语音信号处理第2章-语音信号基础
- 格式:ppt
- 大小:1.27 MB
- 文档页数:73
第一部分语音信号处理第一章·绪论一···考核知识点1·语音信号处理的基本概念2·语音信号处理的发展概况二···考核要点一·语音信号处理的基本概念1.识记:(1)语音信号对人类的重要性。
(2)数字语音的优点。
(3)语音学的基本概念。
(4)语音信号处理的应用领域。
二·语音信号处理的发展概况1.识记:(1)语音信号处理的发展历史。
(2)语音编码、语音合成、语音识别的基本概念。
语音编码技术是伴随着语音的数字化而产生的,目前主要应用在数字语音通信领域。
语音合成的目的是使计算机能象人一样说话说话,而语音识别使能够听懂人说的话。
第二章·基础知识一···考核知识点一·语音产生的过程二·语音信号的特性三·语音信号产生的数字模型四·人耳的听觉特性二···考核要求一·语音产生的过程1.识记:声音是一种波,能被人耳听到,振动频率在20Hz~20kHz之间。
自然界中包含各种各样的声音,而语音是声音的一种,它是由人的发音器官发出的,具有一定语法和意义的声音。
2.领会:(1)语音产生的过程与人类发声的基本原理。
(2)清音、浊音、共振峰的基本概念。
语音由声带震动或不经声带震动产生,其中由声带震动产生的音统称为浊音,而不由声带震动而产生的音统称为清音。
声道是一个分布参数系统,它是一个谐振腔,有许多谐振频率,称为共振峰,它是声道的重要声学特征。
二·语音信号的特性1.识记:(1)语音的物理性质,包括音质、音调、音强、音长等特性。
语音是人的发音器官发出的一种声波,具有声音的物理属性。
其中音质是一种声音区别于其它声音的基本特征。
音调就是声音的高低,取决于声波的频率:频率高则音调高,频率低则音调低。
响度就是声音的强弱,又称音量。
《语音信号处理》期末考试复习资料(涉及考点的教材课后复习题)授课教师:薛雅娟老师整理人:通信161班梁雨(第2-5章)通信161班左自睿(第6-10章)根据成都信息工程大学通信工程学院选修课《语音信号处理》期末考试范围,整理成期末考试的复习资料以供学弟学妹们参考。
所有权归属成都信息工程大学。
在此衷心感谢薛老师平时悉心地教育指导。
整理人均系在读本科学生,水平有限,错误与不足之处在所难免,敬请大家见谅,欢迎批评、斧正。
第二章:语音信号处理的基础知识人耳听觉的掩蔽效应分为哪几种?掩蔽效应的存在对我们研究语音信号处理系统有什么启示?答:分为同时掩蔽和短时掩蔽。
同时掩蔽是指同时存在的一个弱信号和一个强信号频率接近时,强信号会提高弱信号的听阈,当弱信号的听阈被升高到一定程度时就会导致这个弱信号变得不可闻。
当A声和B声不同时出现时也存在掩蔽作用,称为短时掩蔽。
短时掩蔽分为前向掩蔽和后向掩蔽。
语音信号的数学模型包括哪些子模型?激励模型是怎样推导出来的?辐射模型又是怎样推导出来的?它们各属于什么性质的滤波器?答:①激励模型②声道模型③辐射模型④完整的语音信号的数学模型激励模型一般分成浊音激励和清音激励。
浊音激励:发浊音时,声激励是一个准周期的单位脉冲串,Av为增益参数;为了使浊音的激励信号具有声门振动气流脉冲的实际波形,需将冲激序列通过一个声门脉冲模型滤波器(实际上是一个斜三角波形)G(z)。
最后形成一个以基音周期为周期的斜三角波形。
清音激励模拟为随机噪声,实际中一般使用均值为0、方差为1的白噪声。
辐射模型:从声道模型射出的是速度波ul(n),而语音信号是声压波pl(n),二者之倒比称为辐射阻抗Zl。
在语音信号参数分析前为什么要进行预处理,有哪些预处理过程?答:预滤波的目的有两个:一是抑制输入信号各频域分量中频率超出fs/2的所有分量(fs为采样频率),以防止混叠干扰;二是抑制50Hz的电源工频干扰。
预处理过程:预加重、加窗和分帧。
《语音信号处理》课程笔记第一章语音信号处理的基础知识1.1 语音信号处理的发展历程语音信号处理的研究起始于20世纪50年代,最初的研究主要集中在语音合成和语音识别上。
在早期,由于计算机技术和数字信号处理技术的限制,语音信号处理的研究进展缓慢。
随着技术的不断发展,尤其是快速傅里叶变换(FFT)的出现,使得语音信号的频域分析成为可能,从而推动了语音信号处理的发展。
到了20世纪80年代,随着全球通信技术的发展,语音信号处理在语音编码和传输等领域也得到了广泛应用。
近年来,随着人工智能技术的快速发展,语音信号处理在语音识别、语音合成、语音增强等领域取得了显著的成果。
1.2 语音信号处理的总体结构语音信号处理的总体结构可以分为以下几个部分:(1)语音信号的采集和预处理:包括语音信号的采样、量化、预加重等操作,目的是提高语音信号的质量,便于后续处理。
(2)特征参数提取:从预处理后的语音信号中提取出能够反映语音特性的参数,如基频、共振峰、倒谱等。
(3)模型训练和识别:利用提取出的特征参数,通过机器学习算法训练出相应的模型,并进行语音识别、说话人识别等任务。
(4)后处理:对识别结果进行进一步的处理,如语法分析、语义理解等,以提高识别的准确性。
1.3 语音的发声机理和听觉机理语音的发声机理主要包括声带的振动、声道的共鸣和辐射等过程。
声带振动产生的声波通过声道时,会受到声道形状的影响,从而产生不同的音调和音质。
听觉机理是指人类听觉系统对声波的感知和处理过程,包括外耳、中耳、内耳和听觉中枢等部分。
1.4 语音的感知和信号模型语音的感知是指人类听觉系统对语音信号的识别和理解过程。
语音信号模型是用来描述语音信号特点和变化规律的数学模型,包括时域模型、频域模型和倒谱模型等。
这些模型为语音信号处理提供了理论基础和工具。
第二章语音信号的时域分析和短时傅里叶分析2.1 语音信号的预处理语音信号的预处理主要包括采样、量化、预加重等操作,目的是提高语音信号的质量,便于后续处理。
语音信号处理的基础知识语音信号处理是一门涉及到声音录制、分析、编码、识别等多个学科的交叉领域,其在现代通信技术、人机交互等领域中发挥着重要作用。
本文将介绍语音信号处理的基础知识,包括语音的参数表示、语音的数字化、语音的编码和解码等方面。
一、语音的参数表示语音信号的参数表示是指将语音信号表示为具有物理意义的、易于处理的数学参数。
在语音信号的参数表示中,常用的方法包括时域参数和频域参数两种。
时域参数是指将语音信号分段,然后对每一段信号进行时域特征分析,将其表示为均值、方差、能量、过零率等参数。
时域参数的优点是对信号的采样率没有要求,因此对于不同采样率的语音信号都可以进行处理。
但是,时域参数的缺点是对于语音信号中的高频成分无法处理,因此无法反映语音信号的高频特性。
频域参数是指将语音信号进行傅里叶变换,将信号变换到频域后,对于每个频率分量进行幅度、相位等特征参数提取。
频域参数的优点在于可以反映语音信号的高频特性,因此在语音识别、声码器设计等方面有重要应用。
但是频域参数的缺点在于对于信号的采样率有一定要求,因此需要进行抽样和重构处理,这样会引入一定的误差。
二、语音的数字化语音的数字化是指将模拟语音信号转换为数字信号的过程,其目的在于便于存储和处理。
在数字化语音信号中,一般采用脉冲编码调制(PCM)技术进行采样和量化。
脉冲编码调制是一种通过改变脉冲宽度、位置和幅度等参数来表示信号的方法。
在语音数字化中,采用的是线性脉冲编码调制,即将模拟语音信号进行采样、量化后转换为数字信号。
采样是指将模拟信号在时间轴上离散化,量化是指将采样信号的振幅幅度量化为离散的数值。
采样和量化的具体实现可以采用多种算法,如最近邻量化、线性量化、对数量化和均衡限制量化等。
三、语音的编码和解码语音信号编码是指将语音信号转换为适合传输和存储的码流。
在语音信号编码中,常用的方法包括线性预测编码(LPC)、自适应差分编码(ADPCM)、快速傅里叶变换编码(FFT)、线性预测离散余弦变换编码(LPDCT)等。
基于RNN的语音识别技术研究第一章:引言语音识别技术是指通过计算机技术将语音信号转化为计算机能够识别的文字或指令。
自20世纪50年代提出以来,语音识别技术一直是计算机领域的一个研究热点,其应用领域逐渐扩大,例如电话语音自动问答、语音助手、智能家居等。
其中,基于RNN的语音识别技术在语音识别领域有着重要的应用,成为当前语音识别技术的研究方向之一。
第二章:基础理论2.1 语音信号处理语音信号处理是语音识别技术的核心之一,它主要涉及到语音分析和语音合成两个方面。
语音信号处理需要通过数字信号处理技术,将语音信号转化为计算机可以处理的数字信号。
语音信号处理的关键在于对语音的时域和频域特征的提取。
时域特征主要包括语音信号的短时能量、过零率等;频域特征主要包括语音信号的频率、功率谱等。
2.2 循环神经网络(RNN)的基本原理循环神经网络(RNN)是目前语音识别领域中普遍采用的一种深度学习网络,它通过将前一时刻的隐含状态作为当前时刻的输入,来建立当前时刻的输出和隐含状态之间的联系。
RNN中最经典的网络结构是基本循环神经网络(Basic RNN),它包含了输入层、隐含层和输出层三层结构。
其中,隐含层被设计成一个循环神经元的序列,每个神经元与前一个神经元形成全连接,形成了“时序”结构。
RNN在序列预测、序列生成、语音识别等方面具有重要应用。
第三章:基于RNN的语音识别技术3.1 RNN在语音信号处理中的应用在传统的语音信号处理中,通常使用Mel频率倒谱系数(MFCCs)作为语音信号的特征提取方法,该方法难以处理时间序列问题,无法利用时间序列信息。
而RNN的结构可以利用时间序列信息,因此RNN非常适合语音信号处理。
RNN在语音信号处理中的应用主要包括声学建模和语音识别。
3.2 RNN在声学建模中的应用声学建模是语音识别技术的关键环节之一。
传统的声学建模常常采用高斯混合模型(GMM)或隐马尔可夫模型(HMM)。
而RNN 作为一种新兴的深度学习模型,具有更强的泛化能力和更强的鲁棒性。