第八章电力系统不对称短路故障分析
- 格式:pdf
- 大小:1.39 MB
- 文档页数:29
1.问题:如何理解电网中的短路概念及出现的各类故障?回答:所谓短路是指电力系统在运行中,相与相之间或相与地(或中性线)之间发生非正常连接时而流过非常大的电流。
其电流值远大于额定电流,并取决于短路点距电源的电气距离。
短路就是不同电位的导电部分之间的低阻性短接,相当于电源未经过负载而直接由导线接通成闭合回路。
通常这是一种严重而应该尽可能避免电路的故障,会导致电路因电流过大而烧毁并发生火灾。
值得注意的是,除中性点外,相与相或相与地之间都是绝缘的。
图2 电力系统短路的分类电力系统短路可以分为三相短路、单相接地短路、两相短路和两相接地短路等。
三相短路的三相回路依旧是对称的,故称为对称短路。
其他的几种短路的三相回路均不对称,故称为不对称短路。
根据电力系统运行经验表明,单相短路占大多数,上述短路均是指在同一地点短路,实际上也可能在不同地点同时发生短路,例如两相在不同地点接地短路。
图3 故障的分类电网中的故障可以分成两大类:简单故障和复杂故障。
复杂故障一般是指由两种或者两种以上的简单故障组合而成,简单故障又分为对称故障和不对称故障;而不对称故障又可以分为短路故障(横向故障)和断路故障(纵向故障)。
在电力系统运行过程中,时常发生故障,其中大多数是短路故障。
2.问题:产生短路的原因有哪些?回答:产生短路的原因有很多,主要有如下几个方面:(1)元件损坏。
例如绝缘材料的自然老化,设计、安装及维护不良所带来的设备缺陷发展成短路。
(2)气象条件恶化。
例如雷电造成的闪络放电或者避雷针动作,架空线路由于大风或者导线覆冰引起电杆倒塌等。
(3)违规操作。
例如运行人员带负荷拉刀闸。
(4)其他原因。
例如挖沟损伤电缆。
3.问题:短路可能造成的危害有哪些?回答:短路电流所产生的电动力能形成很大的破坏力,如果导体和它的支架不够坚固,可能遭到难以修复的破坏,短路时由于很大的短路电流流经网络阻抗,必将使网络产生很大的电压损失。
另外,短路类型如果是金属性短路,短路点电压为零,短路点以上各处的电压也要相应降低很多,一旦电压低于额定电压太多的时候就会使供电受到严重影响或者被迫中断,若在发电厂附近发生短路,还可能使全电力系统运行解列,引起严重后果。
第八章 电力系统不对称故障的分析计算主要内容提示:电力系统中发生的故障分为两类:短路和断路故障。
短路故障包括:单相接地短路、两相短路、三相短路和两相接地短路;断路故障包括:一相断线和两相断线。
除三相短路外,均属于不对称故障,系统中发生不对称故障时,网络中将出现三相不对称的电压和电流,三相电路变成不对称电路。
直接解这种不对称电路相当复杂,这里引用120对称分量法,把不对称的三相电路转换成对称的电路,使解决电力系统中各种不对称故障的计算问题较为方便。
本章主要内容包括:对称分量法,电力系统中主要元件的各序参数及各种不对称故障的分析与计算。
§8—1 对称分量法及其应用利用120对称分量法可将一组不对称的三相量分解为三组对称的三序分量(正序分量、负序分量、零序分量)之和。
设c b a F F F ∙∙∙为三相系统中任意一组不对称的三相量、可分解为三组对称的三序分量如下:()()()()()()()()()021021021c c c c b b b b a a a a F F F F F F F F F F F F ∙∙∙∙∙∙∙∙∙∙∙∙++=++=++= 三组序分量如图8-1所示。
正序分量: ()1a F ∙、()1b F ∙、()1c F ∙三相的正序分量大小相等,彼此相位互差120°,与系统正常对称运行方式下的相序相同,达到最大值的顺序a →b →c ,在电机内部产生正转磁场,这就是正序分量。
此正序分量为一平衡的三相系统,因此有:()()()111c b a F F F ∙∙∙++=0。
负序分量:()2a F ∙、()2b F ∙、()2c F ∙三相的负序分量大小相等,彼此相位互差120°,与系图 8-1 三序分量Fc(0) ·零序F b(0) ·F a(0) ·120°120° 120° 正序F b(1)·F a(1)·F c(1) ·ω120°120°120°负序 F a(2)·F c(2)·F b(2)·ω统正常对称运行方式下的相序相反,达到最大值的顺序a →c →b ,在电机内部产生反转磁场,这就是负序分量。
摘要电力系统发生不对称短路故障的可能性是最大的,本课题要求通过对电力系统分析不对称短路故障进行分析与计算,为电力系统的规划设计、安全运行、设备选择和继电保护等提供重要的依据。
关键字:标么值;等值电路;不对称故障目录一、基础资料 (3)二、设计内容 (3)1.选择110kV为电压基本级,画出用标幺值表示的各序等值电路。
并求出各序元件的参数。
(3)2.化简各序等值电路并求出各序总等值电抗。
(6)3.K处发生单相直接接地短路,列出边界条件并画出复合相序图。
求出短路电流。
(7)4.设在K处发生两相直接接地短路,列出边界条件并画出复合相序图。
求出短路电流。
(9)5.讨论正序定则及其应用。
并用正序定则直接求在K处发生两相直接短路时的短路电流。
(11)三、设计小结 (12)四、参考文献 (12)附录 (12)一、基础资料1. 电力系统简单结构图如图1所示。
图1 电力系统结构图在K 点发生不对称短路,系统各元件标幺值参数如下:(为简洁,不加下标*) 发电机G1和G2:S n =120MV A ,U n =10.5kV ,次暂态电动势标幺值1.67,次暂态电抗标幺值0.9,负序电抗标幺值0.45;变压器T1:S n =60MV A ,U K %=10.5 变压器T2:S n =60MV A ,U K %=10.5线路L=105km ,单位长度电抗x 1= 0.4Ω/km ,x 0=3 x 1, 负荷L1:S n =60MV A ,X 1=1.2,X 2=0.35 负荷L2:S n =40MV A ,X 1=1.2,X 2=0.35 取S B =120MV A 和U B 为所在级平均额定电压。
二、设计内容1.选择110kV 为电压基本级,画出用标幺值表示的各序等值电路。
并求出各序元件的参数(要求列出基本公式,并加说明)在产品样本中,电力系统中各电器设备如发电机、变压器、电抗器等所给出的都是标么值,即以本身额定值为基准的标么值或百分值。
第8章电力系统不对称故障的分析和计算8.1 复习笔记一、简单不对称短路的分析各序网络故障点的电压方程式式中,,即是短路发生前故障点的电压。
1.单相(a相)接地短路图8-1-1 单相接地短路(1)边界条件单相接地短路时,故障处的三个边界条件为①用对称分量表示为②用序量表示为(2)短路点电压和电流的各序分量(3)复合序网求解图8-1-2 单相短路的复合序网①短路点故障相电流②短路点非故障相的对地电压(4)相量图分析图8-1-3 单相接地短路时短路处的电流电压相量图和都与方向相同、大小相等,比超前90º,而和比落后90º。
①当X ff(0)→0时,相当于短路发生在直接接地的中性点附近,与反相,即θv=180º,电压的绝对值为。
②当X ff(0)→∞时,为不接地系统,单相短路电流为零,非故障相电压上升为线电压,大小为其夹角为60º。
③当X ff(0)=X ff(2)时,非故障相电压即等于故障前正常电压,夹角为120º。
2.两相(b相和c相)短路图8-1-4 两相短路(1)边界条件故障处的三个边界条件为用对称分量表示为整理后可得(2)方程联立求解(3)复合序网求解图8-1-5 两相短路的复合序网①短路点故障相的电流为b、c两相电流大小相等为②短路点各相对地电压为总结:两相短路电流为正序电流的倍;短路点非故障相电压为正序电压的两倍,而故障相电压只有非故障相电压的一半而且方向相反。
(4)相量图分析图8-1-6 两相短路时短路处电流电压相量图以正序电流作为参考相量,负序电流与它方向相反。
正序电压与负序电压相等,都比超前90º。
3.两相(b相和c相)短路接地图8-1-7 两相短路接地(1)边界条件故障处的三个边界条件为用序量表示的边界条件为(2)方程联立求解。
电力系统不对称故障的分析电力系统不对称故障是指在三相电力系统中,其中一相发生了损坏或故障,导致系统中三相电压、电流、功率等参数不再保持对称。
不对称故障会导致电力系统运行不稳定,甚至造成设备损坏和系统瘫痪。
因此,对电力系统不对称故障的分析非常重要。
首先,对电力系统不对称故障进行分析需要进行故障现象的测量和记录。
可以通过测量故障相电压和电流、功率因素等参数来了解故障的具体情况。
同时,还可以记录故障发生时的系统状态和操作情况,为后续的故障分析提供依据。
其次,根据故障现象的测量和记录,初步判断故障的类型。
电力系统不对称故障可以分为单相短路故障、单相接地故障和线路不平衡故障等。
通过分析故障相电压和电流的变化规律,可以初步判断故障的类型。
然后,根据故障类型,进行故障点的定位。
故障点的定位可以通过测量故障传播速度和故障电流的方向来实现。
根据故障点位置的确定,可以进行局部化抢修和恢复供电,减少故障对系统的影响。
最后,进行故障原因分析。
故障原因分析是解决电力系统不对称故障的关键步骤,可以通过多种方法来实现。
例如,可以通过现场勘查、设备检测和故障模拟等方法来找出故障的具体原因。
同时,还可以利用故障记录仪、故障模拟软件等辅助工具,对故障进行仿真和分析。
在进行故障原因分析时,还需要考虑故障的影响范围、时间和条件等因素。
通过对故障原因的准确分析,可以采取相应的措施来防止和排除类似故障的再次发生。
综上所述,电力系统不对称故障的分析是一个复杂而重要的过程,需要对故障现象进行测量和记录,初步判断故障类型,进行故障点的定位,并最终进行故障原因分析。
通过准确的故障分析,可以及时恢复系统运行,确保电力系统的稳定和安全。
第8章电力系统不对称故障分析计算一、单项选择题1.电力系统发生三相短路,短路电流只包含( )A.正序分量B.负序分量C.零序分量D.正序和零序分量I+I+I=0,U=U=U属哪种短2.特殊相,故障处的序分量边界条件••••••(1)(2)(0)(1)(2)(0)路故障( )A.三相短路B.单相短路C.两相短路D.两相短路接地3.与一相断线故障复合序网形式上相同的短路故障是()。
A、单相接地短路B、两相短路C、两相短路接地D、三相短路4.中性点直接接地系统发生短路后,短路电流中没有零序分量的不对称故障形式是( )A.单相短路 B.两相短路C.两相接地短路 D.三相短路5.对称分量法适用于的系统是( )A.非线性系统 B.线性系统C.非刚性系统 D.刚性系统6.一般情况下,变压器的负序电抗x T(2)与正序电抗x T(1)的大小关系为( )A.X T(1)=X T(2) B.X T(1)>X T(2)C.X T(1)<X T(2) D.X T(1)》X T(2)7.中性点接地系统中发生不对称短路后,越靠近短路点,零序电压变化趋势为()A.越高B.越低C.不变D.无法判断8.系统发生短路故障后,越靠近短路点,正序电压( )A.越低B.越高C.不变D.不确定9.系统发生不对称短路后,负序电压的变化趋势为越靠近短路点,负序电压()A.不变B.越低C.越高D.先高后低10.分析不对称短路的方法是()。
A、对称分量法B、叠加原理C、运算曲线法D、节点电压法11.根据对称分量法,a、b、c三相的零序分量相位关系是()A.a相超前b相B.b相超前a相C.c相超前b相D.相位相同12.中性点直接接地系统中,发生单相接地故障时,零序回路中不包含()。
A.零序电流B.零序电压C.零序阻抗D.电源电势13.根据正序等效定则,当系统发生两相短路接地故障,附加阻抗Z△为()。
A. Z0ΣB. Z2ΣC.Z0Σ+ Z2ΣD. Z0Σ∥Z2Σ14.输电线路的正序阻抗与负序阻抗相比,其值要()。