高一数学必修二练习题
- 格式:doc
- 大小:1.40 MB
- 文档页数:10
必修2 空间中的垂直关系基础知识点一、选择题:1.若斜线段AB是它在平面α上的射影的长的2倍,则AB与平面α所成的角是( ).A.60°B.45°C.30°D.120°2.直线l⊥平面α,直线m⊂α,则( ).A.l⊥mB.l∥mC.l,m异面D.l,m相交而不垂直3.如图所示,PO⊥平面ABC,BO⊥AC,在图中与AC垂直的线段有( ).A.1条B.2条C.3条D.4条4.若平面α⊥平面β,平面β⊥平面γ,则( ).A.α∥γB.α⊥γC.α与γ相交但不垂直D.以上都有可能5.已知长方体ABCDA1B1C1D1,在平面AB1上任取一点M,作ME⊥AB于E,则( ).A.ME⊥平面ACB.ME ⊂平面ACC.ME∥平面ACD.以上都有可能6.如图,设P是正方形ABCD外一点,且PA⊥平面ABCD,则平面PAB与平面PBC、平面PAD的位置关系是( ).A.平面PAB与平面PBC、平面PAD都垂直B.它们两两垂直C.平面PAB与平面PBC垂直,与平面PAD不垂直D.平面PAB与平面PBC、平面PAD都不垂直二、填空题:7.在正方体A1B1C1D1ABCD中,E,F分别是棱AB,BC的中点,O是底面ABCD的中心(如图),则EF与平面BB1O的关系是________.8.若a,b表示直线,α表示平面,下列命题中正确的有________个.①a⊥α,b∥α⇒a⊥b; ②a⊥α,a⊥b⇒b∥α;③a∥α,a⊥b⇒b⊥α;④a⊥α,b⊥α⇒a∥b.9.α、β是两个不同的平面,m、n是平面α及β外的两条不同的直线,给出四个论断:①m⊥n;②α⊥β;③m⊥α;④n⊥β.以其中三个论断作为条件,余下的一个论断作为结论,写出你认为正确的一个命题________.10.如图,正方体ABCDA1B1C1D1中,截面C1D1AB与底面ABCD所成二面角C1ABC的大小为________.三、解答题:11.如图所示,在Rt △AOB 中,∠ABO=π6,斜边AB=4,Rt △AOC 可以通过Rt △AOB 以直线AO 为轴旋转得到,且二面角BAOC 是直二面角,D 是AB 的中点.求证:平面COD ⊥平面AOB.12.如图,在四棱锥P ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD=DC ,E 是PC 的中点,作EF ⊥PB 交PB 于点F.(1)求证:PA ∥平面EDB ;(2)求证:PB ⊥平面EFD.综合提高1.已知l ,m ,n 为两两垂直的三条异面直线,过l 作平面α与直线m 垂直,则直线n 与平面α的关系是( ).A.n ∥αB.n ∥α或n ⊂αC.n ⊂α或n 与α不平行D.n ⊂α2.已知平面α⊥平面β,α∩β=l ,点A ∈α,A ∉l ,直线AB ∥l ,直线AC ⊥l ,直线m ∥α,m ∥β,则下列四种位置关系中,不一定成立的是( ).A.AB ∥mB.AC ⊥mC.AB ∥βD.AC ⊥β3.一个二面角的两个半平面分别垂直于另一个二面角的两个半平面,那么这两个二面角( ).A.相等B.互补C.相等或互补D.关系无法确定4.如图,正方形SG1G2G3中,E,F分别是G1G2,G2G3的中点,现在沿SE,SF,EF 把这个正方形折成一个四面体,使G1、G2、G3重合,重合后的点记为G.给出下列关系:①SG⊥平面EFG;②SE⊥平面EFG;③GF⊥SE;④EF⊥平面SEG.其中成立的有( ).A.①②B.①③C.②③D.③④5.如果三棱锥的三个侧面两两相互垂直,则顶点在底面的正投影是底面三角形的________心.6.已知三棱柱ABCA1B1C1的侧棱与底面边长都相等,若A1在底面ABC内的射影为△ABC的中心,则AB1与ABC底面所成的角的正弦值等于________.7.将正方形ABCD沿对角线BD折成直二面角ABDC,有如下四个结论:①AC⊥BD;②△ACD是等边三角形;③AB与平面BCD成60°的角;④AB与CD 所成的角为60°.其中真命题的编号是________(写出所有真命题的编号).8.如图,A、B、C、D为空间四点,在△ABC中,AB=2,AC=BC=2,等边三角形ADB以AB为轴运动,当平面ADB⊥平面ABC时,则CD=________.9.如图所示,四边形ABCD为正方形,SA垂直于四边形ABCD所在的平面,过点A且垂直于SC的平面分别交SB,SC,SD于点E,F,G.求证:AE⊥SB,AG⊥SD.10.如图,在四棱锥P-ABCD中,PO⊥面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.(1)求证:PC⊥BC.(2)求点A到平面PBC的距离.11.如图,已知平面PAB⊥平面ABC,平面PAC⊥平面ABC,AE⊥平面PBC,E为垂足.(1)求证:PA⊥平面ABC;(2)当E为△PBC的垂心时,求证:△ABC是直角三角形.12.(创新拓展)已知△BCD 中,∠BCD=90°,BC=CD=1,AB ⊥平面BCD ,∠ADB=60°,E ,F 分别是AC ,AD 上的动点,且AE AC =AF AD=λ(0<λ<1). (1)求证:不论λ为何值,总有平面BEF ⊥平面ABC ;(2)当λ为何值时,平面BEF ⊥平面ACD?参考答案基础篇1.答案 A ;解析 斜线段、垂线段以及射影构成直角三角形.如图所示,∠ABO即是斜线AB 与平面α所成的角,又AB=2BO ,所以cos ∠ABO=OB AB =12.所以∠ABO=60°.故选A.2.答案 A ;解析 无论l 与m 是异面,还是相交,都有l ⊥m ,考查线面垂直的定义,故选A.3.答案 D ;解析 ∵PO ⊥平面ABC ,∴PO ⊥AC ,又∵AC ⊥BO ,∴AC ⊥平面PBD , ∴平面PBD 中的4条线段PB ,PD ,PO ,BD 与AC 垂直.4.答案 D ;解析 以正方体为模型:相邻两侧面都与底面垂直;相对的两侧面都与底面垂直;一侧面和一对角面都与底面垂直,故选D.5.答案 A ;解析 由于ME ⊂平面AB 1,平面AB 1∩平面AC=AB ,且平面AB 1⊥平面AC ,ME ⊥AB ,则ME ⊥平面AC.6.答案A;解析∵PA⊥平面ABCD,∴PA⊥BC.又BC⊥AB,PA∩AB=A,∴BC⊥平面PAB,∵BC⊂平面PBC,∴平面PBC⊥平面PAB.由AD⊥PA,AD⊥AB,PA∩AB=A,得AD⊥平面PAB.∵AD⊂平面PAD,∴平面PAD ⊥平面PAB.由已知易得平面PBC与平面PAD不垂直,故选A.7.答案垂直;解析由正方体性质知AC⊥BD,BB1⊥AC,∵E,F是棱AB,BC 的中点,∴EF∥AC,∴EF⊥BD,EF⊥BB1,∴EF⊥平面BB1O.8.答案2;解析由线面垂直的性质定理知①④正确.9.答案①③④⇒②或②③④⇒①;解析如图,PA⊥α,PB⊥β,垂足分别为A、B,α∩β=l,l∩平面PAB=O,连接OA、OB,可证明∠AOB为二面角αlβ的平面角,则∠AOB=90°⇔PA⊥PB.10.答案45°;解析∵AB⊥BC,AB⊥BC1,∴∠C1BC为二面角C1ABC的平面角,大小为45°.11.证明:由题意:CO⊥AO,BO⊥AO,∴∠BOC是二面角BAOC的平面角,又∵二面角BAOC是直二面角,∴CO⊥BO,又∵AO∩BO=O,∴CO⊥平面AOB,∵CO⊂平面COD,∴平面COD⊥平面AOB.12.证明:(1)连接AC,AC交BD于点O.连接EO,如图.∵底面ABCD是正方形,∴点O是AC的中点.在△PAC中,EO是中位线,∴PA∥EO.而EO⊂平面EDB且PA⊄平面EDB.所以PA∥平面EDB.(2)∵PD⊥底面ABCD且DC⊂底面ABCD.∴PD⊥DC.∵PD=DC,可知△PDC是等腰直角三角形,而DE是斜边PC的中线,∴DE⊥PC.①同样由PD⊥底面ABCD,得PD⊥BC.∵底面ABCD是正方形,有DC⊥BC,∴BC⊥平面PDC.而DE⊂平面PDC,∴BC⊥DE.②由①和②推得DE⊥平面PBC.而PB⊂平面PBC,∴DE⊥PB.又EF⊥PB且DE∩EF=E,∴PB⊥平面EFD.综合提高1.答案A;解析∵l⊂α,且l与n异面,∴n⊄α,又∵m⊥α,n⊥m,∴n ∥α.2.答案D;解析如图,AB∥l∥m,AC⊥l,m∥l⇒AC⊥m,AB∥l⇒AB∥β.故选D.3.答案D;解析如图所示,平面EFDG⊥平面ABC,当平面HDG绕DG转动时,平面HDG始终与平面BCD垂直,所以两个二面角的大小关系不确定,因为二面角HDGF 的大小不确定.4.答案B;解析由SG⊥GE,SG⊥GF,得SG⊥平面EFG,排除C、D;若SE⊥平面EFG,则SG∥SE,这与SG∩SE=S矛盾,排除A,故选B.5.答案垂;解析三棱锥的三个侧面两两相互垂直,则三条交线两两互相垂直,可证投影是底面三角形的垂心.6.答案:23;解析由题意知,三棱锥A1ABC为正四面体(各棱长都相等的三棱锥),设棱长为a ,则AB 1=3a ,棱柱的高A 1O=63a(即点B 1到底面ABC 的距离),故AB 1与底面ABC 所成的角的正弦值为A 1O AB 1=23.' 7.答案 ①②④;解析 本题主要考查了空间直线与直线、直线与平面的夹角.8.答案 2;解析 取AB 的中点E ,连接DE ,CE ,因为△ADB 是等边三角形,所以DE ⊥AB.当平面ADB ⊥平面ABC 时,因为平面ADB ∩平面ABC=AB ,所以DE ⊥平面ABC.又CE ⊂平面ABC 可知DE ⊥CE. 由已知可得DE=3,EC=1,在Rt △DEC 中,CD=DE 2+CE 2=2.9.证明 因为SA ⊥平面ABCD ,所以SA ⊥BC.又BC ⊥AB ,SA ∩AB=A ,所以BC ⊥平面SAB ,又AE ⊂平面SAB ,所以BC ⊥AE.因为SC ⊥平面AEFG ,所以SC ⊥AE.又BC ∩SC=C ,所以AE ⊥平面SBC ,所以AE ⊥SB.同理可证AG ⊥SD.10.(1)证明 因为PD ⊥平面ABCD ,BC ⊂平面ABCD ,所以PD ⊥BC.因为∠BCD=90°,所以BC ⊥CD.又PD ∩CD=D ,所以BC ⊥平面PCD.而PC ⊂平面PCD ,所以PC ⊥BC.(2)解 如图,过点A 作BC 的平行线交CD 的延长线于E ,过点E 作PC 的垂线,垂足为F ,则有AE ∥平面PBC ,所以点A 到平面PBC 的距离等于点E 到平面PBC 的距离.又EF ⊥PC ,BC ⊥平面PCD ,则EF ⊥BC.BC ∩PC=C ,所以EF ⊥平面PBC.EF 即为E 到平面PBC 的距离.又因为AE ∥BC ,AB ∥CD ,所以四边形ABCE 为平行四边形.所以CE=AB=2. 又PD=CD=1,PD ⊥平面ABCD ,CD ⊂平面ABCD.所以PD ⊥CD ,∠PCD=45°. 所以EF= 2.即点A 到平面PBC 的距离为 2.11.证明 (1)在平面ABC 内取一点D ,作DF ⊥AC 于F ,∵平面PAC ⊥平面ABC ,且交线为AC ,∴DF ⊥平面PAC.又∵PA ⊂平面PAC ,∴DF ⊥PA.作DG ⊥AB 于G ,同理可证DG ⊥PA.∵DG ∩DF=D ,∴PA ⊥平面ABC.(2)连接BE 并延长交PC 于H.∵E 是△PBC 的垂心,∴PC ⊥BH ,又AE ⊥平面PBC ,故AE ⊥PC ,且AE ∩BE=E ,∴PC ⊥平面ABE.∴PC ⊥AB.又∵PA ⊥平面ABC ,∴PA ⊥AB ,且PA ∩PC=P ,∴AB ⊥平面PAC ,∴AB ⊥AC ,即△ABC 是直角三角形. 12.(1)证明 ∵AB ⊥平面BCD ,∴AB ⊥CD.∵CD ⊥BC 且AB ∩BC=B ,∴CD ⊥平面ABC.又∵AE AC =AF AD=λ(0<λ<1),∴不论λ为何值,恒有EF ∥CD ,∴EF ⊥平面ABC. 又EF ⊂平面BEF ,∴不论λ为何值恒有平面BEF ⊥平面ABC.(2)解 由(1)知,EF ⊥BE ,又平面BEF ⊥平面ACD ,∴BE ⊥平面ACD ,∴BE ⊥AC. ∵BC=CD=1,∠BCD=90°,∠ADB=60°,AB ⊥平面BCD ,∴BD=2,AB=2tan 60°= 6.AC=AB 2+BC 2=7, 由AB 2=AE ·AC 得AE=67,∴λ=AE AC =67,故当λ=67时,平面BEF ⊥平面ACD.。
(数学2必修)第一章 空间几何体 一、选择题1.过圆锥的高的三等分点作平行于底面的截面,它们把圆锥侧面分成的三部分 的面积之比为( )A. 1:2:3B. 1:3:5C. 1:2:4D. 1:3:92.在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方形,则截去8个三棱锥后 ,剩下的几何体的体积是( ) A. 23 B. 76C. 45D. 563.已知圆柱与圆锥的底面积相等,高也相等,它们的体积 分别为1V 和2V ,则12:V V =( )A. 1:3B. 1:1C. 2:1D. 3:14.如果两个球的体积之比为8:27,那么两个球的表面积之比为( ) A. 8:27 B. 2:3 C. 4:9 D. 2:95.有一个几何体的三视图及其尺寸如下(单位cm ),则该几何体的表面积及体积为:A. 224cm π,212cm πB. 215cm π,212cmπC. 224cm π,236cm πD. 以上都不正确二、填空题1. 若圆锥的表面积是15π,侧面展开图的圆心角是060,则圆锥的体积是_______。
2.一个半球的全面积为Q ,一个圆柱与此半球等底等体积,则这个圆柱的全面积是 . 3.球的半径扩大为原来的2倍,它的体积扩大为原来的 _________ 倍.4.一个直径为32厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水面升高9厘米则此球的半径为_________厘米.5.已知棱台的上下底面面积分别为4,16,高为3,则该棱台的体积为___________。
三、解答题1. (如图)在底半径为2,母线长为4的圆锥中内接一个高为3的圆柱, 求圆柱的表面积65P ABCVEDF2.如图,在四边形ABCD 中,090DAB ∠=,0135ADC ∠=,5AB =,22CD =,2AD =,求四边形ABCD 绕AD 旋转一周所成几何体的表面积及体积.(数学2必修)第二章 点、直线、平面之间的位置关系 [基础训练A 组] 一、选择题1.下列四个结论:⑴两条直线都和同一个平面平行,则这两条直线平行。
高一数学必修2直线的点斜式方程练习题一、选择题1、过点P (3,0),斜率为2的直线方程是( ).A. y=2x-3 B. y=2x+3C. y=2(x+3)D. y=2(x-3)2、经过点(-3,2),倾斜角为 60的直线方程是( )A. )3(32-=+x yB. )3(332+=-x y C. )3(32+=-x y D.)3(332-=+x y 3、过点(-1,3)且垂直于直线032=+-y x 的直线方程( )A. 052=-+y xB. 012=-+y xC. 052=-+y xD.072=+-y x4、方程)2(-=x k y 表示 ( )A. 过点(-2,0)的一切直线.B. 过点(2,0)的一切直线.C. 过点(2,0)且不垂直于x 轴的一切直线.D. 过点(2,0)且除去x 轴的一切直线.5、点 M (1,2)在直线L 上的射影H (-1,4),则直线L 的方程是()A. 05=+-y xB. 03=-+y xC. 05=-+y xD.01=+-y x二、填空题6、在y 轴上的截距是-6,倾斜角的正弦值是54的直线方程是__________________. 7、(2000年某某春季高考)若直线的倾斜角为π-arctan 21,且过点(1,0),则直线L 的方程为. 8、直线l 1,l 2的方程分别为y=mx ,y=nx(m ,n ≠0),l 1的倾斜角是l 2倾斜角的2倍,l 1的斜率是l 2的斜率的4倍,则mn=.9、已知点A (2,3)是直线l :y=2x-1上的一点,将l 绕A 点逆时针方向旋转 45得到直线'l ,则直线'l 的方程为:__________________.10、等边三角形OAB ,A (4,0),B 在第四象限,则边AB 所在的直线方程为__________________.三、解答题11、直线l 过点P (2,-3),倾斜角比直线y=2x-1的倾斜角大 45,求直线l 的方程。
高一数学必修第二册全册复习测试题卷(共22题)一、选择题(共10题)1.设某项试验成功的概率是失败的概率的2倍,用随机变量X描述1次试验的成功次数,则P(X=0)等于( )A.0B.12C.13D.232.若∣a⃗∣=1,∣b⃗⃗∣=2,且(a⃗+b⃗⃗)⊥a⃗,则a⃗与b⃗⃗的夹角θ=( )A.π3B.−π3C.2π3D.2π3或−π33.已知i为虚数单位,若复数z满足z(1−i)=1+i,则z=( )A.i B.−12i C.1D.124.在复平面内,复数z1=3−i,z2=−1+2i对应的两点间的距离为( )A.2B.3C.4D.55.甲、乙两名同学在高考前的5次模拟考中的数学成绩如茎叶图所示,记甲、乙两人的平均成绩分别为x,y,下列说法正确的是( )A.x<y,且乙比甲的成绩稳定B.x>y,且乙比甲的成绩稳定C.x<y,且甲比乙的成绩稳定D.x>y,且甲比乙的成绩稳定6.复数z(1−i)=i(i为虚数单位),则z的共轭复数在复平面上对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限7.设a⃗=(32,sinα),b⃗⃗=(cosα,13),且a⃗∥b⃗⃗,则锐角α为( )A.45∘B.30∘C.75∘D.60∘8.已知实数a∈[−3,3],则复数z=a+i2−i在复平面内对应的点位于第二象限的概率为( )A.512B.12C.712D.349. 下列叙述中,错误的一项为 ( ) A .棱柱中两个互相平行的平面一定是棱柱的底面 B .棱柱的各个侧面都是平行四边形 C .棱柱的两底面是全等的多边形 D .棱柱的面中,至少有两个面相互平行10. 在 △ABC 中,a =5,b =3,则 sinA:sinB 的值是 ( ) A . 53B . 35C . 37D . 57二、填空题(共6题) 11. 思考辨析 判断正误两条直线无公共点,则这两条直线平行.( )12. 已知非零向量 a ⃗,b ⃗⃗ 满足 ∣a ⃗∣=∣∣a ⃗−b ⃗⃗∣∣,则 (a ⃗−12b ⃗⃗)⋅b ⃗⃗= .13. 设两个非零向量 a ⃗ 与 b ⃗⃗ 不共线.若 ka ⃗+b ⃗⃗ 与 a ⃗+kb ⃗⃗ 共线,则 k = .14. 已知 (a −i )2=2i ,其中 i 是虚数单位,那么实数 a = .15. 若复数 z 满足 2z +z =3−2i ,其中 i 为虚数单位,则 z = .16. 已知 O 为 △ABC 内一点,OA ⃗⃗⃗⃗⃗⃗+2OB ⃗⃗⃗⃗⃗⃗+3OC ⃗⃗⃗⃗⃗⃗=0⃗⃗,则 S△ABC S △AOC= .三、解答题(共6题)17. 一个盒子里装有完全相同的十个小球,分别标上 1,2,3,⋯,10 这 10 个数字,现随机地抽取两个小球,如果: (1)小球是不放回的; (2)小球是有放回的.分别求两个小球上的数字为相邻整数的概率.18. 正六边形 ABCDEF 中,O 是其中心,设 AB ⃗⃗⃗⃗⃗⃗=m ⃗⃗⃗,AF ⃗⃗⃗⃗⃗⃗=n ⃗⃗,用 m ⃗⃗⃗,n ⃗⃗ 表示 AD ⃗⃗⃗⃗⃗⃗,BD ⃗⃗⃗⃗⃗⃗⃗.19. 如图所示,某地出土的一种“钉”是由四条线段组成,其结构能使它任意抛至水平面后,总有一端所在的直线竖直向上,并记组成该“钉”的四条线段的公共点为 O ,钉尖为 A i (i =1,2,3,4).(1) 设OA1=a(a>0),当A1,A2,A3在同一水平面内时,求OA1与平面A1A2A3所成角的大小(结果用反三角函数值表示).(2) 若该“钉”的三个端尖所确定的三角形的面积为3√2cm2,要用某种线型材料复制100枚这种“钉”(损耗忽略不计),共需要该种材料多少米?⃗⃗⃗⃗⃗⃗对应的复数是1+2i,向量20.复平面内有A,B,C三点,点A对应的复数是2+i,向量BA⃗⃗⃗⃗⃗⃗对应的复数是3−i,求点C在复平面内的坐标.BC21.已知过球面上三点A,B,C的截面到球心的距离等于球半径的一半,且AC=BC=6,AB=4,求球面面积与球的体积.22.定义:对于两个非零向量p⃗和q⃗,如果存在不全为零的常数α,β,使αp⃗+βq⃗=0⃗⃗,那么称p⃗和q⃗是线性相关的,否则称p⃗和q⃗是线性无关的.已知a⃗=3i⃗−4j⃗,a⃗+b⃗⃗=4i⃗−3j⃗,试判断a⃗与b⃗⃗的线性关系(相关还是无关),并证明你的结论.答案一、选择题(共10题)1. 【答案】C【知识点】事件的关系与运算2. 【答案】C【解析】因为(a⃗+b⃗⃗)⊥a⃗,所以(a⃗+b⃗⃗)⋅a⃗=a⃗2+a⃗⋅b⃗⃗=1+2cosθ=0,解得cosθ=−12,又θ∈[0,π],所以θ=2π3.【知识点】平面向量的数量积与垂直3. 【答案】A【解析】由z(1−i)=1+i,得z=1+i1−i =(1+i)2(1−i)(1+i)=2i2=i.【知识点】复数的乘除运算4. 【答案】D【解析】在复平面内,复数z1=3−i,z2=−1+2i对应的两点的坐标分别为(3,−1),(−1,2),则两点间的距离为∣z2−z1∣=√(−1−3)2+[2−(−1)]2=5.【知识点】复数的加减运算、复数的几何意义5. 【答案】A【解析】由题,x=15×(101+102+105+114+138)=112,y=15×(108+118+117+124+123)=118,所以x<y,由茎叶图可知,乙的成绩更集中,故乙比甲的成绩稳定.【知识点】样本数据的数字特征6. 【答案】C【解析】因为z=i1−i =i(1+i)(1−i)(1+i)=−1+i2=−12+12i,所以z=−12−12i,对应点为(−12,−12),在第三象限.【知识点】复数的几何意义、复数的乘除运算7. 【答案】A【知识点】平面向量的数乘及其几何意义8. 【答案】A【解析】 z =a+i2−i =(a+i )(2+i )(2−i )(2+i )=2a+(a+2)i+i 24−i 2=2a−1+(a+2)i5,由于点位于第二象限, 所以 {2a −1<0,a +z >0,则 −2<a <12, P =∣∣12−(−2)∣∣∣3−(−3)∣=512.【知识点】复数的乘除运算、复数的几何意义9. 【答案】A【解析】在A 中,棱柱中两个互相平行的平面不一定是棱柱的底面, 例如正六棱柱的相对侧面互相平行,故A 错误;在B 中,由棱柱的定义知棱柱的各个侧面都是平行四边形,故B 正确; 在C 中,由棱柱的定义知棱柱的两底面是互相平行且全等的多边形,故C 正确; 在D 中,棱柱的定义是,有两个面互相平行,其余各面都是四边形, 相邻的公共边互相平行,有这些面围成的几何体是棱柱,由此得到D 正确. 【知识点】棱柱的结构特征10. 【答案】A【解析】根据正弦定理,得 sinAsinB =ab =53. 【知识点】正弦定理二、填空题(共6题) 11. 【答案】 ×【知识点】直线与直线的位置关系12. 【答案】 0【知识点】平面向量的数量积与垂直13. 【答案】 ±1【解析】因为 ka ⃗+b ⃗⃗ 与 a ⃗+kb⃗⃗ 共线,所以存在实数 λ,使 ka ⃗+b ⃗⃗=λ(a ⃗+kb ⃗⃗),即 (k −λ)a ⃗=(λk −1)b⃗⃗. 又 a ⃗,b ⃗⃗ 是两个不共线的非零向量,所以 k −λ=λk −1=0. 消去 λ,得 k 2−1=0,所以 k =±1. 【知识点】平面向量的数乘及其几何意义14. 【答案】 −1【解析】 a 2−2ai −1=a 2−1−2ai =2i ,a =−1. 【知识点】复数的乘除运算15. 【答案】 1−2i【解析】设 z =a +bi (a,b ∈R ), 则 z =a −bi , 因为 2z +z =3−2i ,所以 2a +2bi +a −bi =3−2i , 所以 3a =3,b =−2, 解得 a =1,b =−2, 所以 z =1−2i .【知识点】复数的加减运算16. 【答案】 3【解析】如图所示,取 BC 的中点 D ,AC 的中点 E ,连接 OD ,OE , 则OA ⃗⃗⃗⃗⃗⃗+2OB ⃗⃗⃗⃗⃗⃗+3OC ⃗⃗⃗⃗⃗⃗=(OA⃗⃗⃗⃗⃗⃗+OC ⃗⃗⃗⃗⃗⃗)+2(OB ⃗⃗⃗⃗⃗⃗+OC ⃗⃗⃗⃗⃗⃗)=2OE⃗⃗⃗⃗⃗⃗+4OD ⃗⃗⃗⃗⃗⃗⃗=0⃗⃗,所以 OE⃗⃗⃗⃗⃗⃗=−2OD ⃗⃗⃗⃗⃗⃗⃗, 所以 D ,O ,E 三点共线, 所以 DE ⃗⃗⃗⃗⃗⃗=32OE ⃗⃗⃗⃗⃗⃗, 又 DE 为 △ABC 的中位线,BA ⃗⃗⃗⃗⃗⃗=2DE ⃗⃗⃗⃗⃗⃗, 所以 BA⃗⃗⃗⃗⃗⃗=3OE ⃗⃗⃗⃗⃗⃗. 设在 △ABC 和 △AOC 中,AC 边上的高分别为 ℎ1,ℎ2,则 ℎ1=3ℎ2, 所以 S△ABC S △AOC=3.【知识点】平面向量的数乘及其几何意义三、解答题(共6题)17. 【答案】从十个小球中随机抽取两个小球,记事件 A 为“两个小球上的数字为相邻整数”,其所有可能的结果为 (1,2),(2,3),(3,4),(4,5),(5,6),(6,7),(7,8),(8,9),(9,10),(2,1),(3,2),(4,3),(5,4),(6,5),(7,6),(8,7),(9,8),(10,9),共 18 种.(1)如果小球是不放回的,按抽取顺序记录结果 (x,y ),则 x 有 10 种可能,y 有 9 种可能,共有 90 种可能的结果, 因此,事件 A 的概率是 1890=15.(2)如果小球是有放回的,按抽取顺序记录结果 (x,y ),则 x 有 10 种可能,y 有 10 种可能,共有 100 种可能的结果, 因此,事件 A 的概率是 18100=950. 【知识点】古典概型18. 【答案】 AD ⃗⃗⃗⃗⃗⃗=2AO ⃗⃗⃗⃗⃗⃗=2(m ⃗⃗⃗+n ⃗⃗),BD ⃗⃗⃗⃗⃗⃗⃗=BA ⃗⃗⃗⃗⃗⃗+AD ⃗⃗⃗⃗⃗⃗=m ⃗⃗⃗+2n ⃗⃗.【知识点】平面向量的数乘及其几何意义19. 【答案】(1) 根据题意,可知组成该种钉的四条线段长必相等,且两两所成的角相等,A 1,A 2,A 3,A 4 两两连接后得到的四面体 A 1A 2A 3A 4 为正四面体,延长 A 4O 交平面 A 1A 2A 3 于 B ,则 A 4B ⊥平面A 1A 2A 3,连接 A 1B ,则 A 1B 是 OA 1 在平面 A 1A 2A 3 上的射影, 所以 ∠OA 1B 即为 OA 1 与平面 A 1A 2A 3 所成角. 设 A 1A 4=l , 则 A 1B =√33l . 在 Rt △A 4A 1B 中,A 1A 42=A 1B 2+A 4B 2,即 l 2=(√33l)2+(a +√a 2−(√33l)2)2,所以 l =2√63a , 故 A 1B =√33×2√63a =2√23a ,cos∠OA 1B =A 1B OA 1=2√23(其中 0<∠OA 1B <π2),所以 ∠OA 1B =arccos2√23, 故 OA 1 与平面 A 1A 2A 3 所成角的大小为 arccos 2√23.(2) 12A 1A 22⋅√32=3√2,根据(1)可得 A 1A 2=2√63a ,所以 a =√2724cm ,1100⋅100⋅(4a )=4a =2√2164m . 答:复制 100 枚这种“钉”,共需材料 2√2164米.【知识点】棱锥的结构特征、线面角20. 【答案】因为 AC⃗⃗⃗⃗⃗⃗=BC ⃗⃗⃗⃗⃗⃗−BA ⃗⃗⃗⃗⃗⃗, 所以 AC⃗⃗⃗⃗⃗⃗ 对应的复数为 (3−i )−(1+2i )=2−3i , 设 C (x,y ),则 (x +yi )−(2+i )=2−3i ,所以 x +yi =(2+i )+(2−3i )=4−2i , 故 x =4,y =−2.所以点 C 在复平面内的坐标为 (4,−2). 【知识点】复数的加减运算、复数的几何意义21. 【答案】如图设球心为 O ,球的半径为 R ,作 OO 1⊥平面ABC 于点 O 1,则 OA =OB =OC =R ,且 O 1 是 △ABC 的外心,设 M 是 AB 的中点, 因为 AC =BC , 所以 O 1∈CM , 所以 O 1M ⊥AB , 设 O 1M =x ,则 O 1A =√22+x 2,O 1C =CM −O 1M =√62−22−x . 又 O 1A =O 1C ,所以 √22+x 2=√62−22−x ,解得 x =7√24. 所以 O 1A =O 1B =O 1C =9√24.在 Rt △OO 1A 中,O 1O =R 2,∠OO 1A =90∘,OA =R , 由勾股定理得 (R 2)2+(9√24)2=R 2,解得 R =3√62, 所以 S 球=4πR 2=54π,V 球=43πR 3=27√6π. 【知识点】球的表面积与体积22. 【答案】线性无关.对照定义,可求得 α=β=0.【知识点】平面向量的数乘及其几何意义。
高一数学(必修二)立体几何初步单元测试卷及答案一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图所示,己知正方形O A B C ''''的边长为1,它是水平放置的一个平面图形的直观图,则其原图形的周长为( )A.8B.22C.4D.223+2.下列说法正确的是( ) A.三点确定一个平面B.圆心和圆上两个点确定一个平面C.如果两个平面相交有一个交点,则必有无数个公共点D.如果两条直线没有交点,则这两条直线平行3.正方体1111ABCD A B C D -中,P ,Q ,R 分别是AB ,AD ,11B C 的中点,那么正方体中过P ,Q ,R 的截面图形是( ) A.三角形B.四边形C.五边形D.六边形4.某圆柱的高为2,其正视图如图所示,圆柱上下底面圆周及侧面上的点A ,B ,D ,F ,C 在正视图中分别对应点A ,B ,E ,F ,C ,且3AE EF =,2BF BC =,异面直线AB ,CD 所成角的正弦值为45,则该圆柱的外接球的表面积为( )A.20πB.16πC.12πD.10π5.在《九章算术·商功》中将正四面形棱台体(棱台的上、下底面均为正方形)称为方亭.在方亭1111ABCD A B C D -中,1124AB A B ==,四个侧面均为全等的等腰梯形且面积之和为122( ) 282B.283142D.1436.异面直线是指( ) A.空间中两条不相交的直线B.分别位于两个不同平面内的两条直线C.平面内的一条直线与平面外的一条直线D.不同在任何一个平面内的两条直线7.如图,在正方体1111ABCD A B C D -中,E ,F 分别是11A D ,11B C 的中点,则与直线CF 互为异面直线的是( )A.1CCB.11B CC.DED.AE8.下列说法中正确的是( ) A.三点确定一个平面 B.四边形一定是平面图形 C.梯形一定是平面图形D.两个不同平面α和β有不在同一条直线上的三个公共点二、多选题(本题共4小题,每小题5分,共20分。
高一数学(必修二)棱柱、棱锥、棱台的表面积和体积练习题及答案一、单选题1.已知斜三棱柱的一个侧面的面积为10,该侧面与其相对侧棱的距离为3,则此斜三棱柱的体积为( ) A .30B .15C .10D .602.一件刚出土的珍费文物要在博物馆大厅中央展出,需要设计各面是玻璃平面的无底正四棱柱将其罩住,罩内充满保护文物的无色气体.已知文物近似于塔形,高1.8米,体积为0.5立方米,其底部是直径为0.9米的圆(如图),要求文物底部与玻璃罩底边间隔0.3米,文物顶部与玻璃罩上底面间隔0.2米,气体每立方米1000元,则气体费用为( )A .4500元B .4000元C .2880元D .2380元3.过棱长为2的正方体的三个顶点作一截面,此截面恰好切去一个三棱锥,则该正方体剩余几何体的体积为( ) A .4B .6C .203D .1634.已知用斜二测画法画梯形OABC 的直观图O A B C ''''如图所示,3O A C B ''''=,C E O A ''''⊥,8OABC S =四边形,//C D y '''轴,2C E ''=,D 为O A ''的三等分点,则四边形OABC 绕y 轴旋转一周形成的空间几何体的体积为( )A .152π3B .48πC .38π3D .12π5.已知四棱台的上、下底面分别是边长为2和4的正方形,侧面均为腰长为4的等腰梯形,则该四棱台的表面积为( )A .1015+B .34C .201215+D .686.如图,棱长为5的正方体无论从哪一个面看,都有两个直通的边长为1的正方形孔,则这个有孔正方体的表面积(含孔内各面)是( )A .258B .234C .222D .2107.在棱长为1的正方体的表面上任取4个点构成一个三棱锥,则这个三棱锥体积的取值范围是( ) A .1(0,]6B .1(0,]3C .1(0,]2D .(0,1)8.2,则以该正方体各个面的中心为顶点的凸多面体的表面积为( ) A 2B .23C 3D 2 二、多选题9.有一个三棱锥,其中一个面为边长为2的正三角形,有两个面为等腰直角三角形,则该几何体的体积可能是( ) A 3B 2C 22D 2310.“堑堵”“阳马”和“鳖臑”是我国古代对一些特殊几何体的称谓.《九章算术·商功》有如下叙述:“斜解立方,得两堑堵,斜解堑堵.其一为阳马,其一为鳖臑”.意思是说:将一个长方体沿对角面斜截(图1),得到一模一样的两个堑堵(图2),再沿一个堑堵的一个顶点和相对的棱斜截(图2),得一个四棱锥称为阳马(图3),一个三棱锥称为鳖臑(图4).若长方体的体积为V ,由该长方体斜截所得到的堑堵、阳马和鳖臑的体积分别为123,,V V V ,则下列选项不正确...的是( )A .123V V V V ++=B .122V V =C .232V V =D .36V V =11.如图,直三棱柱111ABC A B C 中,12AA =,1AB BC ==,90ABC ︒∠=,侧面11AAC C 中心为O ,点E 是侧棱1BB 上的一个动点,有下列判断,正确的是( )A .直三棱柱侧面积是422+B .直三棱柱体积是13C .三棱锥1E AAO -的体积为定值 D .1AE EC +的最小值为212.如图,已知四棱锥P ABCD -中,PO ⊥底面,//ABCD AB CD ,,O M 分别是,CD PC 的中点,且PO OD DA AB BC ====,记三棱锥,,P OBM M OBC M PAB ---的体积分别为123,,V V V ,则( )A .12V V =B .212V V =C .13B OMPD V V -= D .12323P ABCD V V V V -=++三、填空题13.已知平行六面体各棱长均为4,在由顶点P 出发的三条棱上,取1PA =,2PB =,3PC =,则棱锥-P ABC 的体积是该平行六面体体积的______.14.某正三棱台的各顶点之间的距离构成的集合为{}3,2,则该棱台的体积为______. 15.如图,直四棱柱1111ABCD A B C D -中,1A A ⊥底面ABCD ,四边形ABCD 为梯形,AD BC ∥,且2AD BC =,过1A ,C ,D 三点的平面记为α,1BB 与平面α的交点为Q .则此四棱柱被平面α分成上、下两部分的体积之比为__.16.给定依次排列的四个相互平行的平面1α,2α,3α,4α,其中每相邻两个平面间的距离为1,若一个1234A A A A 的四个顶点满足:i i A α∈(1i =,2,3,4),则该正四面体1234A A A A 的体积为_________.四、解答题17.如图所示,正六棱锥被过棱锥高PO 的中点O '且平行于底面的平面所截,得到正六棱台OO '和较小的棱锥PO '.(1)求大棱锥,小棱锥,棱台的侧面面积之比;(2)若大棱锥PO 的侧棱长为12cm ,小棱锥的底面边长为4cm ,求截得的棱台的侧面面积和表面积.18.正四棱台两底面边长分别为a 和b (a <b ).(1)若侧棱所在直线与上、下底面正方形中心的连线所成的角为45°,求棱台的侧面积;(2)若棱台的侧面积等于两底面面积之和,求它的高.19.如图,四棱台1111ABCD A B C D -,上、下底面均是正方形,且侧面是全等的等腰梯形,且5AB =,113A B =,110AA =(1)求四棱台1111ABCD A B C D -的侧面积; (2)求四棱台1111ABCD A B C D -的体积.20.正三棱柱侧面展开图是边长为2和4的矩形,求它的表面积.21.棱锥是生活中最常见的空间图形之一,譬如我们熟悉的埃及金字塔,它的形状可视为一个正四棱锥.我国数学家很早就开始研究棱锥问题,公元一世纪左右成书的《九章算术》第五章中的第十二题,计算了正方锥、直方锥(阳马)、直三角锥(鳖臑)的体积,并给出了通用公式.公元三世纪中叶,数学家刘徽在给《九章算术》作的注中,运用极限思想证明了棱锥的体积公式.请你使用学过的相关知识,解决下列问题:如图,正三棱锥S ABC -中,三条侧棱SA ,SB ,SC 两两垂直,侧棱长是3,底面ABC 内一点P 到侧面,,SAB SBC SAC 的距离分别为x ,y ,z .(1)求证:3x y z ++=;(2)若1113x y z++=,试确定点P 在底面ABC 内的位置.22.正四棱台1111ABCD A B C D -的下底边长3AB =3.(1)求正四棱台的表面积S 表;(2)求1AB 与底面ABCD 所成角的正弦值.参考答案1--8BBCBC CBB9.BCD 10.ACD 11.ACD 12.ACD 13.164147215.117165517.(1)设小棱锥的底面边长为a ,斜高为h ,则大棱锥的底面边长为2a ,斜高为2h , 所以大棱锥的侧面积为1622122a h ah ⨯⨯⨯=,小棱锥的侧面积为1632a h ah ⨯⨯⨯=, 棱台的侧面积为1239ah ah ah -=,所以大棱锥,小棱锥,棱台的侧面积之比12:3:94:1:3ah ah ah =. (2)因为小棱锥的底面边长为4cm ,所以大棱锥的底面边长为8cm , 因为大棱锥的侧棱长为12cm 1441682-=, 所以大棱锥的侧面积为2168821922cm 2⨯⨯⨯=, 所以棱台的侧面积为2321442cm 4=, 棱台的上,下底面的面积和为22233646824331203cm +==, 所以棱台的表面积为(231442cm .18.解:(1)如图所示:PO ⊥平面ABCD ,侧棱所在直线与上、下底面正方形中心的连线所成的角为45︒, 45PAO ∴∠=︒,2PO OA ∴=,1112PO O A =. 分别取AB ,11A B 的中点E ,1E ,连接OE ,11O E . 则2223()()22b PE b +,22123()()22a PE a +=. ∴斜高113)EE PE PE b a =-=-.∴棱台的侧面积()))2213432S a b b a b a =⨯+-=-侧;(2)棱台的侧面积等于两底面面积之和,∴22114()2a b EE a b ⨯+⨯=+,2212()a b EE a b +∴=+. 222222111()[]()2()2a b b a abOO EE EO E O a b a b+-∴=---++. 19.(1)设棱台1111ABCD A B C D -是由棱锥P ABCD -截出的,如图,棱台的侧面是全等的等腰梯形,则棱锥P ABCD -的侧面是全等的等腰三角形,显然侧棱都相等, 设M 是底面ABCD 上AC 与BD 的交点,则M 是AC 的中点也是BD 中点,所以PM AC ⊥,PM BD ⊥,则PM ⊥平面ABCD ,M 正方形ABCD 中心,因此P ABCD -是正棱锥,棱台1111ABCD A B C D -是正棱台,在侧面11BB C C 内过1B 作1B H BC ⊥于点H ,则22153(10)()32B H -=-=, 棱台的侧面积为S 侧=14(35)3482⨯+⨯=;(2)设N 是1111D C B A 的中心,显然N PM ∈,1MNB B 是直角梯形,2525BM ==,132B N高225232(10)()2222MN =--= 棱台的体积为221982(5533)223V =+⨯+⨯ 20.因为正三棱柱的侧面展开图是边长分别为2和4的矩形, 所以有以下两种情况:当2是下底面的周长,4是正三棱柱的高时,正三棱柱的表面积为=+2=S S S 表侧底21232324+223⎛⎫⨯⨯⨯ ⎪⎝⎭当4是下底面的周长,2是正三棱柱的高时,正三棱柱的表面积为=+2=S S S 表侧底21438342+223⎛⎫⨯⨯⨯ ⎪⎝⎭故答案为:238321.(1)在正三棱锥S ABC -中,SA ,SB ,SC 两两垂直且AB =BC =CA ,P 为底面ABC 内的一点,连接PA ,PB ,PC ,PS ,如图,可将原三棱锥分成三个三棱锥P SAB P SBC P SAC ---,,, 它们的高分别为,,x y z ,由S ABC C SAB P SAB P SBC P SAC V V V V V -----==++, 即2111133(333333)3232x y z ⨯⨯⨯=⨯⨯⨯+⨯+⨯, 得 3.x y z ++=(2)由31113x y z x y z ++=⎧⎪⎨++=⎪⎩,得1116x y z x y z +++++=.又0,0,0x y z >>>,∴1112,2,2x y z x y z +≥+≥+≥,∴1116x y z x y z +++++≥, 当且仅当1x y z ===时取等号.故当1113x y z ++=时,点P 为正三角形ABC 的中心. 22.(1)如图,做该正棱台的轴截面,GNE 中,3,33,90o GN NE GNE ==∠= , 所以6,30o GE GEN =∠= ,根据对称性,30o QEG ∠= , 故60,120,o o QEN MPQ ∠=∠= 所以60o MPG ∠= ,3,3,GM MP =∴=正四棱台上底面是一个边长为23的正方形,2222113[(23)(63)(23)(63)]33S ⋅=+⋅表 即111210812108=120+36=40+125233S =+⨯=表()() (2)正四棱台中,上下底面均为正方形,且侧棱长相等,1B 在底面的射影为M , 所以1B M ABCD ⊥面 , 1AB 与底面ABCD 所成角为1B AM ∠ ,1123,6,43MQ B M BQ ==∴=43AQ =146AB =16sin 46B AM ∠=。
高一数学必修第二册全册复习测试题卷(共22题)一、选择题(共10题)1. 向量 a ⃗=(1,2),b ⃗⃗=(2,λ),且 a ⃗⊥b ⃗⃗,则实数 λ= ( ) A . 3 B . −3 C . 7 D . −12. 袋中共有完全相同的 4 只小球,编号为 1,2,3,4,现从中任取 2 只小球,则取出的 2 只球编号之和是偶数的概率为 ( ) A . 25B . 35C . 13D . 233. 下列命题正确的是 ( ) A .三点确定一个平面B .一条直线和一个点确定一个平面C .圆心和圆上两点可确定一个平面D .梯形可确定一个平面4. 复数 1+i 2= ( ) A . 0B . 2C . 2iD . 1−i5. 已知 ∣a ⃗∣=1,∣b ⃗⃗∣=2,a ⃗ 与 b ⃗⃗ 的夹角为 π3,则 a ⃗⋅b ⃗⃗ 等于 ( ) A . 1B . 2C . 3D . 46. 已知平面向量 a ⃗=(1,x ),b ⃗⃗=(y,1),若 a ⃗∥b ⃗⃗,则实数 x ,y 一定满足 ( ) A .xy −1=0B .xy +1=0C .x −y =0D .x +y =07. 在平行四边形 ABCD 中,A (1,2),B (3,5),AD ⃗⃗⃗⃗⃗⃗=(−1,2),则 AC ⃗⃗⃗⃗⃗⃗+BD ⃗⃗⃗⃗⃗⃗⃗= ( ) A . (−2,4)B . (4,6)C . (−6,−2)D . (−1,9)8. 若 AB ⃗⃗⃗⃗⃗⃗=(1,1),AD ⃗⃗⃗⃗⃗⃗=(0,1),BC ⃗⃗⃗⃗⃗⃗+CD ⃗⃗⃗⃗⃗⃗=(a,b ),则 a +b = ( ) A . −1B . 0C . 1D . 29. 已知直线 a 在平面 γ 外,则 ( ) A . a ∥γ B . a 与 γ 至少有一个公共点 C . a ∩γ=AD . a 与 γ 至多有一个公共点10. 下列四个长方体中,由图中的纸板折成的是 ( )A.B.C.D.二、填空题(共6题)11.思考辨析判断正误当向量的始点在坐标原点时,向量的坐标就是向量终点的坐标.( )12.复数加法与减法的运算法则设z1=a+bi,z2=c+di(a,b,c,d∈R)是任意两个复数,则(1)z1+z2=;(2)z1−z2=.13.利用“斜二测”法作多面体直观图时,需考虑个方向上的尺度.14.若向量a⃗与b⃗⃗的夹角为120∘,且∣a⃗∣=1,∣∣b⃗⃗∣∣=1,则∣∣a⃗−b⃗⃗∣∣=.15.当时,λa⃗=0⃗⃗.16.“直线a经过平面α外一点P”用集合符号表示为.三、解答题(共6题)=bsinA.17.△ABC的内角A,B,C的对边分别为a,b,c,已知asin A+C2(1) 求B;(2) 若△ABC为锐角三角形,且a=2,求△ABC面积的取值范围.18.画出如图水平放置的直角梯形的直观图.19.按图示的建系方法,画出水平放置的正五边形ABCDE的直观图.20. 根据图形用符号表示下列点、直线、平面之间的位置关系.(1) 点 P 与直线 AB ; (2) 点 C 与直线 AB ; (3) 点 M 与平面 AC ; (4) 点 A 1 与平面 AC ; (5) 直线 AB 与直线 BC ; (6) 直线 AB 与平面 AC ; (7) 平面 A 1B 与平面 AC .21. 有 4 条长为 2 的线段和 2 条长为 a 的线段,用这 6 条线段作为棱,构成一个三棱锥.问 a为何值时,可构成一个最大体积的三棱锥,最大值为多少?22. 类似于平面直角坐标系,我们可以定义平面斜坐标系:设数轴 x ,y 的交点为 O ,与 x ,y 轴正方向同向的单位向量分别是 i ⃗,j ⃗,且 i ⃗ 与 j ⃗ 的夹角为 θ,其中 θ∈(0,π2)∪(π2,π).由平面向量基本定理,对于平面内的向量 OP ⃗⃗⃗⃗⃗⃗,存在唯一有序实数对 (x,y ),使得 OP ⃗⃗⃗⃗⃗⃗=xi ⃗+yj ⃗,把 (x,y ) 叫做点 P 在斜坐标系 xOy 中的坐标,也叫做向量 OP⃗⃗⃗⃗⃗⃗ 在斜坐标系 xOy 中的坐标.在平面斜坐标系内,直线的方向向量、法向量、点方向式方程、一般式方程等概念与平面直角坐标系内相应概念以相同方式定义,如 θ=45∘ 时,方程x−24=y−1−5表示斜坐标系内一条过点 (2,1),且方向向量为(4,−5)的直线.),a⃗=(2,1),b⃗⃗=(m,6),且a⃗与b⃗⃗的夹角为锐角,求实数m的取值(1) 若θ=arccos(−13范围;(2) 若θ=60∘,已知点A(2,1)和直线l:3x−y+2=0.①求l一个法向量;②求点A到直线l的距离.答案一、选择题(共10题)1. 【答案】D【解析】由a⃗⊥b⃗⃗,所以有a⃗⋅b⃗⃗=1×2+2×λ=0⇒λ=−1.【知识点】平面向量数量积的坐标运算2. 【答案】C【解析】在编号为1,2,3,4的小球中任取2只小球,则有{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},共6种取法,则取出的2只球编号之和是偶数的有{1,3},{2,4},共2种取法,即取出的2只球编号之和是偶数的概率为26=13,故选:C.【知识点】古典概型3. 【答案】D【解析】由不共线的三点确定一个平面,故A错误;由一条直线和该直线外一点确定一个平面,故B错误;当圆心和圆上两点在圆的直径上,不能说明该三点确定一个平面,故C错误;由于梯形是有一组对边平行的四边形,可得梯形确定一个平面,故D正确.故选:D.【知识点】平面向量的概念与表示4. 【答案】A【解析】因为i2=−1,所以1+i2=0.故选:A.【知识点】复数的乘除运算5. 【答案】A【解析】a⃗⋅b⃗⃗=∣a⃗∣∣b⃗⃗∣cosπ3=1×2×cosπ3=1.【知识点】平面向量的数量积与垂直6. 【答案】A【解析】因为a⃗∥b⃗⃗,所以1×1−xy=0,即xy−1=0.【知识点】平面向量数乘的坐标运算7. 【答案】A【解析】在平行四边形ABCD中,因为 A (1,2),B (3,5),所以 AB⃗⃗⃗⃗⃗⃗=(2,3), 又 AD ⃗⃗⃗⃗⃗⃗=(−1,2), 所以 AC ⃗⃗⃗⃗⃗⃗=AB ⃗⃗⃗⃗⃗⃗+AD ⃗⃗⃗⃗⃗⃗=(1,5),BD ⃗⃗⃗⃗⃗⃗⃗=AD ⃗⃗⃗⃗⃗⃗−AB ⃗⃗⃗⃗⃗⃗=(−3,−1), 所以 AC ⃗⃗⃗⃗⃗⃗+BD ⃗⃗⃗⃗⃗⃗⃗=(−2,4), 故选A .【知识点】平面向量和与差的坐标运算8. 【答案】A【解析】 BC ⃗⃗⃗⃗⃗⃗+CD ⃗⃗⃗⃗⃗⃗=BD ⃗⃗⃗⃗⃗⃗⃗=AD ⃗⃗⃗⃗⃗⃗−AB⃗⃗⃗⃗⃗⃗=(0,1)−(1,1)=(−1,0), 故 a =−1,b =0, 所以 a +b =−1.【知识点】平面向量和与差的坐标运算9. 【答案】D【解析】直线在平面外,故直线与平面相交或直线与平面平行,直线 a 与平面 γ 平行时没有公共点,直线 a 与平面 γ 相交时有一个公共点,故选D . 【知识点】直线与平面的位置关系10. 【答案】A【解析】根据题图中纸板的形状及特殊面的阴影部分可以判断B ,C ,D 不正确,故选A . 【知识点】棱柱的结构特征二、填空题(共6题) 11. 【答案】 √【知识点】平面向量和与差的坐标运算12. 【答案】 (a +c)+(b +d)i ; (a −c)+(b −d)i【知识点】复数的加减运算13. 【答案】三【知识点】直观图14. 【答案】 √3【解析】因为向量 a ⃗ 与 b ⃗⃗ 的夹角为 120∘,∣a ⃗∣=1,∣∣b ⃗⃗∣∣=1,所以 a ⃗⋅b ⃗⃗=∣a ⃗∣∣∣b ⃗⃗∣∣cos120∘=−12,因此 ∣∣a ⃗−b ⃗⃗∣∣=√(a ⃗−b ⃗⃗)2=√∣a ⃗∣2+∣∣b ⃗⃗∣∣2−2a⃗⋅b ⃗⃗=√1+1+1=√3. 【知识点】平面向量的数量积与垂直15. 【答案】 λ=0 或 a ⃗=0⃗⃗【解析】若 λa ⃗=0⃗⃗,则 λ=0 或 a ⃗=0⃗⃗.【知识点】平面向量的数乘及其几何意义16. 【答案】 P ∈a ,P ∉α【知识点】平面的概念与基本性质三、解答题(共6题) 17. 【答案】(1) asinA+C 2=bsinA ,由正弦定理 sinAsinA+C 2=sinBsinA .因为 A ,B ,C 是 △ABC 的内角,sinA ≠0, 所以 sin A+C 2=sinB =sin (π−B )=sin (A +C ), 所以 sinA+C 2=2sinA+C 2cosA+C 2,因为 0<A +C <π, 所以 0<A+C 2<π2.所以 sinA+C 2≠0,cosA+C 2=12,A+C 2=π3,所以 A +C =2π3,B =π−(A +C )=π−2π3=π3(2) 由正弦定理得 asinA =bsinB =csinC =2sinA , 所以 c =2sinC sinA,由三角形内角和知 A +C =120∘, 所以 C =120∘−A , 所以 c =2sin (120∘−A )sinA=√3tanA+1,又 △ABC 为锐角三角形, 所以 120∘−A <90∘ 且 A <90∘, 即 30∘<A <90∘, 又 S △ABC =12acsinB =12ac ×√32=√32c =√32×(√3tanA +1),30∘<A <90∘,因为30∘<A<90∘,所以tanA>√33,得√3tanA <3,即1<√3tanA+1<4,所以S△ABC=√32×(√3tanA+1)∈(√32,2√3).【知识点】正弦定理18. 【答案】(1)在已知的直角梯形OBCD中,以OB所在直线为x轴,垂直于OB的腰OD所在直线为y轴建立平面直角坐标系.画出相应的xʹ轴和yʹ轴,使∠xʹOʹyʹ=45∘,如图①②所示.(2)在xʹ轴上截取OʹBʹ=OB,在yʹ轴上截取OʹDʹ=12OD,过点Dʹ作xʹ轴的平行线l,在l上沿xʹ轴正方向取点Cʹ,使得DʹCʹ=DC.连接BʹCʹ,如图②所示.(3)所得四边形OʹBʹCʹDʹ就是直角梯形OBCD的直观图,如图③所示.【知识点】直观图19. 【答案】画法:(1)在图①中作AG⊥x轴于G,作DH⊥x轴于H.(2)在图②中画相应的xʹ轴与yʹ轴,两轴相交于点Oʹ,使∠xʹOʹyʹ=45∘.(3)在图②中的xʹ轴上取OʹBʹ=OB,OʹGʹ=OG,OʹCʹ=OC,OʹHʹ=OH,yʹ轴上取OʹEʹ=1 2OE,分别过Gʹ和Hʹ作yʹ轴的平行线,并在相应的平行线上取GʹAʹ=12GA,HʹDʹ=12HD.(4)连接AʹBʹ,AʹEʹ,EʹDʹ,DʹCʹ,并擦去辅助线GʹAʹ,HʹDʹ,xʹ轴与yʹ轴,便得到水平放置的正五边形ABCDE的直观图五边形AʹBʹCʹDʹEʹ(如图③).【知识点】直观图20. 【答案】(1) 点P∈直线AB.(2) 点C∉直线AB.(3) 点M∈平面AC.(4) 点A1∉平面AC.(5) 直线AB∩直线BC=点B.(6) 直线AB⊂平面AC.(7) 平面A1B∩平面AC=直线AB.【知识点】点、线、面的位置关系、直线与平面的位置关系、平面与平面的位置关系、直线与直线的位置关系21. 【答案】构成三棱锥,这6条线段作为棱有两种摆放方式.(1)2条长为a的线段放在同一个三角形中.如图所示,不妨设底面 BCD 是一个边长为 2 的正三角形.欲使体积达到最大,必有 BA ⊥底面BCD ,且 BA =2,AC =AD =a =2√2, 此时 V =13×√34×22×2=23√3.(2)2 条长为 a 的线段不在同一个三角形中,此时长为 a 的两条线段必处在三棱锥的对棱,不妨设 AD =BC =a ,BD =CD =AB =AC =2. 取 BC 中点 E ,连接 AE ,DE (见下图).则 AE ⊥BC,DE ⊥BC ⇒BC ⊥平面AED ,V =13S △AED ⋅BC , 在 △AED 中,AE =DE =√4−a 24,AD =a ,S △AED =12a √4−a 24−a 24=12a √4−a 22,所以 V =16a 2√4−a 22=16√a 2a 2(16−2a 2)⋅14,由均值不等式 a 2a 2(16−2a 2)≤(163)3,等号当且仅当 a 2=163时成立,即 a =43√3, 所以此时 V max =16√(163)3⋅14=1627√3.【知识点】棱锥的表面积与体积22. 【答案】(1) 由已知 a ⃗=2i ⃗+j ⃗,b ⃗⃗=mi ⃗+6j ⃗,且 a ⃗⋅b ⃗⃗=2m +6+(12+m )(i ⃗⋅j ⃗)=53m +2>0,得 m >−65;若 a ⃗ 和 b ⃗⃗ 同向,则存在正数 t ,使得 t (2i ⃗+j ⃗)=mi ⃗+6j ⃗, 由 i ⃗ 和 j ⃗ 不平行得,{2t =m t =6 得 m =12.故所求为 m >−65,m ≠12.(2) ①方程可变形为x−01=y−23,方向向量为 d⃗=(1,3), 设法向量为 n ⃗⃗=(a,b ),由 n ⃗⃗⋅d ⃗=0 得 a +3b +12(3a +b )=52a +72b =0, 令 a =−7,b =−5,n ⃗⃗=(−7,5);②取直线 l 上一点 B (0,2),则 BA⃗⃗⃗⃗⃗⃗=(2,−1),所求为 ∣∣BA ⃗⃗⃗⃗⃗⃗⋅n ⃗⃗∣∣∣n⃗⃗∣=∣√(⃗+5j ⃗)2=7√3926.【知识点】直线的点法向式方程(沪教版)、平面向量数量积的坐标运算。
高一数学 (必修 2)综合测试题一、填空题( 14 小题,共 70 分)1.用符号表示“点 A 在直线l上, l在平面外”为▲A 2.右图所示的直观图,其本来平面图形的面积是▲23.若一个底面为正三角形、侧棱与底面垂直的棱柱的三视图以以下图所示,O 45B2则这个棱柱的侧面积为▲。
4.a,b,c分别表示三条直线,4M表示平面,给出以下四个命题:①若a∥ M,b ∥ M,则 a∥ b;②若 b M, a∥b,则33a∥ M;③若正视图侧视图俯视图⊥,⊥则∥;④若⊥⊥M,则a∥ . 此中不正确命题的有▲(填序号)a cb c, a b a M,b b5.已知正方体外接球的体积是32,那么正方体的棱长等于▲36.直线 3 x+y+1=0的倾斜角为7.经过直线 2x+3y-7=0与 7x+15y+1=0的交点,且平行于直线x+2y-3=0 的直线方程是 ________ ▲ ___. 8.若A(-2,3),B(3,-2),C(0,m)三点共线,则m的值为▲9.两圆订交于点 A( 1, 3)、 B( m,- 1),两圆的圆心均在直线x- y+c=0上,则 m+c的值为▲10.两圆( x― 2)2 +(y+1) 2 = 4与 (x+2)2+(y ― 2) 2 =16 的公切线有▲条11.经过点 M( 1, 1)且在两轴上截距相等的直线是▲。
....12.光芒从点(―1, 3)射向x 轴,经过x 轴反射后过点(4, 6),则反射光芒所在的直线方程一般式是▲13.若直线y kx 4 2k 与曲线y4x 2有两个交点,则k 的取值范围是▲14.在棱长为 1 的正方体上,分别用过共极点的三条棱中点的平面截该正方体, 则截去8 个三棱锥后 , 剩下的凸多面体的体积是▲二、解答题( 6 大题 , 共 90 分)15.( 此题 14 分 )已知ABC 三个极点是 A (1,4), B( 2, 1) ,C(2,3).y( 1)求 BC边中线 AD所在直线方程;( 2)求点A到BC边的距离.AC 4cm16.( 此题 14 分 )如图,一个圆锥形的空杯子上边放着一个半球形的冰淇淋,假如冰淇淋消融了,会溢出杯子吗?请用你的计算数听说明原因.O xB12cm17. (本 15 分 )如, ABCD是正方形, O是正方形的中心,PO 底面 ABCD, E 是 PC的中点.P求:( 1)PA∥平面 BDE;(2)平面 PAC 平面 BDE.18. (本15 分 )已知直 l 点P(1,1),并与直 l 1:x E- y+3=0 和l2:2x+y - 6=0 分交于点A、B,若段 AB 被点 P 平分,求:(Ⅰ)直l 的方程;D C (Ⅱ)以 O心且被l 截得的弦8 5的的方程.O5A B19.( 本16 分) 已知数a足 0<a<2,直l1:ax- 2y- 2a+4=0 和l2:2x+a2y- 2a2- 4=0 与两坐成一个四形。
高一数学(必修二)平面向量的概念及其应用练习题及答案一、单选题1.下列说法错误的是( ) A .向量CD 与向量DC 长度相等 B .单位向量都相等C .0的长度为0,且方向是任意的D .任一非零向量都可以平行移动2.设e 是单位向量,3AB e =,3CD e =-,3AD =,则四边形ABCD 是( ) A .梯形B .菱形C .矩形D .正方形3.已知向量,a b 满足2π1,2,,3a b a b ===,则()a ab ⋅+=( ) A .2-B .1-C .0D .24.已知向量a ,b 满足1a b ==,23a b +=,则向量a ,b 的夹角为( )A .30B .60C .120D .1505.如图,D 是AB 上靠近B 的四等分点,E 是AC 上靠近A 的四等分点,F 是DE 的中点,设AB a =,AC b =,则AF =( )A .344a b - B .344a b + C .388a b + D .388a b - 6.已知向量a =(-1,2),b =(3,m ),m ∈R ,则“m =-6”是“a ∥()a b +”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件7.在ABC 中,内角,,A B C 所对的边分别是,,a b c ,已知45A =︒,2a =,2b =B 的大小为( ) A .30︒ B .60︒ C .30︒或150︒D .60︒或120︒8.已知平面四边形ABCD 满足13AD BC =,平面内点E 满足52BE CE =,CD 与AE 交于点M ,若BM x AB y AD =+,则yx等于( ) A .52B .52-C .43D .43-二、多选题9.下列说法正确的是( )A .a 与b 是非零向量,则a 与b 同向是a b =的必要不充分条件B .,,A BC 是互不重合的三点,若AB 与BC 共线,则,,A B C 三点在同一条直线上 C .a 与b 是非零向量,若a 与b 同向,则a 与b -反向D .设,λμ为实数,若a b λμ=,则a 与b 共线10.在ABC 中,已知π32A C ==,3CD DB =,则( ) A .+AB AC BC = B .2AC AD = C .13+44AD AB AC =D .AD BC ⊥11.已知向量()()()1,3,2,,a b y a b a ==+⊥,则( ) A .()2,3b =- B .向量,a b 的夹角为3π4C .172a b +=D .a 在b 方向上的投影向量是1,212.在ABC 中,内角,,A B C 的对边分别为,,a b c ,下列说法中正确的是( ) A .“ABC 为锐角三角形”是“sin cos A B >”的充分不必要条件 B .若sin 2sin 2A B =,则ABC 为等腰三角形 C .命题“若A B >,则sin sin A B >”是真命题D .若8a =,10c =,π3B =,则符合条件的ABC 有两个三、填空题13.P 在线段12PP 的反向延长线上(不包括端点),且12PP PP λ=,则实数λ的取值范围是___________.14.已知四边形ABCD 是边长为2的正方形,若3BC DE =,且F 为BC 的中点,则EA EF ⋅=______. 15.已知||1a =,()1,3b =,()b a a +⊥,则向量a 与向量b 的夹角为______.16.已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b sin A =2c sin B ,cos B =14,b =3,则△ABC 的面积为________.四、解答题17.设1e ,2e 是两个不共线的向量,如果1232AB e e =-,124BC e e =+,1289CD e e =-. (1)求证:A ,B ,D 三点共线;(2)试确定λ的值,使122e e λ+和12e e λ+共线; (3)若12e e λ+与12e e λ+不共线,试求λ的取值范围.18.化简:(1)()()532423a b b a -+-; (2)()()()111232342a b a b a b -----;(3)()()x y a x y a +--.19.已知4a =,2b =,且a 与b 夹角为120°,求: (1)2a b -;(2)a 与a b +的夹角;(3)若向量2a b λ-与3a b λ-平行,求实数λ的值.20.如图,在菱形ABCD 中,1,22CF CD CE EB ==.(1)若EF xAB y AD =+,求23x y +的值; (2)若6,60AB BAD ∠==,求AC EF ⋅.21.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,3b =a c <,且ππ1sin cos 364A A ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭.(1)求A 的大小;(2)若sin sin 43sin a A c C B +=,求ABC 的面积.22.已知:a 、b 是同一平面内的两个向量,其中()1,2a =. (1)若5||2b =且a b +与b 垂直,求a 与b 的夹角θ ; (2)若()1,1b =且a 与a b λ+的夹角为锐角,求实数λ的取值范围.参考答案1.B 2.B 3.C 4.C 5.C 6.A 7.A 8.B 9.ABC 10.ABD 11.BD 12.AC 13.()1,0- 14.409 15.2π31691517.(1)证明:因为()121212124891284324BD BC CD e e e e e e e e AB=+=++-=-=-=,所以AB 与BD 共线.因为AB 与BD 有公共点B , 所以A ,B ,D 三点共线.(2)因为122e e λ+与12e e λ+共线, 所以存在实数μ,使()12122e e e e λλμ=++. 因为1e ,2e 不共线,所以2,1,λμλμ=⎧⎨=⎩所以22λ=±. (3)假设12e e λ+与12e e λ+共线,则存在实数m ,使()1212e e m e e λλ+=+.因为1e ,2e 不共线,所以1,,m m λλ=⎧⎨=⎩所以1λ=±.因为12e e λ+与12e e λ+不共线, 所以1λ≠±.18.(1)()()()()532423*********a b b a a a b b a b -+-=-+-+=-. (2)()()()111131211232342342322a b a b a b a a a b b b ⎛⎫⎛⎫-----=--+-++ ⎪ ⎪⎝⎭⎝⎭ 111123a b =-+.(3)()()()()2x y a x y a xa xa ya ya ya +--=-++=. 19.(1)解:因为()2224246844164a b a a b b -⋅+=-=++=,所以2221a b -=(2)因为()2222168412a b a a b b +=+⋅+=-+=,所以23a b +=,又()216412a b a a a b ⋅=+=-+⋅=, 所以()123cos ,43a ab a a b a a b⋅+<+>===⨯+ 所以a 与a b +的夹角为6π.(3)因为向量2a b λ-与3a b λ-平行, 所以()233a b k a b k a kb λλλ-=-=-, 因为向量a 与b 不共线,所以23k kλλ=⎧⎨=⎩,解得6λ=±20.(1)因为1122CF CD AB ==-,2CE EB =所以2233EC BC AD ==,所以21213232EF EC CF BC CD AD AB =+=+=-, 所以12,23x y =-=, 故231x y +=.(2)AC AB AD =+,()221211223263AC EF AB AD AB AD AB AB AD AD ⎛⎫∴⋅=+⋅-+=-+⋅+ ⎪⎝⎭,ABCD 为菱形,||||6,60AD AB BAD ∠∴===,所以66cos6018AB AD ⋅=⨯⨯=,2211261869263AC EF ∴⋅=-⨯+⨯+⨯=.21.(1)πππππ2sin cos cos cos 3636A A A A ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-+=--+ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦2πcos 21π13cos 624A A ⎛⎫++ ⎪⎛⎫⎝⎭=+== ⎪⎝⎭,∴π31cos 22A ⎛⎫+=- ⎪⎝⎭,因为0πA <<,得ππ7π2333A <+<,所以π2π233A +=或4323ππA +=,解得π6A =或π2A =,因为a c <,得π2A <,∴π6A =. (2)由(1)知,6A π=,sin sin 43sin a A c C B +=,由正弦定理,得22312a c b +==,由余弦定理,得2222cos a b c bc A =+-⋅,即22312323c c c -=+-, 整理,得22390c c --=,由0c >得3c =, 所以11133sin 33222ABC S bc A ==⨯=△ 22.(1)解:由()a b b +⊥得()0a b b +⋅=,即2+0a b b ⋅= ,所以254a b b ⋅=-=-,得514cos 2552a b a bθ-⋅===-⋅⨯,又[]0,πθ∈,所以2π3θ=; (2)解:因为()1,2a =,()1,1b =,所以()()()1,21,11,2a b λλλλ+=+=++ 所以()0a a b λ⋅+>,则512403λλλ+++>⇒>-, 由//a a b λ+得0λ=,由与a 与a b λ+的夹角为锐角,所以5,0(0,)3λ⎛⎫∈-+∞ ⎪⎝⎭。
三视图、直观图、公里练习1、下列说确的是( )A. 有一个面是多边形,其余各面都是三角形,由这些面围成的几何体是棱锥B. 有两个面平行且相似,其余各面都是梯形的多面体是棱台C. 如果一个棱锥的各个侧面都是等边三角形,那么这个棱锥可能为六棱锥D. 有两个相邻侧面是矩形的棱柱是直棱柱2、在正方体ABCD ﹣A 1B 1C 1D 1中,O 、O 1分别为底面ABCD 和A 1B 1C 1D 1的中心,以OO 1所在直线为轴旋转线段BC 1形成的几何体的正视图为( )A.B. C. D.3、已知水平放置的△ABC 的直观图△A ′B ′C ′(斜二测画法)是边长为a 的正三角形,则原△ABC 的面积为( )A. a 2B. a 2C. a 2D.4、将长方体截去一个四棱锥后,得到的几何体的直观图如图所示,则该几何体的俯视图为 ( )A. B. C. D.5、一个正方体被过其中三个顶点的平面割去一个角余下的几何体如图所示,则它的正视图应为( )6、已知正三角形的边长为1,那么的平面直观图的面积为( )A. 34B. 38C. 68D. 6167、如图所示为一个简单几何体的三视图,则其对应的实物是( )A. B. C. D.的两个截面截去两个角后所8、如图是一正方体被过棱的中点M、N和顶点A、D、C1得的几何体,则该几何体的正视图为()9、如图,在空间直角坐标系中,已知直三棱柱的顶点在轴上,平行于轴,侧棱平行于轴.当顶点在轴正半轴上运动时,以下关于此直三棱柱三视图的表述正确的是()A. 该三棱柱主视图的投影不发生变化;B. 该三棱柱左视图的投影不发生变化;C. 该三棱柱俯视图的投影不发生变化;D. 该三棱柱三个视图的投影都不发生变化.10. (2014课标全国Ⅰ,文8)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是( ).A.三棱锥B.三棱柱C.四棱锥D.四棱柱11.用一个平面去截一个正方体,截面可能是________.①三角形;②四边形;③五边形;④六边形.12.【2017课标1,文6】如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直接AB与平面MNQ不平行的是A .B .C .D .13.【2014高考卷.文.9】若空间中四条直线两两不同的直线1l .2l .3l .4l ,满足12l l ⊥,23//l l ,34l l ⊥,则下列结论一定正确的是( )A .14l l ⊥B .14//l lC .1l .4l 既不平行也不垂直D .1l .4l 的位置关系不确定14.【2015高考,文6】若直线1l 和2l 是异面直线,1l 在平面α,2l 在平面β,l 是平面α与平面β的交线,则下列命题正确的是( )A .l 至少与1l ,2l 中的一条相交B .l 与1l ,2l 都相交C .l 至多与1l ,2l 中的一条相交D .l 与1l ,2l 都不相交15. 【2016高考文科】如图,在正方体ABCD −A 1B 1C 1D 1中,E 、F 分别为BC 、BB 1的中点,则下列直线中与直线EF 相交的是( )(A)直线AA 1 (B)直线A 1B 1(C)直线A 1D 1 (D)直线B 1C 116、如图所示,直观图四边形A ′B ′C ′D ′是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是__________17.【2017,文18】(本小题满分12分)由四棱柱ABCD -A 1B 1C 1D 1截去三棱锥C 1- B 1CD 1后得到的几何体如图所示,四边形ABCD 为正方形,O 为AC 与BD 的交点,E 为AD 的中点,A 1E ⊥平面ABCD ,(Ⅰ)证明:1AO ∥平面B 1CD 1;(Ⅱ)设M 是OD 的中点,证明:平面A 1EM ⊥平面B 1CD 1.18.【2017,15】 如图,在三棱锥A-BCD 中,AB ⊥AD , BC ⊥BD , 平面ABD ⊥平面BCD , 点E ,F (E与A ,D 不重合)分别在棱AD ,BD 上,且EF ⊥AD .求证:(1)EF ∥平面ABC ;(2)AD ⊥AC .19. 【2015高考,文18】 如图,三棱台DEF ABC -中,2AB DE G H =,,分别为AC BC ,的中点.(I )求证://BD 平面FGH ;(II )若CF BC AB BC ⊥⊥,,求证:平面BCD ⊥平面EGH .数学练习(十)1、下列说确的是( )A. 有一个面是多边形,其余各面都是三角形,由这些面围成的几何体是棱锥B. 有两个面平行且相似,其余各面都是梯形的多面体是棱台C. 如果一个棱锥的各个侧面都是等边三角形,那么这个棱锥可能为六棱锥D. 有两个相邻侧面是矩形的棱柱是直棱柱【答案】D【解析】选项A,棱锥的定义是如果一个多面体的一个面是多边形,其余各面是有一个公共顶点的三角形,那么这个多面体叫做棱锥,即其余各面的三角形必须有公共的顶点,选项错误;选项B,棱台是由棱锥被平行于地面的平面所截而得, 而有两个面平行且相似,其余各面都是梯形的多面体也有可能不是棱台,如图所示,选项错误;选项C,棱锥的各个侧面都是等边三角形,顶角都是60度, 360660︒=︒,即这个棱锥不可能为六棱锥,选项错误;选项D, 若棱柱有两个相邻侧面是矩形,则侧棱与底面两条相交的两边垂直,则侧棱与底面垂直,此时棱柱一定是直棱柱,选项正确;故选D.2、在正方体ABCD ﹣A 1B 1C 1D 1中,O 、O 1分别为底面ABCD 和A 1B 1C 1D 1的中心,以OO 1所在直线为轴旋转线段BC 1形成的几何体的正视图为( )A. B. C. D.【答案】C 【解析】设正方体边为a ,则旋转所得几何体是杠铃状几何体,其上下表面半径为22a ,中心半径为12a ,其余部分半径圆滑变化,故选C 3、已知水平放置的△ABC 的直观图△A ′B ′C ′(斜二测画法)是边长为a 的正三角形,则原△ABC 的面积为( )A. a 2B. a 2C. a 2D. a 2【答案】D 【解析】斜二测画法中原图面积与直观图面积之比为1∶,则易知S =(a)2,∴S =a 2.4、将长方体截去一个四棱锥后,得到的几何体的直观图如图所示,则该几何体的俯视图为 ( )A. B. C. D.【答案】C 【解析】俯视图是从正视图的方向从上方向下看看几何体的投影,看到一个正方体的底面,上底面的对角线和和体对角线在下面的投影是下底面的对角线,从左上到右下,故选C .5、一个正方体被过其中三个顶点的平面割去一个角余下的几何体如图所示,则它的正视图应为( )【答案】A6、已知正三角形的边长为1,那么的平面直观图的面积为( )A. 34B. 38C. 68D. 616【答案】D【解析】正三角形ABC 的边长为1,故面积为34,而原图和直观图面积之间的关系,故直观图△A /B /C /的面积为7、如图所示为一个简单几何体的三视图,则其对应的实物是( )A. B. C. D.【答案】A 【解析】由三视图可得该几何体是一个长方体切去一个角所得的组合体,如图A 所示.8、如图是一正方体被过棱的中点M 、N 和顶点A 、D 、C 1的两个截面截去两个角后所得的几何体,则该几何体的正视图为( )【解析】棱D C 1看不到,故为虚线;棱AM 可以看到,故为实线;显然正视图为答案B 。
9、如图,在空间直角坐标系中,已知直三棱柱的顶点在轴上,平行于轴,侧棱平行于轴.当顶点在轴正半轴上运动时,以下关于此直三棱柱三视图的表述正确的是 ( )A. 该三棱柱主视图的投影不发生变化;B. 该三棱柱左视图的投影不发生变化;C. 该三棱柱俯视图的投影不发生变化;D. 该三棱柱三个视图的投影都不发生变化.【答案】B【解析】A 、该三棱柱主视图的长度是或者在轴上的投影,随点得运动发生变化,故错误;B 、设是z 轴上一点,且,则该三棱柱左视图就是矩形,图形不变.故正确;C 、该三棱柱俯视图就是,随点得运动发生变化,故错误.D 、与 矛盾.故错误;故选B. 10. (2014课标全国Ⅰ,文8)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是( ).A .三棱锥B .三棱柱C .四棱锥D .四棱柱答案:B11.用一个平面去截一个正方体,截面可能是________.①三角形;②四边形;③五边形;④六边形.解析:(注:这儿画了其中的特例来说明有这几种图形)答案:①②③④ 12.【2017课标1,文6】如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是AA .B .C .D .13.【2014高考卷.文.9】若空间中四条直线两两不同的直线1l .2l .3l .4l ,满足12l l ⊥,23//l l ,34l l ⊥,则下列结论一定正确的是( )A .14l l ⊥B .14//l lC .1l .4l 既不平行也不垂直D .1l .4l 的位置关系不确定【答案】D14.【2015高考,文6】若直线1l 和2l 是异面直线,1l 在平面α,2l 在平面β,l 是平面α与平面β的交线,则下列命题正确的是( )A .l 至少与1l ,2l 中的一条相交B .l 与1l ,2l 都相交C .l 至多与1l ,2l 中的一条相交D .l 与1l ,2l 都不相交【答案】A15. 【2016高考文科】如图,在正方体ABCD −A 1B 1C 1D 1中,E 、F 分别为BC 、BB 1的中点,则下列直线中与直线EF 相交的是( )(A)直线AA 1 (B)直线A 1B 1(C)直线A 1D 1 (D)直线B 1C 1【答案】D【解析】只有11B C 与EF 在同一平面,是相交的,其他A ,B ,C 中直线与EF 都是异面直线,故选D .16、如图所示,直观图四边形A ′B ′C ′D ′是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是__________【解析】根据斜二侧画法可知,原图形为直角梯形,其中上底AD=1,高AB=2A ′B ′=2,下底为,∴ .即原平面图形的面积是 +2. 17.【2017,文18】(本小题满分12分)由四棱柱ABCD -A 1B 1C 1D 1截去三棱锥C 1- B 1CD 1后得到的几何体如图所示,四边形ABCD 为正方形,O 为AC 与BD 的交点,E 为AD 的中点,A 1E ⊥平面ABCD ,(Ⅰ)证明:1AO ∥平面B 1CD 1;(Ⅱ)设M 是OD 的中点,证明:平面A 1EM ⊥平面B 1CD 1.所以1111//,AO OC AO OC =,因此四边形11AOCO 为平行四边形,所以11//AO O C ,又1O C ⊂面11B CD ,1AO ⊄平面11B CD , 所以1//AO 平面11B CD 18.【2017,15】 如图,在三棱锥A-BCD 中,AB ⊥AD , BC ⊥BD , 平面ABD ⊥平面BCD , 点E ,F (E与A ,D 不重合)分别在棱AD ,BD 上,且EF ⊥AD .求证:(1)EF ∥平面ABC ;(2)AD ⊥AC .所以AD ⊥平面ABC ,又因为AC ⊂平面ABC ,所以AD ⊥AC.19. 【2015高考,文18】 如图,三棱台DEF ABC -中,2AB DE G H =,,分别为AC BC ,的中点.(I )求证://BD 平面FGH ;(II )若CF BC AB BC ⊥⊥,,求证:平面BCD ⊥平面EGH .又HM ⊂平面FGH ,BD ⊄平面FGH ,所以//BD 平面FGH .(II)证明:连接HE .因为G H ,分别为AC BC ,的中点,所以//,GH AB 由,AB BC ⊥得GH BC ⊥,又H 为BC 的中点,所以//,,EF HC EF HC =因此四边形EFCH 是平行四边形,所以//.CF HE又CF BC ⊥,所以HE BC ⊥.又,HE GH ⊂平面EGH ,HE GH H ⋂=,所以BC ⊥平面EGH ,又BC ⊂平面BCD ,所以平面BCD ⊥平面.EGH。