信号与系统实验三
- 格式:doc
- 大小:11.08 MB
- 文档页数:9
实验三信号的频谱分析1方波信号的分解与合成实验1实验目的1. 了解方波的傅立叶级数展开和频谱特性。
2. 掌握方波信号在时域上进行分解与合成的方法。
3. 掌握方波谐波分量的幅值和相位对信号合成的影响。
2 实验设备PC机一台,TD-SAS系列教学实验系统一套。
3 实验原理及内容1. 信号的傅立叶级数展开与频谱分析信号的时域特性和频域特性是对信号的两种不同的描述方式。
对于一个时域的周期信号f(t),只要满足狄利克莱条件,就可以将其展开成傅立叶级数:如果将式中同频率项合并,可以写成如下形式:从式中可以看出,信号f(t)是由直流分量和许多余弦(或正弦)分量组成。
其中第一项A0/2是常数项,它是周期信号中所包含的直流分量;式中第二项A1cos(Ωt+φ1)称为基波,它的角频率与原周期信号相同,A1是基波振幅,φ1是基波初相角;式中第三项A2cos(Ωt+φ2)称为二次谐波,它的频率是基波的二倍,A2是基波振幅,φ2是基波初相角。
依此类推,还有三次、四次等高次谐波分量。
2. 方波信号的频谱将方波信号展开成傅立叶级数为:n=1,3,5…此公式说明,方波信号中只含有一、三、五等奇次谐波分量,并且其各奇次谐波分量的幅值逐渐减小,初相角为零。
图3-1-1为一个周期方波信号的组成情况,由图可见,当它包含的分量越多时,波形越接近于原来的方波信号,还可以看出频率较低的谐波分量振幅较大,它们组成方波的主体,而频率较高的谐波分量振幅较小,它们主要影响波形的细节。
(a)基波(b)基波+三次谐波(c)基波+三次谐波+五次谐波(d)基波+三次谐波+五次谐波+七次谐波(e)基波+三次谐波+五次谐波+七次谐波+九次谐波图3-1-1方波的合成3. 方波信号的分解方波信号的分解的基本工作原理是采用多个带通滤波器,把它们的中心频率分别调到被测信号的各个频率分量上,当被测信号同时加到多路滤波器上,中心频率与信号所包含的某次谐波分量频率一致的滤波器便有输出。
《信号与系统》课程实验报告《信号与系统》课程实验报告一图1-1 向量表示法仿真图形2.符号运算表示法若一个连续时间信号可用一个符号表达式来表示,则可用ezplot命令来画出该信号的时域波形。
上例可用下面的命令来实现(在命令窗口中输入,每行结束按回车键)。
t=-10:0.5:10;f=sym('sin((pi/4)*t)');ezplot(f,[-16,16]);仿真图形如下:图1-2 符号运算表示法仿真图形三、实验内容利用MATLAB实现信号的时域表示。
三、实验步骤该仿真提供了7种典型连续时间信号。
用鼠标点击图0-3目录界面中的“仿真一”按钮,进入图1-3。
图1-3 “信号的时域表示”仿真界面图1-3所示的是“信号的时域表示”仿真界面。
界面的主体分为两部分:1) 两个轴组成的坐标平面(横轴是时间,纵轴是信号值);2) 界面右侧的控制框。
控制框里主要有波形选择按钮和“返回目录”按钮,点击各波形选择按钮可选择波形,点击“返回目录”按钮可直接回到目录界面。
图1-4 峰值为8V,频率为0.5Hz,相位为180°的正弦信号图1-4所示的是正弦波的参数设置及显示界面。
在这个界面内提供了三个滑动条,改变滑块的位置,滑块上方实时显示滑块位置代表的数值,对应正弦波的三个参数:幅度、频率、相位;坐标平面内实时地显示随参数变化后的波形。
在七种信号中,除抽样函数信号外,对其它六种波形均提供了参数设置。
矩形波信号、指数函数信号、斜坡信号、阶跃信号、锯齿波信号和抽样函数信号的波形分别如图1-5~图1-10所示。
图1-5 峰值为8V,频率为1Hz,占空比为50%的矩形波信号图1-6 衰减指数为2的指数函数信号图1-7 斜率=1的斜坡信号图1-8 幅度为5V,滞后时间为5秒的阶跃信号图1-9 峰值为8V,频率为0.5Hz的锯齿波信号图1-10 抽样函数信号仿真途中,通过对滑动块的控制修改信号的幅度、频率、相位,观察波形的变化。
学号: 姓名:实验三、矩形信号的分解一、实验目的1、分析典型的矩形脉冲信号,了解矩形脉冲信号谐波分量的构成;2、观察矩形脉冲信号分解出各谐波分量的情况。
二、预备知识1.学习“周期信号的傅里叶级数分析”一节;2.复习matlab 软件的使用方法。
3.信号的滤波知识三、实验原理1、信号的频谱与测量信号的时域特性和频域特性是对信号的两种不同的描述方式。
对于一个时域的周期信号)t (f ,只要满足狄利克莱(Dirichlet)条件,就可以将其展开成三角形式或指数形式的傅里叶级数。
例如,对于一个周期为T 的时域周期信号)t (f ,可以用三角形式的傅里叶级数求出它的各次分量,在区间)T t ,t (11+内表示为)sin cos ()(10t n b t n a a t f n n n Ω+Ω+=∑∞=即将信号分解成直流分量及许多余弦分量和正弦分量,研究其频谱分布情况。
AA(c)图3-1 信号的时域特性和频域特性信号的时域特性与频域特性之间有着密切的内在联系,这种联系可以用图3-1来形象地表示。
其中图3-1(a)是信号在幅度--时间--频率三维座标系统中的图形;图3-1(b)是信号在幅度--时间座标系统中的图形即波形图;把周期信号分解得到的各次谐波分量按频率的高低排列,就可以得到频谱图。
反映各频率分量幅度的频谱称为振幅频谱。
图3-1(c)是信号在幅度--频率座标系统中的图形即振幅频谱图。
反映各分量相位的频谱称为相位频谱。
在本实验中只研究信号振幅频谱。
周期信号的振幅频谱有三个性质:离散性、谐波性、收敛性。
测量时利用了这些性质。
从振幅频谱图上,可以直观地看出各频率分量所占的比重。
测量方法有同时分析法和顺序分析法。
2、 矩形脉冲信号的频谱一个幅度为E ,脉冲宽度为τ,重复周期为T 的矩形脉冲信号,如图10-3所示。
图3-2 周期性矩形脉冲信号其傅里叶级数为:t n Tn Sa T E T E t f n i ωπτττcos )(2)(1∑=+= 该信号第n 次谐波的振幅为:Tn T n T E T n Sa T E a n /)/sin(2)(2τπτπττπτ== 由上式可见第n 次谐波的振幅与E 、T 、τ有关。
信号与系统实验报告
实验名称:信号与系统实验
一、实验目的:
1.了解信号与系统的基本概念
2.掌握信号的时域和频域表示方法
3.熟悉常见信号的特性及其对系统的影响
二、实验内容:
1.利用函数发生器产生不同频率的正弦信号,并通过示波器观察其时域和频域表示。
2.通过软件工具绘制不同信号的时域和频域图像。
3.利用滤波器对正弦信号进行滤波操作,并通过示波器观察滤波前后信号的变化。
三、实验结果分析:
1.通过实验仪器观察正弦信号的时域表示,可以看出信号的振幅、频率和相位信息。
2.通过实验仪器观察正弦信号的频域表示,可以看出信号的频率成分和幅度。
3.利用软件工具绘制信号的时域和频域图像,可以更直观地分析信号的特性。
4.经过滤波器处理的信号,可以通过示波器观察到滤波前后的信号波形和频谱的差异。
四、实验总结:
通过本次实验,我对信号与系统的概念有了更深入的理解,掌
握了信号的时域和频域表示方法。
通过观察实验仪器和绘制图像,我能够分析信号的特性及其对系统的影响。
此外,通过滤波器的处理,我也了解了滤波对信号的影响。
通过实验,我对信号与系统的理论知识有了更加直观的了解和应用。
信号与系统实验报告-实验3--周期信号的频谱分析信号与系统实验报告实验三周期信号的频谱分析实验三周期信号的频谱分析实验目的:1、掌握连续时间周期信号的傅里叶级数的物理意义和分析方法;2、观察截短傅里叶级数而产生的“Gibbs现象”,了解其特点以及产生的原因;3、掌握各种典型的连续时间非周期信号的频谱特征。
实验内容:(1)Q3-1 编写程序Q3_1,绘制下面的信号的波形图:其中,0 = 0.5π,要求将一个图形窗口分割成四个子图,分别绘制cos(0t)、cos(30t)、cos(50t) 和x(t) 的波形图,给图形加title,网格线和x坐标标签,并且程序能够接受从键盘输入的和式中的项数。
程序如下:clear,%Clear all variablesclose all,%Close all figure windowsdt = 0.00001; %Specify the step of time variable t = -2:dt:4; %Specify the interval of timew0=0.5*pi; x1=cos(w0.*t); x2=cos(3*w0.*t);x3=cos(5*w0.*t);N=input('Type in the number of the harmonic components N=');x=0;for q=1:N;x=x+(sin(q*(pi/2)).*cos(q*w0*t))/q;endsubplot(221)plot(t,x1)%Plot x1axis([-2 4 -2 2]);grid on,title('signal cos(w0.*t)')subplot(222)plot(t,x2)%Plot x2axis([-2 4 -2 2]); grid on,title('signal cos(3*w0.*t))')subplot(223)plot(t,x3)%Plot x3axis([-2 4 -2 2])grid on,title('signal cos(5*w0.*t))')subplot(224)plot(t,x)%Plot xtaxis([-2 4 -2 2])grid on,title('signal xt')(2)给程序3_1增加适当的语句,并以Q3_2存盘,使之能够计算例题1中的周期方波信号的傅里叶级数的系数,并绘制出信号的幅度谱和相位谱的谱线图。
信号与系统实验报告实验名称:一阶网络频响特性测量姓名:学号:班级:通信时间:2013.6南京理工大学紫金学院电光系一、 实验目的1、 掌握一阶网络的构成方法;2、 掌握一阶网络的系统响应特性;3、 了解一阶网络频响特性图的测量方法;二、实验基本原理系统响应特性是指系统在正弦信号激励下,稳态响应随信号频率变化而变化的特性,称为系统的频率响应特性(frequency response )简称频响特性。
一阶系统是构成复杂系统的基本单元。
学习一阶系统的特点有助于对一般系统特性的了解。
一阶系统的系统函数为H(s),表达式可以写成:γ+⋅=s k s H 1)( k 为一常数 (3-1) 激励信号x(t)为:(3-2)按照系统频响特性的定义可求得该一阶系统的稳态响应为:(3-3)其中⎣⎦00)()(|)(00ϕj j s ej H j H s H Ω=Ω=Ω=,⎣⎦)(00Ω=j H H 。
可见,当改变系统输入信号的频率时,稳态响应的幅度和相位也随之而改变。
因果系统是稳定的要求:0>γ,不失一般性可设τγ1==k 。
该系统的频响特性为:11)(+Ω=Ωτj j H (3-4)从其频响函数中可以看出系统响应呈低通方式,其3dB 带宽点τ1。
系统的频响特性图如下图:0()sin()m x t E t =Ω000()sin()ss m y t E H t ϕ=Ω+θ图1 一阶网络频响特性图一阶低通系统的单位冲击响应与单位阶跃响应如下图:图2 一阶网络单位冲击响应与单位阶跃响应图三、实验内容及结果一阶系统的幅度谱一阶系统相位谱3、用矢量作图法作出该一阶系统的幅度谱和相位谱。
一阶系统的幅度谱一阶系统的相位谱4、作出一阶网络的单位阶跃响应波形,标注在阶跃响应最大值的(1-e-1)倍处的时间t的值,与理论值R1C1是否相符。
四、实验分析1、实验所得一阶网络的频响特性图和用矢量作图法所得的频响特性图有何异同?说明原因。
绘制典型信号及其频谱图答案在下面四个常用信号及其傅里叶变换式如表1所示。
(1)绘制单边指数信号及其频谱图的MATLAB程序如下:close all;E=1;a=1;t=0:0.01:4;w=-30:0.01:30;f=E*exp(-a*t);F=1./(a+j*w);plot(t,f);xlabel('t');ylabel('f(t)');figure;plot(w,abs(F));xlabel('\omega');ylabel('|F(\omega)|');figure;max_logF=max(abs(F));plot(w,20*log10(abs(F)/max_logF));xlabel('\omega');ylabel('|F(\omega)| indB');figure;plot(w,angle(F));xlabel('\omega');ylabel('\phi(\omega)');请更改参数,调试此程序,绘制单边指数信号的波形图和频谱图。
观察参数a 对信号波形及其频谱的影响。
注:题目中阴影部分是幅频特性的对数表示形式,单位是(dB),请查阅相关资料,了解这种表示方法的意义及其典型数值对应的线性增益大小。
(2)绘制矩形脉冲信号、升余弦脉冲信号和三角脉冲信号的波形图和频谱图,观察并对比各信号的频带宽度和旁瓣的大小。
(3)更改参数,调试程序,绘制单边指数信号的波形图和频谱图。
观察参数a对信号波形及其频谱的影响。
答案附上程序代码:close all;E=1;a=1;t=0:0.01:4;w=-30:0.01:30;f=E*exp(-a*t);F=1./(a+j*w);plot(t,f);xlabel('t');ylabel('f(t)');figure;plot(w,abs(F));xlabel('\omega');ylabel('|F(\omega)|';E=1,a=1,波形图 频谱图更改参数E=2,a=1;更改参数a ,对信号波形及其频谱的影响。
学院:信息学院专业:通信工程(武警国防生) 指导教师:肖琦姓名:梁由勇学号:094 成绩:实验目的:1.用MATLAB实现周期信号的傅利叶级数;2.用MATLAB实现周期信号(包括典型周期信号)的频谱分析;3.观察利用MATLAB生成的图形及结果,与信号与系统理论知识相连系,加深对信号与系统理论知识的深入理解。
已知周期半波余弦信号和周期全波余弦信号的波形分别如图所示(图略),用MATLAB编程求出它们的傅里叶系数,绘出其直流、一次、二次、三次、四次及五次谐波叠加后的波形图,并将其与原周期信号的时域波形进行比较,观察周期信号的分解与合成过程。
解:% 观察周期余弦半波信号的分解和合成% m:傅立叶级数展开的项数display('Please input the value of m (傅立叶级数展开的项数)');m=input('m = ');t=*pi::*pi;t1=*pi::*pi;n=round(length(t)/5);f=[cos(t1)';zeros(n-1,1);cos(t1)';zeros(n-1,1);cos(t1)'];y=zeros(m+1,max(size(t)));y(m+1,:)=f';subplot((m+2),1,1)plot(t/pi,y(m+1,:));grid;axis([ ]); title('周期半波余弦信号'); xlabel('t/pi','Fontsize', 8);x=zeros(size(t));kk='1';%计算系数syms tx nT=2*pi;fx=sym('cos(tx)');Nn=30;an=zeros(m+1,1);bn=zeros(m+1,1);A0=2*int(fx,tx,-T/4,T/4)/T;An=2*int(fx*cos(2*pi*(n+eps/2)*tx/T),tx,-T/4,T/4)/T;Bn=2*int(fx*sin(2*pi*(n+eps/2)*tx/T),tx,-T/4,T/4)/T;an(1)=double(vpa(A0,Nn)); an(2)=;for k=2:man(k+1)=double(vpa(subs(An,n,k),Nn));bn(k+1)=double(vpa(subs(Bn,n,k),Nn));end%计算直流分量pause;x=an(1)*cos(0*t)/2;plot(t/pi,y(m+1,:));hold on;plot(t/pi,x);grid;hold off;axis([ ]); title('直流分量');xlabel('t/pi','Fontsize', 8);%各次谐波叠加for k=1:mpause;x=x+an(k+1).*cos(k*t);y(k,:)=x;subplot((m+2),1,k+1); plot(t/pi,y(m+1,:));hold on;plot(t/pi,y(k,:));hold off;grid;axis([ ]); title(strcat('第',kk,'次谐波叠加'));xlabel('t/pi','Fontsize', 8);kk=strcat(kk,'、',num2str(k+1));endpause;subplot((m+2),1,m+2)plot(t/pi,y(1:m+1,:));grid;axis([ ]);title('各次谐波叠加波形');xlabel('t/pi','Fontsize', 8);% End% 观察周期余弦全波信号的分解和合成% m:傅立叶级数展开的项数display('Please input the value of m (傅立叶级数展开的项数);t = *pi::*pi;t1=*pi::*;n = round(length(t)/5);f = [cos(t1)';cos(t1)';cos(t1)';cos(t1)';cos(t1)';0];y = zeros(m+1,max(size(t)));y(m+1,:) = f';subplot(m+2,1,1)plot(t/pi,y(m+1,:));grid on;axis([ ]); title('周期全波余弦信号'); xlabel('t/pi','Fontsize', 8); x=zeros(size(t));%计算系数syms tx nT=pi;fx=sym('cos(tx)');Nn=32;an=zeros(m+1,1);bn=zeros(m+1,1);A0 =2*int(fx,tx,-T/2,T/2)/T;An=2*int(fx*cos(2*pi*(n+eps/2)*tx/T),tx,-T/2,T/2)/T;Bn=2*int(fx*sin(2*pi*(n+eps/2)*tx/T),tx,-T/2,T/2)/T;an(1) = double(vpa(A0,Nn));for k=1:man(k+1)=double(vpa(subs(An,n,k),Nn));bn(k+1)=double(vpa(subs(Bn,n,k),Nn));end%求直流信号pause;x=an(1)*cos(0*t)/2;subplot(m+2,1,1)plot(t/pi,y(m+1,:));hold on;plot(t/pi,x);grid on;hold off;axis([ ]);title('周期全波余弦信号');xlabel('t/pi','Fontsize', 8);%各次谐波叠加for k=1:mpause;x=x+an(k+1).*cos(2*k*t);y(k,:) = x;subplot(m+2,1,k+1)plot(t/pi,y(m+1,:));hold on;plot(t/pi,y(k,:));hold off;grid on;axis([ ]); title(strcat('第',kk,'次谐波叠加'));xlabel('t/pi','Fontsize', 8);kk = strcat(kk,'、',num2str(k+1));endpause;subplot(m+2,1,m+2)plot(t/pi,y(1:m+1,:));axis([ ]);title('各次次谐波叠加波形');xlabel('t/pi','Fontsize', 8);% End9.2试用MATLAB编程会出中所示周期信号的幅度频谱,要求交互式输入信号周期,观察分析信号周期与频谱的关系。
当周期T趋于无穷大时,频谱谱线将发生什么样的变化解:syms T n t;display('Please input the value of NF,T,tao');Nf=input('Nf=');T=input('T=');tao=input('tao=');an=2/T*int(2/T*t*cos(2*pi*n*t/T),t,0,tao);bn=2/T*int(2/T*t*sin(2*pi*n*t/T),t,0,tao);a1n=zeros(1,Nf+1);b1n=zeros(1,Nf+1);cn=zeros(1,Nf+1);cn(1)=1/2;for i=2:Nf+1a1n(i)=subs(an,n,i);b1n(i)=subs(bn,n,i);cn(i)=(a1n(i)^2+b1n(i)^2)^(1/2);endk=0:Nf;stem(k,cn);hold onplot(k,cn);title(strcat('幅度频谱,周期、时域信号分别为',num2str(T),'和',num2str(tao)));xlabel(strcat('谐波次数',k));运行:Please input the value of m (傅立叶级数展开的项数)Please input the value of m (傅立叶级数展开的项数)Please input the value of NF,T,taoNf=30T=2*pitao=pitao=pi/2tao=pi/4固定tao=1, Nf=30改变T分别为2*pi ,4*pi ,8*pi 图形分别如下:T=2*piT=8*pi T=4*pi9.3 已知周期锯齿脉冲信号如图所示(图略),用MATLAB 绘制其频谱,要求交互式设置信号周期和时域宽度,观察信号周期T 及时域宽度对信号频谱的影响。
解: 在一个周期内⎪⎩⎪⎨⎧<<<<=)(..........0)0......(1)(T x x x t f τττ而:∑∑∞=∞=++=110)cos()cos(2)(n n n n t n b t n a a t f ωω 首先求解其傅立叶系数:⎰=T dt t f T a 00)(2;⎰=Tn dt t n t f T a 0)cos()(2ω⎰=Tn dt t n t f T b 0)sin()(2ω编写.m 文件如下:disp('please input the value of T ,tao and Nf'); T=input('T=');tao=input('tao='); Nf=input('Nf='); syms x n k Nn=32;An=zeros(Nf+1,1); Bn=zeros(Nf+1,1); f=x/tao;a0=2*int(f,x,0,tao)/T;an=2*int(f*cos(n*x),x,0,tao)/T; bn=2*int(f*sin(n*x),x,0,tao)/T; An(1)=double(vpa(a0,Nn)); for k=1:NfAn(k+1)=double(vpa(subs(an,n,k),Nn)); Bn(k+1)=double(vpa(subs(bn,n,k),Nn)); endcn=sqrt(An.*An+Bn.*Bn); m=0:Nf;stem(m,cn); hold on; plot(m,cn);xlabel('·ù¶È\omega','fontsize',8);其次固定tao,改变T:。