第一篇第七章 板块构造与变质作用
- 格式:ppt
- 大小:1.98 MB
- 文档页数:17
变质作用、板块构造及超级大陆旋回变质作用、板块构造及超级大陆旋回麻粒岩相超高温变质作用(G - UHTM)主要发育于新太古代至寒武纪岩石中;推测在深部较年轻的,特别是新生代造山带岩石中也会有G - UHTM存在.岩石中最初出现G - UHTM记录意味着产生瞬时极高热流处的地球动力学发生了改变.许多G - UHTM带可能发育于类似现代大陆弧后的构造背景中.在较热的地球上,超大陆及其裂解形成的循环组合,尤其是经岩石圈减薄的洋盆卷入到其外翻过程中可能产生比现代太平洋边缘更热的大陆弧后.中温榴辉岩-高压麻粒岩相变质作用(E - HPGM)也是最先发现于新太古代岩石记录中,并发育于从元古宙至古生代岩石中.E - HPGM带是对G - UHTM带的补充,并经常认为是记录了从俯冲至碰撞造山作用的过程.在元古宙岩石记录中的蓝片岩明显记录了与现代俯冲作用相关的低热流梯度.以发育柯石英(±硬柱石)或金刚石为特征的硬柱石蓝片岩和榴辉岩(高压变质作用,HPM)及超高压变质岩(UHPM)主要是在显生宙形成.HPM - UHPM记录了显生宙俯冲 - 碰撞造山带早期碰撞过程中的低热流梯度及陆壳的深俯冲作用.尽管与直觉不同,在超级大陆聚敛期(Wilson旋回洋盆打开和关闭)的大陆地块增生过程,许多HPM - UHPM带看来确实是通过小洋盆关闭而发育起来的,反映双重热体制的双重变质带仅发育于新太古代以来的岩石记录中.双重热体制是现代板块构造的特点,而双重变质作用则是板块构造在岩石记录中的特征性标志.尽管构造样式很可能不同,新太古代以来G - UHTM和E - HPGM带的发育证明"元古宙板块构造体制"的开始.以冷俯冲和大陆地壳深俯冲至地幔,以及其中的部分又从深达300 km处发生折返为标志,"元古宙板块构造体制"在新元古代进化为"现代板块构造体制",这个转变可由岩石中的HPM - UHPM证明.记录这种极端条件的变质带年龄是不一致的,而变质作用发生时间与各大陆岩石圈聚合到超级克拉通(如Superia/Sclavia)或超级大陆(如Nuna (Columbia), Rodinia, Gondwana, 和Pangea)的时间却是一致的.作者:Michael Brown 作者单位:<变质地质学>杂志社刊名:地学前缘ISTIC PKU英文刊名:EARTH SCIENCE FRONTIERS 年,卷(期):2007 14(1) 分类号:P541 关键词:大陆后弧变质作用板块构造俯冲作用超级大陆 continental backarcs metamorphism plate tectonics subduction supercontinents。
《地球化学》章节笔记第一章:导论一、地球化学概述1. 地球化学的定义:地球化学是应用化学原理和方法,研究地球及其组成部分的化学组成、化学性质、化学作用和化学演化规律的学科。
它是地质学的一个分支,同时与物理学、生物学、大气科学等多个学科有着密切的联系。
2. 地球化学的研究对象:- 地球的固体部分,包括岩石、矿物、土壤等;- 地球的流体部分,包括大气、水体、地下水等;- 地球生物体,包括植物、动物、微生物等;- 地球内部,包括地壳、地幔、地核等。
3. 地球化学的研究内容:- 地球物质的化学组成及其时空变化;- 地球内部和外部的化学过程;- 元素的迁移、富集和分散规律;- 地球化学循环及其与生物圈的相互作用;- 地球化学在资源、环境、生态等领域的应用。
二、地球化学的研究方法与意义1. 地球化学的研究方法:- 野外调查与采样:包括地质填图、钻孔、槽探、岩心采样等;- 实验室分析:包括光学显微镜观察、X射线衍射、电子探针、电感耦合等离子体质谱(ICP-MS)、原子吸收光谱(AAS)等;- 地球化学数据处理:包括统计学分析、多元回归、聚类分析等;- 地球化学模型:建立地球化学过程的理论模型和数值模型;- 同位素示踪:利用稳定同位素和放射性同位素研究地球化学过程。
2. 地球化学研究的意义:- 揭示地球的形成和演化历史;- 了解地球内部结构、成分和动力学过程;- 探索矿产资源的形成机制和分布规律;- 评估和治理环境污染问题;- 理解地球生物圈的化学循环和生态平衡;- 为可持续发展提供科学依据。
三、地球化学的发展历程与现状1. 地球化学的发展历程:- 起源阶段:19世纪初,地质学家开始关注矿物的化学组成;- 形成阶段:19世纪末至20世纪初,维克托·戈尔德施密特等科学家奠定了地球化学的基础;- 发展阶段:20世纪中叶,地球化学在理论、方法、应用等方面取得显著进展;- 现代阶段:20世纪末至今,地球化学与分子生物学、环境科学等学科交叉,形成新的研究领域。
俯冲带岩浆作用和变质作用俯冲带岩浆作用和变质作用位于板块俯冲边界的岛弧—海沟系以及活动大陆边缘,热流值出现急剧的变化。
在海沟地带,热流值极低;而位于火山岛弧地带的热流值相当的高。
这种热异常是地球深部动力的地表的反映。
板块俯冲所导致的压力和热力效应,又在很大程度上控制着俯冲带的岩浆活动和变质作用的发生。
一、板块俯冲带的岩浆活动岛弧和活动大陆边缘石火山活动的强烈地区,常平行于海沟呈弧形展布,俯冲带的火山活动以中酸性,特别是安山岩类为主;并且富含气体(主要为水蒸气),表现出爆发的性质。
喷出物以碎屑物质占优势,这是岩浆弧火山岩与其他构造环境火山岩的主要区别。
有火山碎屑、侵入岩以及变质岩屑构成的厚层杂砂岩,泥岩经常与火山岩互层,这种互层系是识别岩浆弧火山岩的重要标志之一,在岩浆弧区与火山岩共生的还有大量中酸性深成岩,它们广泛的侵入到火山岩和沉积岩堆积中。
俯冲带岩浆活动产生的主要岩石系列有:a、岛弧拉斑玄武系列;b、钙碱系列;c、岛弧碱性系列,以及其间的过渡系列(表1-1)。
岛弧拉斑系列与洋脊拉斑系列的区别是:铁镁比较高,SiO2较高,稀土丰度偏低,初始锶比值较高;钙碱系列与岛弧拉斑系列相比,很少有铁的富集,SiO2较多,明显富集大离子亲石元素,轻稀土略富集,随SiO2的增加K2O 增长较快;岛弧碱性系列少有或没有铁的富集,碱元素含量高,随SiO2的增加K2O急剧增长(如图),进一步分为两组:由碱性橄榄玄武岩、橄榄粗安岩、粗面岩、碱流岩组成的钠质组和由橄榄粗安岩、安粗岩等组成的钾质组(表1-2)。
表 1-1三种火山岩系列在诸构造中的分布表 1-2不同系列火山岩化学成分比较火山岩系列的鉴别由于钙碱系列火山岩可以作为岛弧的标志性岩石,故火山岩系列的鉴定在识别古岛弧,回复古构造环境中具有重要意义。
稀土元素的分配形式在判别火山岩的共生系列中很有价值。
如图4-9所示,随着从拉斑玄武岩系到钙碱性系列、碱性系列,稀土元素的分配型式从平坦型转变为富集型至强富集型。
区域变质作用区域变质作用是地壳板块运动和构造活动造成的,它是地球表层产生的一种重要地质现象。
区域变质对地球外层地质活动和地壳构造有重要意义,具有以下几个作用。
首先,区域变质作用可以改变岩石的物理性质和化学性质。
在高温、高压和热液等条件下,岩石中的矿物质发生物理和化学变化,形成新的矿物质和岩石组分。
这种变质作用可以改变岩石的结构和组成,使其具有更强的抗压性和抗拉性。
例如,在区域变质过程中,火成岩和沉积岩可以转变为变质岩,从而形成硬度更高、结构更稳定的岩石体。
其次,区域变质作用对岩石的矿物质和矿床生成有重要影响。
在区域变质作用过程中,矿石中的金属元素和有用矿物质会发生富集和重分布,进而形成矿床。
这种作用对经济地质学有重要意义,可以为矿产资源的勘探和开发提供重要依据。
例如,在区域变质过程中,铜矿石中的铜元素可能集中富集,形成铜矿床。
再次,区域变质作用参与了地球的物质循环过程。
在区域变质过程中,岩石中的碳、氧、氮等元素会发生变化,进而参与碳循环、氮循环和氧循环等地球物质循环过程。
这种作用对地球生态系统和气候演变具有重要影响。
例如,在区域变质过程中,岩石中的碳酸盐岩可能发生溶解作用,释放出大量的二氧化碳,进而影响大气中的气候等环境因素。
最后,区域变质作用对地壳板块运动和构造活动具有反馈作用。
地壳板块的运动和构造活动可以产生局部的高温、高压和变形应力,进而引发区域变质作用。
反过来,区域变质作用也可以通过改变岩石的物性和化学性质,进一步影响地壳板块的运动和构造变形。
这种反馈作用在地球的构造演化和构造地貌形成过程中起到至关重要的作用。
综上所述,区域变质作用对地球外层地质活动和地壳构造有重要意义。
它可以改变岩石的物理和化学性质,影响矿床的生成,参与地球物质循环过程,以及对地壳板块运动和构造活动具有反馈作用。
因此,研究区域变质作用对于理解地球的演化和资源勘探具有重要意义。
第七章流体地球化学第一节地壳中的流体一、流体的定义我们采纳Fyfe(1978)[6]的建议,用流变学的术语,并从地质情况来进行考虑如果一个体系在应力或外力的作用下能发生流动或变形,并且与周围物质处于相对平衡,我们就把它叫作流体。
换句话来说,当一个应力作用到一个物体上时,这个物体会改变它的大小、形状、组成和位置。
按照流变学的定义,流体是由应力和应望率所确定的。
对于地球中的物体来说当一个压力作用到该物体时,根据其应变率的不同可以分为牛顿流体(图7.1曲线A)和非牛顿流体(图7.1曲线B)。
为对比起见,也在图7.1中列出了固体的特征曲线(C和D)。
二、地球中的流体流体对地球中的所有地质作用都是十分重要的,但流体在地球的地质过程中所起的全部作用至今并不完全清楚。
地壳中的流体的总质量,我们可以从以下数据中估计出来。
现在的海洋质量为1.4×1024g,地壳的平均质量是2.3×l025g。
如果我们假定地壳中的含水量与海水的质量相似的话,那么地壳中的含水量也是1.4×1024g,约占地壳总质量(1.4×1024/2.3×l025)的6%左右。
大多数人的估计是地壳中流体的量约占总质量的3%-6%,如果占3%,则为6.9×1023g。
地幅中流体的含量,有人认为约占地慢的0.03%,即为1.2×1024g 与地壳中的含水量相当(地慢总质量为4×l027g)。
海水、地壳中、地慢中流体的质量是十分相近的。
现代板块的研究告诉我们,当板块俯冲时,把地表水带到了地下数公里,甚至数十公里的地方,这些水(至少是一部分)又通过循环回到了地表,其中另一部分可能在地下深处被固定在含水的矿物如滑石、金云母、角闪石以及其它相中。
从上面的叙述我们可知海水(水圈)、地壳和地慢中的流体处于相对平衡状态,并且又是互相循环的。
地球中主要有以下几种流体:1.岩浆:各种成分的岩浆,从酸性到超基性,以及碱性岩浆,主要是一种硅酸盐熔融体,含H2O一般<5%。
地质复习纲要第一篇地球概述地质学:地质学的研究对象是地球,是研究地球的物质组成,结构构造,地球形成与演化历史以及地球表层各种作用各种现象及成因的学问。
1、海洋地形单元的划分(名称)三大单元:大路边缘,大陆盆地,洋中脊2、地球物理性质:地内温度的分层:外热层(变温层)——来自太阳辐射,向下递减,日、夜、四季、有变化。
常温层——与当地年平均温度大致相当,常年不变,其深度一般为20—40m增温层——地温随深度增加而逐渐增加,受地球内部热能影响。
3.地质作用:形成和改变地球的物质组成、外部形态特征的内部构造的各种自然作用。
4.将今论古:用现在正在发生的地质作用去推测过去、类比过去、认识过去。
★地温梯度——每深度增加100米,增加的地温值;地温级——每地温增加1摄氏度增加的深度。
地球内圈:划分原则--地震波在地内传播速度的变化★具体划分——地壳、莫霍面、地幔、古登堡面、外核、过渡带、内核莫霍面——纵波到达这一界面后,波速突然增加。
地壳——由富铝镁的硅酸盐矿物的固体岩石组成地幔——由超基性岩类的岩石组成的。
地核——由铁和少量镍、硫混合物所组成。
古登堡面:横波变为零,纵波明显降低。
3、★岩石圈——地内软流圈以上、由地壳及上地幔上部的固体岩石组成的圈层。
即固态的上地幔上部+地壳=“岩石圈”★矿物——由天然产出且具有特定的化学成分和内部结构构造的均匀固体.★克拉克值——又称地壳元素丰度,是地壳中化学元素平均含量百分比。
★岩石概念——岩石是矿物集合体,是按一定的结构构造组成的固体物质。
同质多象:相同化学成分的物质在不同的环境条件下可以形成不同的晶体结构。
类质同象:矿物晶体结构中的某种原子或离子可以部分的被性质相似得他种原子或离子替代而不破坏其晶体结构。
大气圈分层(具体特点不要求)对流层、平流层、中间层、暖层、散逸层4、矿物的鉴定:形态——矿物的形状是指矿物的外貌特征,是矿物成分、晶体构造和生成环境等综合影响的结果力学性质(解理、断口、硬度)硬度——指矿物抵抗摩擦或刻划的强度,是鉴定矿物的重要依据之一。