红15本后,两人的图书数一样多,原来两从共有图书多少本?
例3:甲、乙两列火车同时从相距672千米的A 、B 两城相对开出,
2
7小时两列火车相遇,已知甲、乙两列火车的速度比是7:9,求相遇时甲比乙少行多少千米?
例4:小明与小红所有的图书的本数比5:3,小明给小红7本后,两人图书的本数同样多,原来两人共有图书多少本?
例5、实验小学六年级学生分三组参加义务劳动。
第一组和第二组的人数之比是5:4,第二级和第三组的人数比是3:2.已知第一组人数比二、三组人数总和少15人。
问实验小学六年级共有多少人?(将两个比转化为三个量的连比是解比题的关键)
例6:学校原有科技书。
文艺书共630本,其中科技书与文艺书的本数之比是1:4,后来又买来一些科技书,这时科技书与文艺书的本数字比是3:7.问:又买来科技书多少本、(抓住不变量是解决此类问题的有效途径)。
例7:从前有个牧民,临死前留下遗言,要把17只羊分给三个儿子,大儿子分得21,二儿子分得31,小儿子分得9
1,并规定不允许把羊杀掉或卖掉。
问三个儿子各分得羊多少只?
巩固练习:
数的比是2:3,第二小组和第三小组人数的比是4:5,这三个小组各有多少人?
2、参加语文竞赛的为数是参加数学竞赛人数的87,语文获奖人数是数学获奖人数的3
2,而两项竞赛没有获奖的都是320人,那么参加这两项竞赛的总人数是多少?
3、有一个长方体,长30厘米,长与宽的比是2:1,宽与高的比是3:2,这个长方体的体
积是多少?
4、小王买了一件上衣和两条两样的裤子,小明买了同样价钱的上衣和裤子各一件,他们用
去的钱数之比是4:3,已知一件上衣7元,求一条裤子多少元?
5、有三桶油共重45千克,如果从第一桶、第二桶中各取出2.5千克放信第三桶,这时第一、
二、三桶油的重之男为1:2:3,三桶油原来各重多少千克?
6、甲、乙、丙三堆煤共生1480吨,已知甲堆煤重量的
61与乙堆煤重量的41相等,乙堆煤重量的
101等于丙堆煤重量的121,问三堆煤各重多少吨?
7、 小华准备用60厘米长的铁丝围成一个长方形,若围成的长方形的长与宽的比是3:2,
那么这个长方形的面积是多少?
8、 丽丽、贝贝、甜甜三个妇朋友共收集废旧电池420节,其中甜甜收集的比丹心贝的少
3
1,贝贝与丽丽收集的废旧电池的比是4:3,那么三个人各收集废旧电池多少节?
9、甲、乙两种糖的单价比是4:5,质量比是4:1,把这两种糖混合成100千克的什锦糖,单价为8.4,原来每种糖的总钱数各是多少元?
10、从前有个农民,临死前留下遗言,要把41只羊分给三个儿子。
大儿子分得2
1,二儿子为得31,小儿子分得7
1,并规定不允许把羊杀掉。
问:三个儿子各分得羊多少只?
11、某小学四、五、六年级共有697人,已知六年级学生人数的21等于五年级学生人数的5
2,六年级学生人数的31等于四年级学生人数的7
2。
四、五、六年级各有学生多少人?。