集成运算放大器IC的主要参数【经典】
- 格式:docx
- 大小:15.03 KB
- 文档页数:2
运放参数详解超详细运放,全称为运算放大器,是一种主要用于电子设备中的放大电路。
它能够接收输入信号并在输出端放大,以达到放大信号的效果。
运放广泛应用于放大、滤波、积分、微分、求和、差分等电路中,是现代电子电路中不可或缺的元件之一在使用运放时,需要了解一些重要的参数,这些参数将影响到运放的性能和应用。
下面将详细介绍一些常见的运放参数:1.增益:增益指的是输入信号经过运放放大后的输出信号与输入信号之间的比例关系。
增益可以是小信号增益,即输入信号幅度相对较小的情况下的增益;也可以是大信号增益,即输入信号幅度较大的情况下的增益。
通常使用dB(分贝)来表示增益大小。
2.带宽:带宽是指运放能够正确放大的频率范围。
在带宽之外的信号将会被放大产生失真。
带宽通常以Hz(赫兹)表示,常见的运放带宽为几百kHz到几GHz。
3.输入电阻:输入电阻指的是运放输入端的电阻阻抗。
输入电阻越大,表示输入信号的损耗越小,输出信号与输入信号之间的电压差会更小。
输入电阻一般以欧姆(Ω)表示。
4.输出电阻:输出电阻指的是运放输出端的电阻阻抗。
输出电阻越小,表示运放输出信号的能力越强,能够驱动更大的负载。
输出电阻一般以欧姆(Ω)表示。
5.失调电流:失调电流是指运放输入端的两个输入电流之间的差异。
失调电流越小,表示运放的两个输入端能够更好地匹配,从而减小了对输入信号的失真。
失调电流一般以安培(A)表示。
6.偏置电压:偏置电压是指运放两个输入端相对于公共模式电压的偏差。
偏置电压越小,表示运放能够更好地接近理想运算放大器模型,减小了对输入信号的失真。
偏置电压一般以伏特(V)表示。
7.输出偏置电压:输出偏置电压是指运放输出端相对于公共模式电压的偏差。
输出偏置电压越小,表示运放输出信号更加准确,能够更好地匹配输入信号。
输出偏置电压一般以伏特(V)表示。
8.运放噪声:运放噪声是指运放输出信号中存在的由运放本身引起的随机噪声。
运放噪声分为输入噪声和输出噪声,通常以nV/√Hz(纳伏特/根赫兹)表示。
运算放大器参数详解运算放大器(常简称为“运放”)是具有很高放大倍数的电路单元。
在实际电路中,通常结合反馈网络共同组成某种功能模块。
由于早期应用于模拟计算机中,用以实现数学运算,故得名“运算放大器”,此名称一直延续至今。
运放是一个从功能的角度命名的电路单元,可以由分立的器件实现,也可以实现在半导体芯片当中。
随着半导体技术的发展,如今绝大部分的运放是以单片的形式存在。
现今运放的种类繁多,广泛应用于几乎所有的行业当中。
直流放大电路在工业技术领域中,特别是在一些测量仪器和自动化控制系统中应用非常广泛。
如在一些自动控制系统中,首先要把被控制的非电量(如温度、转速、压力、流量、照度等)用传感器转换为电信号,再与给定量比较,得到一个微弱的偏差信号。
因为这个微弱的偏差信号的幅度和功率均不足以推动显示或者执行机构,所以需要把这个偏差信号放大到需要的程度,再去推动执行机构或送到仪表中去显示,从而达到自动控制和测量的目的。
因为被放大的信号多数变化比较缓慢的直流信号,分析交流信号放大的放大器由于存在电容器这样的元件,不能有效地耦合这样的信号,所以也就不能实现对这样信号的放大。
能够有效地放大缓慢变化的直流信号的最常用的器件是运算放大器。
运算放大器最早被发明作为模拟信号的运算(实现加减乘除比例微分积分等)单元,是模拟电子计算机的基本组成部件,由真空电子管组成。
目前所用的运算放大器,是把多个晶体管组成的直接耦合的具有高放大倍数的电路,集成在一块微小的硅片上。
第一块集成运放电路是美国仙童(fairchild)公司发明的μA741,在60年代后期广泛流行。
直到今天μA741仍然是各大学电子工程系中讲解运放原理的典型教材。
运放如上图有两个输入端a,b和一个输出端o.也称为倒向输入端(反相输入端),非倒向输入端(同相输入端)和输出端.当电压加U-加在a端和公共端 (公共端是电压的零位,它相当于电路中的参考结点.)之间,且其实际方向从a 端指向公共端时,输出电压U实际方向则自公共端指向o端,即两者的方向正好相反.当输入电压U+加在b端和公共端之间,U与U+两者的实际方向相对公共端恰好相同.为了区别起见,a端和b 端分别用"-"和"+"号标出,但不要将它们误认为电压参考方向的正负极性.电压的正负极性应另外标出或用箭头表示.反转放大器和非反转放大器如下图:一般可将运放简单地视为:具有一个信号输出端口(Out)和同相、反相两个高阻抗输入端的高增益直接耦合电压放大单元,因此可采用运放制作同相、反相及差分放大器。
集成运算放大器主要参数(1)共模输入电阻(RINCM)该参数表示运算放大器工作在线性区时,输入的共模电压范围与该范围内偏置电流的变化量之比。
(2)直流共模抑制(KCMRDC)该参数用于衡量运算放大器对作用在两个输入端的相同宜流信号的抑制能力。
(3)交流共模抑制(KCMRAC)该参数用于衡量运算放大器对作用在两个输入端的相同交流信号的抑制能力,是差模开环增益除以共模开环增益的函数。
(4)增益带宽积(GBP)增益带宽积Auo×f是一个常量,定义在开环增益随频率变化的特性F060S120曲线中以-20dB/十倍频程滚降的区域。
(5)输入偏置电流(/IB)该参数指运算放大器工作在线性区时流入输入端的平均电流。
在电路外接电阻确定之后,输入偏置电流的大小主要取决于运放差分输入级BJT的性能。
当它的∥值太小时,将使偏置电流增加。
从使用角度来看,偏置电流越小,由信号源内阻变化引起的输出电压变化也越小,故它是重要的技术指标。
一般为lOnA~lUA。
(6)输入偏置电流温漂(TCIB)该参数代表输入偏置电流在温度变化时产生的变化量。
TCIB通常以pA/℃为单位。
(7)输入失调电流(/o。
)在BJT集成电路运算放大器中,输入失调电流厶。
是指当输出电压为零时流入放大器两输入端的静态基极电流之差,即L。
=l/BP+/BNJ。
由于信号源内阻的存在,厶。
会引起一输入电压,破坏放大器的平衡,使放大器输出电压不为零,所以希望厶。
越小越好。
它反映了输入级有效差分对管的不对称程度,一般约为InA~O.lpA。
(8)输入失调电流温漂(Taos)该参数指在规定温度范围内输入失调电流厶。
的温度系数,也是对放大器电路漂移的量度,不能用外接调零装置来补偿。
CIOS通常以pA/℃为单位。
(9)差模输入电阻(Ri。
)该参数表示输入电压的变化量与相应的输入电流变化量之比,电压的变化导致电流的变化。
在一个输入端测量时,另一输入端接固定的共模电压。
运算放大器参数详解技术2010-12-19 22:05:36 阅读80 评论0 字号:大中小订阅运算放大器(常简称为“运放”)是具有很高放大倍数的电路单元。
在实际电路中,通常结合反馈网络共同组成某种功能模块。
由于早期应用于模拟计算机中,用以实现数学运算,故得名“运算放大器”,此名称一直延续至今。
运放是一个从功能的角度命名的电路单元,可以由分立的器件实现,也可以实现在半导体芯片当中。
随着半导体技术的发展,如今绝大部分的运放是以单片的形式存在。
现今运放的种类繁多,广泛应用于几乎所有的行业当中。
历史直流放大电路在工业技术领域中,特别是在一些测量仪器和自动化控制系统中应用非常广泛。
如在一些自动控制系统中,首先要把被控制的非电量(如温度、转速、压力、流量、照度等)用传感器转换为电信号,再与给定量比较,得到一个微弱的偏差信号。
因为这个微弱的偏差信号的幅度和功率均不足以推动显示或者执行机构,所以需要把这个偏差信号放大到需要的程度,再去推动执行机构或送到仪表中去显示,从而达到自动控制和测量的目的。
因为被放大的信号多数变化比较缓慢的直流信号,分析交流信号放大的放大器由于存在电容器这样的元件,不能有效地耦合这样的信号,所以也就不能实现对这样信号的放大。
能够有效地放大缓慢变化的直流信号的最常用的器件是运算放大器。
运算放大器最早被发明作为模拟信号的运算(实现加减乘除比例微分积分等)单元,是模拟电子计算机的基本组成部件,由真空电子管组成。
目前所用的运算放大器,是把多个晶体管组成的直接耦合的具有高放大倍数的电路,集成在一块微小的硅片上。
第一块集成运放电路是美国仙童(fairchild)公司发明的μA741,在60年代后期广泛流行。
直到今天μA741仍然是各大学电子工程系中讲解运放原理的典型教材。
原理运放如上图有两个输入端a,b和一个输出端o.也称为倒向输入端(反相输入端),非倒向输入端(同相输入端)和输出端.当电压加U-加在a端和公共端(公共端是电压的零位,它相当于电路中的参考结点.)之间,且其实际方向从a 端指向公共端时,输出电压U实际方向则自公共端指向o端,即两者的方向正好相反.当输入电压U+加在b端和公共端之间,U与U+两者的实际方向相对公共端恰好相同.为了区别起见,a端和b 端分别用"-"和"+"号标出,但不要将它们误认为电压参考方向的正负极性.电压的正负极性应另外标出或用箭头表示.反转放大器和非反转放大器如下图:一般可将运放简单地视为:具有一个信号输出端口(Out)和同相、反相两个高阻抗输入端的高增益直接耦合电压放大单元,因此可采用运放制作同相、反相及差分放大器。
几种常用集成运算放大器的性能参数1.通用型运算放大器A741(单运放)、LM358(双运放)、LM324(四运放)及以场效应管为输入级的LF356都属于此种。
它们是口前应用最为广泛的集成运算放大器。
卩通用型运算放大器就是以通用为LI的而设计的。
这类器件的主要特点是价格低廉、产品量大面广, 其性能指标能适合于一般性使用。
例2.高阻型运算放大器,IIB为儿皮安到儿十皮安。
实现这些指标的主要措施是利用场效应管高输入阻抗的特点,用场效应管组成运算放大器的差分输入级。
用FET作输入级,不仅输入阻抗高,输入偏置电流低,而且具有高速、宽带和低噪声等优点,但输入失调电压较大。
常见的集成器件有LF356、LF355、LF347 (四运放)及更高输入阻抗的CA3130、CA3140等。
Q这类集成运算放大器的特点是差模输入阻抗非常高,输入偏置电流非常小,一般rid> (109^1012)3.低温漂型运算放大器在精密仪器、弱信号检测等自动控制仪表中,总是希望运算放大器的失调电压要小且不随温度的变化而变化。
低温漂型运算放大器就是为此而设讣的。
訂前常用的高精度、低温漂运算放大器有0P-07、0P-27、AD508及ill M0SFET组成的斩波稳零型低漂移器件ICL7650等。
4.高速型运算放大器s,BWG>20MHzo PA715等,其SR二50〜70V/u在快速A/D和D/A转换器、视频放大器中,要求集成运算放大器的转换速率SR 一定要高,单位增益带宽BWG 一定要足够大,像通用型集成运放是不能适合于高速应用的场合的。
高速型运算放大器主要特点是具有高的转换速率和宽的频率响应。
常见的运放有LM318、5.低功耗型运算放大器W,可采用单节电池供电。
P A O U前有的产品功耗已达微瓦级,例如ICL7600 的供电电源为1. 5V,功耗为10 u山于电子电路集成化的最大优点是能使复杂电路小型轻便,所以随着便携式仪器应用范围的扩大,必须使用低电源电压供电、低功率消耗的运算放大器相适用。
集成运放的主要技术指标集成运放的主要技术指标集成运放的输⼊级通常由差分放⼤电路组成,因此⼀般具有两个输⼊端以及⼀个输出端,还有其他以连接电源电压等的引出端。
两个输⼊端中,⼀个与输出端为反相关系,另⼀个为同相关系,分别称为反相输⼊端和同相输⼊端。
运算放⼤器的符号如下图所⽰。
其中反相输⼊端和同相输⼊端分别⽤符号“-”和“+”标明。
为了描述集成运放的性能,提出了许多项技术指标,现将常⽤的⼏项分别介绍如下:⼀、开环差模电压增益AodAod是指运放在⽆外加反馈情况下的直流差模增益,⼀般⽤对数表⽰,单位为分贝。
Aod是决定运放精度的重要因素,理想情况下希望Aod为⽆穷⼤。
实际集成运放⼀般Aod为100dB左右,⾼质量的集成运Aod可达140dB以上。
⼆、输⼊失调电压U10它的定义是,为了使输出电压为零,在输⼊端所需要加的补偿电压。
其数值表征了输⼊级差分对管UBE(或场效应管UGS)失配的程度,在⼀定程度上了反映温漂的⼤⼩。
⼀般运放的U10值为1~10mV,⾼质量的在1mV以下。
三、输⼊失调电压温漂ΑU10它表⽰失调电压在规定⼯作范围内的温度系数,是衡量运放漂的重要指标。
⼀般运放为每度10~20µV,⾼质量的低于每度0.5µV。
这个指标往往⽐失调电压更为重要,因为可以通过调整电阻的阻值⼈为地使失调电压等于零,便却⽆法将失调电压的温漂调⾄零,甚⾄不⼀定能使其降低。
四、输⼊失调电流I10输⼊失调电流的定义是当输出电压等于零时,两个输⼊端偏置电流之差,即I10=|IB1-IB2|(4.4.3)⽤以描述差分对管输⼊电流的不对称情况,⼀般运放为⼏⼗⾄⼀百纳安,⾼质量的低于1nA。
五、输⼊失调电流温漂αI10它代表输⼊失调电流的湿度系数。
⼀般为每度⼏纳安,⾼质量的只有每度⼏⼗⽪安。
六、输⼊偏置电流IIBIIB定义是当输出电压等于零时,两个输⼊端偏置电流的平均值,这是衡量分对管输⼊电流绝对值⼤⼩的指标,它的值主要决定于集成运放输⼊级的静态集电极电流及输⼊级放⼤管的β值。
集成运放的性能主要参数及国标测试方法集成运放的性能可用一些参数来表示。
集成运放的主要参数:1.开环特性参数(1)开环电压放大倍数Ao。
在没有外接反馈电路、输出端开路、在输入端加一个低频小信号电压时,所测出输出电压复振幅与差动输入电压复振幅之比值,称为开环电压放大倍数。
Ao越高越稳定,所构成运算放大电路的运算精度也越高。
(2)差分输入电阻Ri。
差分输入电阻Ri是运算放大器的主要技术指标之一。
它是指:开环运算放大器在室温下,加在它两个输入端之间的差模输入电压变化量△V i与由它所引起的差模输入电流变化量△I i之比。
一般为10k~3M,高的可达1000M以上。
在大多数情况下,总希望集成运放的开环输入电阻大一些好。
(3)输出电阻Ro。
在没有外加反馈的情况下,集成运放在室温下其输出电压变化与输出电流变化之比。
它实际上就是开环状态下集成运放输出级的输出电阻,其大小反映了放大器带负载的能力,Ro通常越小越好,典型值一般在几十到几百欧。
(4)共模输入电阻Ric。
开环状态下,两差分输入端分别对地端呈现的等效电阻,称为共模输入电阻。
(5)开环频率特性。
开环频率特性是指:在开环状态下,输出电压下降3dB所对应的通频带宽,也称为开环-3dB带宽。
2.输入失调特性由于运算放大器输入回路的不对称性,将产生一定的输入误差信号,从而限制里运算放大器的信号灵敏度。
通常用以下参数表示。
(1)输入失调电压Vos。
在室温及标称电源电压下,当输入电压为零时,集成运放的输出电位Vo0折合到输入端的数值,即:Vos=Vo0/Ao失调电压的大小反映了差动输入级元件的失配程度。
当集成运放的输入端外接电阻比较小时。
失调电压及其漂移是引起运算误差的主要原因之一。
Vos一般在mV级,显然它越小越好。
(2)输入失调电流Ios。
在常温下,当输入信号为零时,放大器两个输入端的基极偏置电流之差称为输入失调电流。
即:Ios=Ib- — Ib+式中Ib-、Ib+为放大器内两个输入端晶体管的基极电流。
运放主要参数
1. 增益:运放的增益是指输入信号与输出信号之间的比例关系。
增益通常以分贝(dB)为单位表示。
2. 带宽:运放的带宽是指它能够放大的频率范围。
带宽通常以赫兹(Hz)为单位表示。
3. 输入阻抗:运放的输入阻抗是指它对输入信号的电阻。
输入阻抗通常以欧姆(Ω)为单位表示。
4. 输出阻抗:运放的输出阻抗是指它对输出信号的电阻。
输出阻抗通常以欧姆(Ω)为单位表示。
5. 偏置电压:运放的偏置电压是指在没有输入信号时,输出电压的偏移量。
偏置电压通常以毫伏(mV)为单位表示。
6. 偏置电流:运放的偏置电流是指在没有输入信号时,运放输入端的电流。
偏置电流通常以微安(μA)为单位表示。
7. 噪声:运放的噪声是指在输出信号中存在的随机电压或电流。
噪声通常以分贝(dB)为单位表示。
8. 失调电压:运放的失调电压是指在输入信号相等时,输出电压之间的差异。
失调电压通常以毫伏(mV)为单位表示。
9. 失调电流:运放的失调电流是指在输入信号相等时,运放输入端的电流之间的差异。
失调电流通常以微安(μA)为单位表示。
10. 过载电压:运放的过载电压是指它能够承受的最大压力。
运算放大器主要参数运算放大器(Operational Amplifier,简称Op-Amp)是电子电路中的一个重要部件,广泛应用于模拟电路电路中。
它具有输入阻抗高、增益大、输出阻抗低等特点,可以起到信号放大、滤波、求积分、求微分、比较等作用。
在使用运算放大器时,需要了解其主要参数,以便选择合适的运算放大器并设计出稳定可靠的电路。
下面介绍几个常见的主要参数。
1. 增益(Gain)增益是运算放大器的一个重要指标,表示运算放大器输入和输出之间的电压增值比。
具体地,电压增益为输出电压与输入电压之比。
通常用dB(分贝)表示,公式为:voltage gain = 20*log (Vout / Vin)。
增益越大,表示放大器的输出电压变化更灵敏,适合要求精度高的应用。
但是,增益不能过大,否则容易产生噪声、漂移等问题。
2. 输入阻抗(Input Impedance)输入阻抗指运算放大器对输入信号的电阻抵抗,也就是输入端电路的电阻。
输入阻抗越高,说明输入信号被放大器“欢迎”,放大器可以提供更好的输入信号放大效果。
一般而言,输入阻抗越高,保证了信号的高噪声性,但是会降低放大器的带宽。
3. 输出阻抗(Output Impedance)输出阻抗是指运算放大器的输出端对外部电路所带来的等效电阻抗。
输出阻抗越低,说明输出信号更能维持所需的电压波形,应用范围更广。
一般而言,输出阻抗越低意味着输出信号更稳定,功率损耗更小等优点。
4. 偏置电流(Bias Current)偏置电流是指运算放大器内部存在的无输入信号时流经输入端的电流。
这种电流流过时序电阻等元器件,它们产生的电压陡度呈指数增长,这种电流有可能影响放大器和被测电路的稳定性和性能。
因此,它的大小要求越小越好。
5. 限幅电流(Slew Rate)当运算放大器输出电压变化速度很快时,就会出现斜率限制(Slew Rate)现象。
限幅电流是输出电压的变化率,量纲为伏特/微秒(V/μs),表示放大器输出端电压的变化速率。
集成运算放大器IC的分类通用型通用型运算放大器就是以通用为目的而设计的。
这类器件的主要特点是价格低廉、产品量大面广,其性能指标能适合于一般性使用。
例mA741(单运放)、LM358(双运放)、LM324(四运放)及以场效应管为输入级的LF356都属于此种。
它们是目前应用最为广泛的集成运算放大器。
精密运放精密运算放大器一般指失调电压低于1mV的运放并同时强调失调电压随温度的变化漂移值要小于100V。
对于直流输入信号,VOS和它的温漂足够小就行了,但对于交流输入信号,我们还必须考虑运放的输入电压噪声和输入电流噪声,在很多应用情况下输入电压噪 [1]声和输入电流噪声显得更为重要一些。
同时,很多应用设计中需要使用可编程高精密运算放大器(PVGA),在信号链中对放大倍数进行动态调整。
在用于实现许多高端传感器的输入处理设计时,如何选择最佳的精密运算放大器却存在一些挑战。
在传感器类型和(或)其使用环境带来许多特别要求时,例如超低功耗、低噪声、零漂移、轨到轨输入及输出、可靠的热稳定性和对数以千计读数和(或)在恶劣工作条件下提供一致性能的可再现性,运算放大器的选择就会变得特别困难。
在基于传感器的复杂应用中,设计者需要进行多方面考虑,以便获得规格与性能最佳组合的精密运算放大器,同时还需要考虑成本。
具体而言,斩波稳定型运算放大器(零漂移放大器)非常适用于要求超低失调电压以及零漂移的应用。
斩波运算放大器通过持续运行在芯片上实现的校准机制来达到高DC精度。
精密运算放大电路与普通运算放大电路的区别:普通运算放大电路构成一般类似,精密放大电路会多一些电源去耦,滤波等特殊设计的电路。
主要区别在于运算放大器上,精密运算放大器的性能比一般运放好很多,比如开环放大倍数更大,CMRR更大,速度比较慢,GBW,SR一般比较小。
失调电压或失调电流比较小,温度漂移小,噪声低等等。
好的精密运放的性能远不是一般运算放大器可以比得,一般运放的失调往往是几个mV,而精密运放可以小到1uV 的水平。
集成运算放大器IC的主要参数
本节以《中国集成电路大全》集成运算放大器为主要参考资料,同时参考了其它相关资料。
集成运放的参数较多,其中主要参数分为直流指标和交流指标。
其中主要直流指标有输入失调电压、输入失调电压的温度漂移(简称输入失调电压温漂)、输入偏置电流、输入失调电流、输入偏置电流的温度漂移(简称输入失调电流温漂)、差模开环直流电压增益、共模抑制比、电源电压抑制比、输出峰-峰值电压、最大共模输入电压、最大差模输入电压。
主要交流指标有开环带宽、单位增益带宽、转换速率SR、全功率带宽、建立时间、等效输入噪声电压、差模输入阻抗、共模输入阻抗、输出阻抗。
这里重点描述——直流指标
输入失调电压VIO:输入失调电压定义为集成运放输出端电压为零时,两个输入端之间所加的补偿电压。
输入失调电压实际上反映了运放内部的电路对称性,对称性越好,输入失调电压越小。
输入失调电压是运放的一个十分重要的指标,特别是精密运放或是用于直流放大时。
输入失调电压与制造工艺有一定关系,其中双极型工艺(即上述的标准硅工艺)的输入失调电压在±1~10mV之间;采用场效应管做输入级的,输入失调电压会更大一些。
对于精密运放,输入失调电压一般在1mV以下。
输入失调电压越小,直流放大时中间零点偏移越小,越容易处理。
所以对于精密运放是一个极为重要的指标。
输入失调电压的温度漂移(简称输入失调电压温漂)αVIO:输入失调电压的温度漂移定义为在给定的温度范围内,输入失调电压的变化与温度变化的比值。
这个参数实际是输入失调电压的补充,便于计算在给定的工作范围内,放大电路由于温度变化造成的漂移大小。
一般运放的输入失调电压温漂在±10~20μV/℃之间,精密运放的输入失调电压温漂小于±1μV/℃。
输入偏置电流IIB:输入偏置电流定义为当运放的输出直流电压为零时,其两输入端的偏置电流平均值。
输入偏置电流对进行高阻信号放大、积分电路等对输入阻抗有要求的地方有较大的影响。
输入偏置电流与制造工艺有一定关系,其中双极型工艺(即上述的标准硅工艺)的输入偏置电流在±10nA~1μA之间;采用场效应管做输入级的,输入偏置电流一般低于1nA。
输入失调电流IIO:输入失调电流定义为当运放的输出直流电压为零时,其两输入端偏置电流的差值。
输入失调电流同样反映了运放内部的电路对称性,对称性越好,输入失调电流越小。
输入失调电流是运放的一个十分重要的指标,特别是精密运放或是用于直流放大时。
输入失调电流大约是输入偏置电流的百分之一到十分之一。
输入失调电流对于小信号精密放大或是直流放大有重要影响,特别是运放外部采用较大的电阻(例如10k?或更大时),输入失调电流对精度的影响可能超过输入失调电压对精度的影响。
输入失调电流越小,直流放大时中间零点偏移越小,越容易处理。
所以对于精密运放是一个极为重要的指标。
输入失调电流的温度漂移(简称输入失调电流温漂):输入偏置电流的温度漂移定义为在给定的温度范围内,输入失调电流的变化与温度变化的比值。
这个参数实际是输入失调电流的补充,便于计算在给定的工作范围内,放大电路由于温度变化造成的漂移大小。
输入失调电流温漂一般只是在精密运放参数中给出,而且是在用以直流信号处理或是小信号处理时才需要关注。
差模开环直流电压增益:差模开环直流电压增益定义为当运放工作于线性区时,运放输出电压与差模电压输入电压的比值。
由于差模开环直流电压增益很大,大多数运放的差模开环直流电压增益一般在数万倍或更多,用数值直接表示不方便比较,所以一般采用分贝方式记录和比较。
一般运放的差模开环直流电压增益在80~120dB之间。
实际运放的差模开环电压增益是频率的函数,为了便于比较,一般采用差模开环直流电压增益
共模抑制比:共模抑制比定义为当运放工作于线性区时,运放差模增益与共模增益的比值。
共模抑制比是一个极为重要的指标,它能够抑制差模输入==模干扰信号。
由于共模抑制比很大,大多数运放的共模抑制比一般在数万倍或更多,用数值直接表示不方便比较,所以一般采用分贝方式记录和比较。
一般运放的共模抑制比在80~120dB之间。
电源电压抑制比:电源电压抑制比定义为当运放工作于线性区时,运放输入失调电压随电源电压的变化比值。
电源电压抑制比反映了电源变化对运放输出的影响。
目前电源电压抑制比只能做到80dB左右。
所以用作直流信号处理或是小信号处理模拟放大时,运放的电源需要作认真细致的处理。
当然,共模抑制比高的运放,能够补偿一部分电源电压抑制比,另外在使用双电源供电时,正负电源的电源电压抑制比可能不相同。
输出峰-峰值电压:输出峰-峰值电压定义为,当运放工作于线性区时,在指定的负载下,运放在当前大电源电压供电时,运放能够输出的最大电压幅度。
除低压运放外,一般运放的输出输出峰-峰值电压大于±10V。
一般运放的输出峰-峰值电压不能达到电源电压,这是由于输出级设计造成的,现代部分低压运放的输出级做了特殊处理,使得在10k?负载时,输出峰-峰值电压接近到电源电压的50mV以内,所以称为满幅输出运放,又称为轨到轨(raid-to-raid)运放。
需要注意的是,运放的输出峰-峰值电压与负载有关,负载不同,输出峰-峰值电压也不同;运放的正负输出电压摆幅不一定相同。
对于实际应用,输出峰- 峰值电压越接近电源电压越好,这样可以简化电源设计。
但是现在的满幅输出运放只能工作在低压,而且成本较高。
最大共模输入电压:最大共模输入电压定义为,当运放工作于线性区时,在运放的共模抑制比特性显著变坏时的共模输入电压。
一般定义为当共模抑制比下降6dB 是所对应的共模输入电压作为最大共模输入电压。
最大共模输入电压**了输入信号中的最大共模输入电压范围,在有干扰的情况下,需要在电路设计中注意这个问题。
最大差模输入电压:最大差模输入电压定义为,运放两输入端允许加的最大输入电压差。
当运放两输入端允许加的输入电压差超过最大差模输入电压时,可能造成运放输入级损坏。