材料性能学 3.冲击
- 格式:ppt
- 大小:13.51 MB
- 文档页数:44
材料的冲击性能研究及其应用材料的冲击性能是指材料在受到外界冲击或撞击时所能够承受的能力。
这一性能的研究对于材料工程领域的发展以及相关工业应用具有重要意义。
本文将探讨材料冲击性能的研究方法和技术,并阐述其在工业领域中的应用。
一、冲击性能的研究方法冲击性能的研究需要借助专门的实验设备和测试方法。
其中,常用的方法包括冲击试验、破裂机理分析等。
冲击试验是评价材料冲击性能的主要手段之一。
常见的冲击试验方法包括冲击落锤试验和冲击弯曲试验。
冲击落锤试验通过使一重锤自一定高度自由落下,冲击材料样品,再测量样品表面的冲击损伤深度或者材料的冲击吸收能力。
而冲击弯曲试验则是通过将试样在冲击弯曲载荷下进行试验,观察和评估材料的断裂行为和破坏特征。
这些试验方法可以定量地评估材料的冲击性能,并为进一步的工程应用提供依据。
此外,破裂机理分析也是研究材料冲击性能的重要方法。
通过观察和分析冲击试验时材料的变形、裂纹扩展和破坏特征,可以进一步揭示材料受力状态下的机理和行为规律。
这有助于深入理解材料的冲击性能,并为设计和制备更耐冲击材料提供参考。
二、冲击性能的应用材料的冲击性能在众多工业领域中都具有广泛应用。
以下列举了几个常见的应用领域。
1.交通运输领域:汽车、火车和飞机等交通工具在运行过程中往往面临各种外界冲击力,特别是在发生交通事故时。
因此,研究和提高材料的冲击性能对于提高交通工具的安全性至关重要。
通过使用具有良好冲击吸收能力的材料,可以减轻碰撞时对乘客的伤害,降低事故风险。
2.建筑领域:地震和强风等自然灾害时常威胁着建筑物的安全。
研究材料的冲击性能可以帮助设计和建造更加抗震、抗风的建筑物。
在建筑物的结构设计中,应用能够吸收冲击能量的材料,如柔性骨架和高强度纤维,可以有效提高建筑物的抗灾能力。
3.防护领域:冲击性能研究对于研发防弹材料和防护装备具有重要意义。
军事领域中,应用具有出色冲击吸收能力的材料可以为士兵提供更高的安全保障。
材料性能学名词解释第⼀章(单向静载下⼒学性能)弹性变形:材料受载后产⽣变形,卸载后这部分变形消逝,材料恢复到原来的状态的性质。
塑性变形:微观结构的相邻部分产⽣永久性位移,并不引起材料破裂的现象弹性极限:弹性变形过度到弹-塑性变形(屈服变形)时的应⼒。
弹性⽐功:弹性变形过程中吸收变形功的能⼒。
包申格效应:材料预先加载产⽣少量塑性变形,卸载后再同向加载,规定残余应⼒(弹性极限或屈服强度)增加;反向加载,规定残余应⼒降低的现象。
弹性模量:⼯程上被称为材料的刚度,表征材料对弹性变形的抗⼒。
实质是产⽣100%弹性变形所需的应⼒。
滞弹性:快速加载或卸载后,材料随时间的延长⽽产⽣的附加弹性应变的性能。
内耗:加载时材料吸收的变形功⼤于卸载是材料释放的变形功,即有部分变形功倍材料吸收,这部分被吸收的功称为材料的内耗。
韧性:材料断裂前吸收塑性变形功和断裂功的能⼒。
超塑性:在⼀定条件下,呈现⾮常⼤的伸长率(约1000%)⽽不发⽣缩颈和断裂的现象。
韧窝:微孔聚集形断裂后的微观断⼝。
第⼆章(其他静载下⼒学性能)应⼒状态软性系数:不同加载条件下材料中最⼤切应⼒与正应⼒的⽐值。
剪切弹性模量:材料在扭转过程中,扭矩与切应变的⽐值。
缺⼝敏感度:常⽤试样的抗拉强度与缺⼝试样的抗拉强度的⽐值。
NSR硬度:表征材料软硬程度的⼀种性能。
⼀般认为⼀定体积内材料表⾯抵抗变形或破裂的能⼒。
抗弯强度:指材料抵抗弯曲不断裂的能⼒,主要⽤于考察陶瓷等脆性材料的强度。
第三章(冲击韧性低温脆性)冲击韧度:⼀次冲断时,冲击功与缺⼝处截⾯积的⽐值。
冲击吸收功:冲击弯曲试验中,试样变形和断裂所吸收的功。
低温脆性:当试验温度低于某⼀温度时,材料由韧性状态转变为脆性状态。
韧脆转变温度:材料在某⼀温度t下由韧变脆,冲击功明显下降。
该温度即韧脆转变温度。
迟屈服:⽤⾼于材料屈服极限的载荷以⾼加载速度作⽤于体⼼⽴⽅结构材料时,瞬间并不屈服,需在该应⼒下保持⼀段时间后才屈服的现象。
1. 了解材料在冲击载荷作用下的力学性能。
2. 掌握冲击试验的基本原理和方法。
3. 分析不同材料在冲击载荷作用下的破坏情况,比较其冲击韧性。
4. 评估材料在实际工程应用中的适用性。
二、实验原理冲击试验是一种常用的材料力学性能测试方法,用于测定材料在冲击载荷作用下的抗力。
在冲击试验中,试样受到冲击载荷的作用,其内部应力状态和变形情况会发生变化,最终导致试样发生断裂。
通过测定试样在冲击载荷作用下的断裂能,可以评估材料的冲击韧性。
冲击试验的基本原理是能量守恒定律。
在冲击试验中,摆锤的势能转化为试样内部的应力能和应变能,以及试样断裂时释放的能量。
试样断裂时释放的能量称为冲击吸收功,它是衡量材料冲击韧性的重要指标。
三、实验材料与设备1. 实验材料本实验选用以下几种材料进行冲击试验:(1)低碳钢:GB/T 229-1994标准规定的10mm×10mm×55mm U形缺口或V形缺口试件。
(2)铸铁:GB/T 229-1994标准规定的10mm×10mm×55mm U形缺口或V形缺口试件。
(3)聚酰亚胺长纤维增强聚对苯二甲酸丁二醇酯复合材料:10mm×10mm×55mm V 形缺口试件。
2. 实验设备(1)冲击试验机:用于施加冲击载荷,测量冲击吸收功。
(2)游标卡尺:用于测量试样尺寸。
(3)扫描电镜:用于观察试样断口形貌。
1. 将试样固定在冲击试验机上,确保试样与冲击机摆锤接触良好。
2. 调整冲击试验机,设置合适的冲击速度和能量。
3. 启动冲击试验机,使摆锤冲击试样。
4. 观察试样在冲击载荷作用下的破坏情况,记录试样断裂时的冲击吸收功。
5. 使用游标卡尺测量试样断裂后的尺寸,计算试样断裂时的横截面面积。
6. 使用扫描电镜观察试样断口形貌,分析试样断裂机理。
五、实验结果与分析1. 低碳钢低碳钢在冲击载荷作用下的断裂形式为韧性断裂,断口形貌呈纤维状。
冲击吸收功随冲击速度的增加而增加,表明低碳钢的冲击韧性较好。
材料冲击实验的实验报告材料冲击实验的实验报告引言:材料冲击实验是一种常见的材料力学实验,通过对材料在外力作用下的变形和破坏过程进行观察和分析,可以评估材料的强度、韧性以及抗冲击性能。
本实验旨在通过不同冲击条件下的实验测试,探究不同材料在冲击下的行为和性能差异,为材料的设计和应用提供科学依据。
实验步骤:1. 实验材料准备:选取不同材料的标准试样,如金属、塑料、陶瓷等,确保试样的尺寸和形状一致。
2. 实验仪器准备:准备好冲击试验机、高速摄像机、测量仪器等实验设备,并进行校准和调试。
3. 实验参数设置:根据实验要求,设置冲击试验的冲击速度、冲击角度、冲击能量等参数。
4. 实验操作:将试样固定在冲击试验机上,调整试样的位置和方向,确保试样受力均匀。
5. 实验记录:启动冲击试验机,同时启动高速摄像机进行实时拍摄,记录试样在冲击过程中的变形和破坏情况。
6. 数据分析:根据实验记录和拍摄的图像,对试样的冲击性能进行定量分析,包括最大冲击力、冲击能量吸收、变形程度等。
实验结果与讨论:通过对不同材料在冲击试验中的表现进行观察和分析,可以得到以下实验结果和讨论:1. 材料的强度差异:不同材料在受到相同冲击条件下表现出不同的强度特性。
金属材料通常具有较高的强度,能够承受较大的冲击力而不破坏;而塑料材料则具有较低的强度,容易在受到冲击时发生破裂。
2. 材料的韧性差异:韧性是材料抵抗断裂的能力,是材料冲击性能的重要指标之一。
通过观察试样的变形程度和破坏形态,可以评估材料的韧性。
金属材料通常具有较高的韧性,能够在受到冲击时发生塑性变形,而不容易断裂;而塑料材料则具有较低的韧性,容易在受到冲击时发生脆性断裂。
3. 材料的抗冲击性能:抗冲击性能是材料在受到冲击时能够吸收和分散冲击能量的能力。
通过测量试样在冲击过程中的能量吸收情况,可以评估材料的抗冲击性能。
一般来说,具有较高韧性和强度的材料通常具有较好的抗冲击性能。
结论:通过材料冲击实验的测试和分析,可以得出不同材料在冲击下的行为和性能差异。