离散数学07抽象代数
- 格式:ppt
- 大小:1.55 MB
- 文档页数:68
离散数学总结离散数学学习总结一、课程内容介绍:1.集合论部分:集合论是离散数学中第一个抽象难关,在老师的生动讲解下,深入浅出,使得集合论成了相当有趣的知识。
只是对于以后的应用还不是很了解,感觉学好它很重要。
直观地说,把一些事物汇集到一起组成一个整体就叫集合,而这些事物就是这个集合的元素或成员。
例如:方程x2-1=0的实数解集合;26个英文字母的集合;坐标平面上所有点的集合;集合通常用大写的英文字母来标记,例如自然数集合N(在离散数学中认为0也是自然数),整数集合Z,有理数集合Q,实数集合R,复数集合C等。
表示一个集合的方法有两种:列元素法和谓词表示法,如果两个集合的交集为,则称这两个集合是不相交的。
例如B和C 是不相交的。
两个集合的并和交运算可以推广成n个集合的并和交:A1∪A2∪…∪An={x|x∈A1∨x∈A2∨…∨x∈An}A1∩A2∩…∩An={x|x∈A1∧x∈A2∧…∧x∈An}2.关系二元关系也可简称为关系。
对于二元关系R,如果∈R,可记作xRy;如果R,则记作x y。
例如R1={<1,2>,},R2={<1,2>,a,b}。
则R1是二元关系,R2不是二元关系,只是一个集合,除非将a和b定义为有序对。
根据上面的记法可以写1R12,aR1b,aR1c等。
给出一个关系的方法有三种:集合表达式,关系矩阵和关系图。
设R是A上的关系,我们希望R具有某些有用的性质,比如说自反性。
如果R不具有自反性,我们通过在R中添加一部分有序对来改得到新的关系R',使得R'具有自反性。
但又不希望R'与R相差太多,换句话说,添加的有序对要尽可能的少。
满足这些要求的R'就称为R的自反闭包。
通过添加有序对来构造的闭包除自反闭保外还有对称闭包和传递闭包。
3.代数系统代数结构也叫做抽象代数,主要研究抽象的代数系统。
抽象的代数系统也是一种数学模型,可以用它表示实际世界中的离散结构。
北京大学数学科学学院考研参考书目汇总考试科目编号:01 数学分析 02 高等代数03 解析几何 04 实变函数05 复变函数 06 泛函分析07 常微分方程 08 偏微分方程09 微分几何 10 抽象代数11 拓扑学 12 概率论13 数理统计 14 数值分析15 数值代数 16 信号处理17 离散数学 18 数据结构与算法01 数学分析( 150 分)考试参考书:1. 方企勤等,数学分析(一、二、三册)高教出版社。
2. 陈纪修、於崇华、金路,数学分析(上、下册),高教出版社。
02 高等代数( 100 分)考试参考书:1. 丘维声,高等代数(第二版) 上册、下册,高等教育出版社,2002年, 2003年。
高等代数学习指导书(上册),清华大学出版社,2005年。
高等代数学习指导书(下册),清华大学出版社,2009年。
2. 蓝以中,高等代数简明教程(上、下册),北京大学出版社,2003年(第一版第二次印刷)。
03 解析几何( 50 分)考试参考书:1. 丘维声,解析几何(第二版),北京大学出版社,(其中第七章不考)。
2. 吴光磊,田畴,解析几何简明教程,高等教育出版社, 2003年。
04 实变函数( 50 分)考试参考书:1. 周民强,实变函数论,北京大学出版社, 2001年。
05 复变函数( 50 分)考试参考书:1. 方企勤,复变函数教程,北京大学出版社。
06 泛函分析( 50 分)考试参考书:1. 张恭庆、林源渠,泛函分析讲义(上册),北京大学出版社。
07 常微分方程( 50 分)考试参考书:1. 丁同仁、李承治,常微分方程教程,高等教育出版社。
2. 王高雄、周之铭、朱思铭、王寿松,常微分方程(第二版),高等教育出版社。
3. 叶彦谦,常微分方程讲义(第二版)人民教育出版社。
08 偏微分方程( 50 分)考试参考书:1. 姜礼尚、陈亚浙,数学物理方程讲义(第二版),高等教育出版。
2. 周蜀林,偏微分方程,北京大学出版社。
离散数学证明方法有哪些离散数学中的概念和定理偏多,思维较抽象,证明强调技巧性但改变不多。
下面我给大家整理了关于离散数学证明方法,盼望对你有协助!1离散数学证明方法离散数学是现代数学的一个重要分支,是计算机科学中根底理论的核心课程。
离散数学以探究离散量的构造和相互间的关系为主要目标,其探究对象一般地是有限个或可数个元素,因此他充分描述了计算机科学离散性的特点。
2离散数学证明方法干脆证明法干脆证明法是最常见的一种证明的方法,它通常用作证明某一类东西具有一样的性质,或者符合某一些性质必定是某一类东西。
干脆证明法有两种思路,第一种是从确定的条件来推出结论,即看到条件的时候,并不知道它怎么可以推出结论,那么可以先从确定条件遵照定理推出一些中间的条件(这一步可能是没有目的的,要看看从确定的条件中能够推出些什么),接着,选择可以推出结论的那个条件接着往下推演;另外一种是从结论反推回条件,即看到结论的时候,首先要反推一下,看看从哪些条件可以得出这个结论(这一步也可能是没有目的的,因为并不知道要用到哪个条件),以此类推始终到确定的条件。
通常这两种思路是同时进展的。
反证法反证法是证明那些“存在某一个例子或性质”,“不具有某一种的性质”,“仅存在”等的题目。
它的方法是首先假设出所求命题的否命题,接着依据这个否命题和确定条件进展推演,直至推出与确定条件或定理相冲突,那么认为假设是不成立的,因此,命题得证。
构造法证明“存在某一个例子或性质”的题目,我们可以用反证法,假设不存在这样的例子和性质,然后推出冲突,也可以干脆构造出这么一个例子就可以了。
这就是构造法,通常这样的题目在图论中多见。
值得留意的是,有一些题目其实也是本类型的题目,只不过比拟隐藏罢了,像证明两个集合等势,事实上就是证明“两个集合中存在一个双射”,我们即可以假设不存在,用反证法,也可以干脆构造出这个双射。
数学归纳法数学归纳法是证明与自然数有关的题目,而且这一类型的题目可以递推。
抽象代数应用抽象代数是数学的一个分支,研究数的代数结构及其运算规则。
抽象代数的应用广泛存在于数学、物理、计算机科学等领域,对于深入研究这些学科至关重要。
本文将探讨抽象代数在几个不同领域的应用。
一、密码学与抽象代数密码学是信息安全领域的一个重要分支,而抽象代数则是密码学的理论基础。
抽象代数中的群论、域论和线性代数等概念与密码学中的秘密密钥、公钥密码体制以及加密算法密切相关。
例如,RSA加密算法中就应用了抽象代数中的模指数运算、欧几里得算法等概念,保证了数据的安全性并实现了加密通信。
二、建模与抽象代数在数学建模中,抽象代数为我们提供了一种强大的工具。
通过引入抽象代数的概念,我们可以将实际问题转化为数学模型,利用代数结构和运算规则进行分析和求解。
例如,线性代数中的矩阵运算可以用来描述复杂的投资组合关系和网络连接关系,群论中的群操作可以用于研究社交网络中的信息传递和扩散规律。
抽象代数的建模能力为各行各业提供了解决实际问题的有效方法。
三、编码理论与抽象代数编码理论是信息传输和存储的关键领域,而抽象代数则为编码理论提供了数学基础。
在编码理论中,利用抽象代数的概念可以设计出高效的纠错码和压缩算法,提高数据传输和存储的可靠性和效率。
例如,循环码、汉明码等纠错码都是基于有限域和离散群的概念设计而成,通过引入抽象代数的概念,编码理论可以实现对数据的可靠传输和有效压缩。
四、量子力学与抽象代数抽象代数在量子力学中也有广泛的应用。
量子力学使用抽象代数中的线性代数和群论概念描述微观粒子的运动和相互作用。
通过引入矢量空间、希尔伯特空间和酉群等概念,抽象代数为量子力学提供了明确的数学描述和计算方法。
例如,量子力学中的态矢量、算符和测量等概念都是基于抽象代数的工具来描述和分析的。
五、计算机科学与抽象代数抽象代数是计算机科学中的核心学科之一,与数据结构、算法和计算复杂性等领域密不可分。
抽象代数提供了一种理论框架,用于设计和分析各种计算机程序和算法。
《离散数学》课程教学大纲课程编号:课程中文名称:离散数学课程英文名称:Discrete mathematics课程类型:考查课课程性质:专业技术基础课总学时: 54学时理论授课学时: 46学时实验(实践)学时:8学时学分:3分适用对象:信息管理与信息系统、信息工程本科先修课程:高等数学线性代数一、编写说明(一)制定大纲的依据依据我系信息管理与信息系统、信息工程专业学科体系和特色化人才培养目标的要求,制定编写了该教学大纲,在内容上突出了《离散数学》课程的基本理论、基本知识和基本技能,反映现代科学技术的发展趋势,体现了我系的特色化人才培养模式。
(二)课程简介离散数学,是现代数学的一个重要分支,是以研究离散量的结构和相互间的关系为主要目标,其研究对象一般是有限个或可数个元素。
《离散数学》内容主要包括: 数理逻辑中命题演算、谓词演算等形式逻辑的推理规律;集合的概念、运算及应用,集合内元素间的关系以及集合之间的关系,无限集的特性;抽象代数的基本理论和应用,格与布尔代数图论学科的基本概念、欧拉图、哈密尔顿图、最小路径算法、中国邮路问题、树及平面图的基本理论;通过该课程可以培养学生的抽象思维和慎密的概括能力,该课程主要适用于自动控制、电子工程、管理科学等有关专业,是计算机专业的必修课。
(三)课程性质、目的和任务《离散数学》课程是为计算机科学与技术专业的学生开设的一门专业基础课程。
随着计算机科学的发展和计算机应用领域的日益广泛,迫切需要适当的数学工具来解决计算机科学各个领域中提出的有关离散量的理论问题,离散数学就是适应这种需要而建立的,它综合了计算机科学中所用到的研究离散量的各个数学课题,并进行系统、全面的论述,从而为研究计算机科学及相关学科提供了有利的理论基础和工具。
是学习后续专业课程不可缺少的数学工具,如:高级语言、数据结构、编译原理、操作系统、可计算性理论、人工智能、形式语言与自动机、信息管理与检索以及开关理论等,离散数学也是研究自动控制、管理科学、电子工程等的重要工具。