中考复习之——与圆有关的计算 优秀教案
- 格式:doc
- 大小:2.60 MB
- 文档页数:9
与圆有关的计算复习教案第一篇:与圆有关的计算复习教案第三十五课时与圆有关的计算复习内容:冀教版数学九年级上册第二十七章复习目标:1.掌握弧长和扇形面积公式,会计算圆的弧长和扇形面积.2.了解圆锥侧面展开图为一个扇形,会计算圆锥的侧面积和全面积.复习重点:圆的弧长和扇形面积的计算.复习难点:有关弧长和扇形面积的综合应用.复习过程:一、复习回顾考点一弧长的有关计算1.(2011.安徽)如图(1)⊙○的半径为1,A、B、C是圆周上三点,∠BAC=36°,则劣弧BC的长是()π234A. B.π C.π D.π5555思考与解答:弧长公式是_________ 考点二扇形面积的计算2.(2010长沙)已知扇形面积为12π,半径等于6,则该扇形的圆心角等于________.3.已知扇形的弧长为4πcm,半径为3cm,则扇形面积为__________cm2.思考与解答:扇形面积计算公式是__________________ 考点三计算圆锥的侧面积和全面积4.(2011同仁)某盏路灯照射的空间可以看成如图所示的圆锥,它2的高AO=8m,底面半径OB=6m,则圆锥的侧面积是________m.思考与解答:(1)圆锥侧面展开图是一个____形,它的弧长等于圆锥的_________,它的半径长等于圆锥的_________.(2)已知圆锥的底面半径为r,母线为a,则圆锥侧面积是_________,表面积是_________.二探究总结5.如图所示,这是一个零件示意图,A、B、C处都是直角,弧MN是圆心角为90°的弧,AB=BC=7,AM=CN=3,则A.π B.32的长是()π C.2π D.4π6.(2012内江)如图AB是εo的直径,弦CD⊥AB,∠CDB=30°,CD=23,则阴影部分图形的面积为()A.4πB.2πC.πD.4π3思考与解答:解决这道题利用了我们复习过的哪些知识?三拓展提高7.如图是一个用来盛爆米花的圆锥形纸杯,纸杯口圆的直径EF长为10cm,母线OE(OF)长为10cm.在母线OF上的点A处有一块爆米花残渣,且FA=2cm,一只蚂蚁从杯口的点E处沿圆锥表面爬行到A 点,则此蚂蚁爬行的最短路程为________cm.思考与解答:解决这个曲面上的最短路程问题你是怎么想的?8.(2011山西)如图,△ABC是等腰直角三角形,∠ACB=90°,AC =BC.把△ABC绕点A按顺时针方向旋转45°后得到△AB′C′,若AB=2,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是________.(结果保留π)思考与解答:(1)解决问题的关键是知道图形旋转时,图形上各点经过的路线是___________,要明确它的圆心、半径以及圆心角.(2)求不规则图形面积的方法是什么?四反思评价(一)反思(1)你认为这节课重点要掌握哪些知识?请写出来(2)你在哪些方面有所提高?(二)自测9.已知扇形的圆心角是150°,扇形的面积为240π,则该扇形的弧长为()A.5πB.10π C.20π D.40π10.线段AB与⊙O相切于点C,连结OA、OB,OB交⊙O 于点D,已知OA=OB=6cm,AB=63 cm,求:(1)⊙O的半径(2)图中阴影部分的面积.11.(2012广安)如图,Rt△ABC的边BC位于直线MN上,AC=,∠ACB=90°,∠A=30°.若Rt△ABC由现在的位置向右无滑动地旋转,当点A第3次落在直线MN上时,点A所经过的路线的长为_______(结果用含有π的式子表示)第三十五课时答案1.B2.120°3.6π4.60π5.C6.D7.解析:求在曲面上的最短距离需要转化为平面上两点之间的距离.如图6-3-6所示,将圆锥的侧面展开,连接AE,AE即为蚂蚁爬行的最短路线.再借助于△AOE计算AE之长:AE=OE2+OA2=2418.π4 9.C 10.(1)如图所示,连结OC,∵AB与⊙O相切于点C ∴ OC⊥AB,∵OA=OB,∴AC=BC=12AB=122×63=33 c m.-AC2在Rt△AOC中,OC=OA3cm.(2)在Rt△COB中∵OC==3cm.∴⊙O的半径为12OB,∴∠B=30°,∠COD=60°.2∴扇形OCD的面积为60π⋅3360=32πS⊿OBC=12OC⋅BC=12⨯3⨯33=932 ∴阴影部分的面积为93-3π2cm211.解:∵Rt△ABC中,AC=,∠ACB=90°,∠A=30°,∴BC=1,AB=2BC=2,∠ABC=60°;∵Rt△ABC在直线MN上无滑动的翻转,且点A第3次落在直线MN上时,有3个的长,2个的长,∴点A经过的路线长=×3+)π.×2=(4+)π.故答案为:(4+第二篇:圆的整理与复习教案课题:第四单元圆整理和复习课型:复习学习目标:进一步的理解圆各部分的名称及特征,理解周长和面积的区别。
《圆的整理与复习》教学设计【优秀5篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!《圆的整理与复习》教学设计【优秀5篇】作为一无名无私奉献的教育工作者,编写教案是必不可少的,借助教案可以让教学工作更科学化。
一、课题:中考复习之——与圆有关的计算二、学习目标:知识与能力:了解正多边形的概念及正多边形和圆的关系;会计算圆的弧长及扇形面积过程与方法:1、指导学生经历观察、猜想、验证、计算,归纳平移、旋转、轴对称、割补、等积变换等方法,掌握平行线、三角形、圆的有关性质定理的运用;2、鼓励学生在认真观察之后进行小组讨论,交流解题方法,探索最优解题途径;3、引导学生利用知识把复杂图形转化成简单几何图形进行求解,掌握转化的思想.情感态度与价值观:培养学生计算认真、细致、耐心的良好品质。
通过自主编题,激发学生学习热情和求知欲望,在探究过程中体会到成功的喜悦和学习的快乐,通过合作交流,培养学生的团队精神。
三、重点、难点:重点:与圆有关的面积计算难点:灵活运用转化思想,将复杂问题(图形)转化为简单问题(图形),提高求综合图形面积的计算能力四、学法、教法:学法:熟练运用公式进行正多边形、弧长、扇形面积的计算;学会运用转化的数学思想探究问题的本质,寻求到解决问题的最优方法。
教法:采用启发式教学,从学生原有知识出发,充分发挥学生的主体作用。
同时注重知识间的联系,类比迁移。
重视分层,使不同层次的学生让学生在主动中学数学、用数学,领悟数学的基本思想方法。
五、教学过程图1 图2 图3②在图2中画出上述的角和线段。
③就这三个图你能否尝试编一道、知识点二:弧长及扇形面积公1,圆内接正六边形、从图中找出一段弧________、一个扇形______________图1 图2 图3你能否计算出你找的弧长,扇形的面积?并思考是否有更简单的图1 图2 图3图4 图5课件准备:C 3πD 9π2图1 图22、如图2,ABCD⊥AB,∠CDB23,则阴影部分的面积为___________★★智力冲浪六、评价分析:为了达到最佳教学效果,在课堂教学中,一方面根据课堂上学生的态度、表情而做出即时性评价。
在评价时,坚持“积极评价”的原则,采用“激励”机制,始终运用以下三种“激励”方法:①预先性激励(期待性激励);②及时性激励;③总结性激励。
第23讲与圆有关的计算一、教学目标: 1、理解并掌握正多边形与圆、扇形的弧长和扇形的面积、圆锥的侧面积的有关计算,并能解决相关实际问题。
2、灵活运用公式进行与圆有关的计算,提高分析问题、解决问题的能力;3、在合作学习中增进师生间的交流,关注学困生的学习,使学生感受成功的喜悦。
二、教学重难点:1、灵活运用公式进行与圆有关的计算。
2、灵活运用公式的互化、准确计算是重点,也是难点。
三、教学用具:PP、三角板、彩色粉笔四、学情分析:学生已经具备一定的逻辑分析和计算能力,教学中注重分析计算的合理性和常规解法,教学中要注重培养学生分析的方法和思维的严谨性以及计算的准确性。
五、教学方法:讨论、交流、讲练结合法。
六、教学资源:教学设计、教材、复习练习册七、教学过程:(一)正多边形和圆的有关计算2、填表3、要用圆形铁片截出边长为4cm的正方形铁片,则选用的圆形铁片的直径最小要____cm.2=360n r S π扇形34、如图,四边形ABCD 是⊙O 的内接正方形,若正方形的面积等于4,求⊙O 的面积. 5、如图,M,N 分别是☉O 内接正多边形AB,BC 上的点,且BM=CN . (1)求图①中∠MON=_______;图②中∠MON = ; 图③中∠MON = ;(2)试探究∠MON 的度数与正n 边形的边数n 的(二)、扇形的弧长和扇形的面积公式直接应用:1、已知弧所对的圆心角为60°,半径是4,则弧长为____. 2、已知半径为2cm 的扇形,其弧长为43π ,则这个扇形的面积S 扇=3、已知扇形的圆心角为120°,半径为2,则这个扇形的面积S 扇= .4、已知弧所对的圆周角为90°,半径是4,则弧长为5、如图,☉A 、☉B 、 ☉C 、 ☉D 两两不相交,且半径都是2cm ,则图中阴影部分的面积是5、如图,Rt △ABC 中,∠C =90°, ∠A =30°,BC =2,O 、H 分别为AB 、AC 的中点,将△ABC 顺时针旋转120°到△A 1BC 1的位置,则整个旋转过程中线段OH 所扫过的面积为多少?6、如图,Rt △ABC 的边BC 位于直线l 上,AC , ∠ACB =90°,∠A =30°.若Rt △ABC由现在的位置向右无滑动地翻转,当点A 第3次落在直线l 上时,点A 所经过的路线的长为________(结果用含π的式子表示)2360180n n Rl R ==ππ2=+=S S r rlππ+侧全底 S(三)圆锥的侧面积和全面积1、已知一个圆锥的底面半径为12cm ,母线长为20cm ,则这个圆锥的侧面积为 ,全面积为 .2、一个圆锥的侧面展开图是一个圆心角为120°、弧长为20 的扇形,试求该圆锥底面的半径及它的母线的长.3、 如图,圆锥形的烟囱帽,它的底面直径为80cm,母线为50cm.在一块大铁皮上裁剪时,如何画出这个烟囱帽的侧面展开图?求出该侧面展开图的面积.(思政元素:体会生活中的数学,数学源于生活,又服务于生活,用数学眼光发现生活中的数学)(六)课堂小结:总结本课知识点和常规解法指导。
第七单元圆第30课时与圆有关的计算教学目标【考试目标】1.弧长及扇形面积的计算2.正多边形的概念3.正多边形与圆的关系【教学重点】1.掌握正多边形与圆之间的关系2.学会弧长公式与扇形面积的计算3.掌握圆锥侧面积与全面积的计算教学过程一、体系图引入,引发思考二、引入真题、归纳考点【例1】(2016年威海)如图,正方形ABCD内接于⊙O,其边长为4,则⊙O的内接正三角形EFG的边长为 . 【解析】连接AC、OE、OF,作OM⊥EF于M,∵四边形ABCD 是正方形, ∴AB=BC=4,∠ABC=90°,∴AC 是直径,AC=4 ,∴OE=OF=2 ,∵OM ⊥EF , ∴EM=MF ,∵△EFG 是等边三角形, ∴∠GEF=60°, 在RT △OME 中,∵OE=2 ,∠OEM=0.5∠CEF=30°,∴OM= ,EM= , ∴EF= . 故答案为 .【例2】如图,□ 在ABCD 中,AB 为⊙O 的直径,⊙O 与DC 相切于 点E ,与AD 相交于点F ,已知AB=12,∠C=60°,则FE 的长为(C )【解析】连接OE 、OF ,由切线和平行线的性质可知∠A OE=90°.∵四边形ABCD 是平行四边形,∴∠A=∠C=60°,∴△AOF 是等边三角形,∴∠EOF=90°-60°=30°,OF=OA=0.5AB=6.由弧长公式,得l FE = =π.【例3】(2016年宁波)如图,圆锥的底面半径r 为6cm ,高h 为8cm , 则圆锥的侧面积为 (C )A.30π cm 2B.48π cm 2C.60π cm 2D.80π cm 2【解析】圆锥的母线长为: =10(cm),圆锥的底面圆周长为 2×π×r=12π(cm).圆锥的侧面展开图是扇形,根据扇形面积公式可 得S=0.5×12π×10=60π(cm 2).三、师生互动,总结知识2626306180π⨯22268+2226先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充. 课后作业布置作业:同步导练教学反思学生对圆的有关计算的掌握情况很好,望多加复习巩固,做到熟练会用.。
圆的有关计算复习【课标要求】掌握圆的周长、弧长、面积、扇形面积公式,并会应用,同时,会进行有关圆的周长、弧长、圆的面积、扇形面积及组合图形的周长和面积的计算 【复习目标】1,能用垂径定理、圆心角、弧、弦之间关系定理,圆周角定理及推论,弧长公式、扇形的面积公式及正多边形与圆的关系等进行简单的运算。
2,会用折叠、旋转、圆的对称性及分类讨论的思想方法,将有关弦长、半径的实际计算问题转化成解直角三角形问题解决。
【知识梳理】:考点导航1. 圆的周长为 ,1°的圆心角所对的弧长为 ,n °的圆心角所对 的弧长为 ,弧长公式为 .2. 圆的面积为 ,1°的圆心角所在的扇形面积为 ,n °的圆心角所在的扇形面积为S= 2R π⨯ = = .3. 圆柱的侧面积公式:S=2rl π.(其中r 为 的半径,l 为 的高)4. 圆锥的侧面积公式:S=rl π.(其中r 为 的半径,l 为 的长)5. 扇形面积公式:(1)n °圆心角的扇形面积是S 扇形=______;(2)弧长为L 的扇形面积是S 扇形=_____. 考点点拨1.灵活求解圆周长、弧长以及圆、扇形、弓形和简单的组合图形的面积.•其中求组合图形和不规则图形的周长和面积是本节的难点.2.能进行圆柱、圆锥的侧面积、全面积的计算,了解它们的侧面展开图,•这也是本节的重点和中考热点.3. 本节出现的面积的计算往往是不规则图形,不易直接求出,•所以要将其转化为与其面积相等的规则图形,等积转化的一般方法是:(1)利用平移、•旋转或轴对称等图形变换进行转化;(2)•根据同底(等底)同高(等高)的三角形的面积相等进行转化;(3)利用几个规则图形的面积和或差求不规则图形的面积.4. 圆中的计算问题多以选择题、填空题的形式出现,通过作图、识图、•阅读图形,探索弧长、扇形及其组合图形的面积计算方法和解题规律,正确区分圆锥及侧面展开图中各元素的关系是解决本节问题的关键.【考题研究】例1 (2003·连云港)如图,一块边长为8cm 的正方形木板ABCD,在水平桌面上绕点A 按逆时针方向旋转至A ′B ′C ′D ′的位置,则顶点C •从开始到结束所经过的路径长为( )A.16cm C.8πcm πcm解析:在旋转过程中,AC 的长度不变,所以顶点C 从开始到结束所经过的路径长,•是以A 为圆心,AC 长为半D(B')A(A')D'C'CB径的90°的弧长90180π⋅⋅.例2(2011年湖北襄樊)如图,在Rt ABC△中,9042C A C B C===∠°,,,分别以AC.BC为直径画半圆,则图中阴影部分的面积为.(结果保留π)【解析】本题考查直角三角形,扇形面积,由图可知阴影部分的面积=半圆AC的面积+半圆BC的面积-Rt ABC△的面积【中考链接】CAB7.如图,在正方形铁皮上剪下一个圆形和扇形,使之恰好围成一个圆锥模型,若已知正方形的边长为2,求小圆和扇形的半径。
初三圆的复习教案教案标题:初三圆的复习教案教学目标:1. 学生能够理解圆的概念,并能正确使用圆的术语。
2. 学生能够计算圆的周长和面积。
3. 学生能够应用圆的相关概念解决实际问题。
4. 学生能够发展对圆形图形的观察和推理能力。
教学准备:1. 教学PPT或白板。
2. 圆规、直尺和铅笔。
3. 纸板或绘图纸。
4. 练习题和答案。
教学过程:Step 1: 引入1. 在白板上画一个圆形,引导学生回顾圆的定义,并解释相关术语(圆心、半径、直径、弧、弦、切线等)。
2. 提问学生有关圆的特征和性质,激发他们对圆更深入的思考。
Step 2: 计算圆的周长和面积1. 提醒学生关于计算周长和面积的公式(周长=2πr,面积=πr²)。
2. 通过示范,解释如何根据给定的半径或直径计算圆的周长和面积。
3. 给学生一些练习题,让他们独立计算圆的周长和面积,并检查答案。
Step 3: 圆的相关问题1. 提供一些实际问题,要求学生应用所学知识解决。
例如:一个花坛的形状是一个半径为4米的圆,求花坛周围的围墙长度和花坛的面积分别是多少?2. 引导学生思考解决问题的方法,并鼓励他们用图画或数学计算来解决。
Step 4: 圆形图形观察和推理1. 准备一些不同大小和位置的圆形图形,让学生观察并描述它们的特征和相似之处。
2. 引导学生思考圆形图形的一些共同特点,并鼓励他们提出自己的观察和推理。
例如:如何通过测量圆的直径来判断两个圆是否相等?3. 给学生几个挑战性的问题,鼓励他们思考并解决。
Step 5: 小结和反思1. 总结圆的相关概念和计算方法。
2. 要求学生回顾整个课堂内容,自我评价学习效果。
3. 鼓励学生思考如何将所学知识应用到实际生活中。
教学扩展:1. 鼓励学生自行寻找更多关于圆的实际问题并解决。
2. 设计一些有趣的游戏或活动,帮助学生巩固对圆的概念的理解。
教学评估:1. 在课堂上观察学生的参与度和对圆概念的理解程度。
2. 分发练习题和挑战性问题,检查学生对圆的计算和应用能力。
初中与圆有关的计算教案一、教学目标:1. 让学生掌握圆的周长和面积的计算公式。
2. 培养学生运用圆的周长和面积公式解决实际问题的能力。
3. 培养学生对数学的兴趣,提高学生的数学素养。
二、教学内容:1. 圆的周长公式:C = 2πr2. 圆的面积公式:S = πr²三、教学重点与难点:1. 圆的周长公式的推导和应用。
2. 圆的面积公式的推导和应用。
四、教学过程:1. 导入:利用实物或图片展示,引导学生观察生活中与圆相关的实例,如车轮、圆桌等,引发学生对圆的周长和面积的思考。
2. 新课讲解:a. 圆的周长讲解圆的周长概念,引导学生理解圆的周长与半径的关系,推导出圆的周长公式C = 2πr。
b. 圆的面积讲解圆的面积概念,引导学生理解圆的面积与半径的关系,推导出圆的面积公式S = πr²。
3. 例题讲解:讲解典型例题,让学生理解并掌握圆的周长和面积的计算方法。
4. 课堂练习:布置练习题,让学生巩固所学知识,提高解题能力。
5. 拓展与应用:引导学生运用圆的周长和面积公式解决实际问题,如计算圆形花坛的周长和面积、计算圆桌的直径等。
6. 总结与反思:对本节课的内容进行总结,强调圆的周长和面积公式的运用,鼓励学生在日常生活中发现和解决与圆相关的问题。
五、教学评价:1. 课堂讲解:关注学生的学习状态,及时调整教学节奏和方法。
2. 课堂练习:检查学生的解题正确率和解答过程,了解学生对知识的掌握程度。
3. 拓展与应用:评价学生解决实际问题的能力,鼓励创新和发散思维。
六、教学反思:根据学生的反馈和教学效果,调整教学策略,提高教学质量,使学生更好地理解和掌握圆的周长和面积的计算方法。
中考数学复习圆专题复习授课设计【授课笔录】一、与圆有关的计算问题(重点)1、扇形面积的计算Sn R 21lR 扇形: 扇形面积公式360 2n :圆心角R :扇形对应的圆的半径:扇形弧长S :扇形面积圆锥侧面张开图:(1)S 表S侧S底=Rrr 2V1r 2h( 2)圆锥的体积:3n R 2、弧长的计算: 弧长公式l180 ;3、角度的计算二、圆的基本性质(重点)1、切线的性质: 圆的切线垂直于经过切点的半径.2、圆周角定理: 一条弧所对圆周角等于它所对圆心角的一半;推论:( 1)在同圆或等圆中,同弧或等弧所对的圆周角相等;( 2)相等的圆周角所对的弧也相等。
( 3)半圆(直径)所对的圆周角是直角。
( 4) 90°的圆周角所对的弦是直径。
注意:在圆中,同一条弦所对的圆周角有无数个。
3、垂径定理定理: 垂直于弦的直径均分这条弦 ,并且均分这条弦所对的两段弧推论: ( 1)均分弦 (不是直径 )的直径垂直与这条弦 ,并且均分这条弦所对的两段弧( 2)弦的垂直均分线经过圆心 ,并且均分这条弦所对的弧( 3)均分弦所对的一条弧的直径垂直均分这条弦,并且均分这条弦所对的另一条弧( 4)在同圆也许等圆中 ,两条平行弦所夹的弧相等三、圆与函数图象的综合一、与圆有关的计算问题【例 1 】( 2016 ?资阳) 在 Rt △ ABC 中,∠ ACB=90°, AC=2 ,以点 B 为圆心, BC 的长为半径作弧,交 AB 于点 D ,若点 D 为 AB 的中点,则阴影部分的面积是()A . 2 ﹣ πB . 4 ﹣πC . 2 ﹣ πD . Sn R 2 1lR π3602【解答】 解:∵ D 为 AB 的中点,∴BC=BD=S n R 21lR AB ,∴∠ A=30° ,∠ B=60°.∵ AC360 2n R 21=2SlR3602 ,∴ BC=ACSn R 21lR 21lR =2 ,∴ S 阴影 =S △ AB C ﹣ S 扇形 CB D =?tan30 °=2360 2 ? S nR36022Sn R 2 12n R 21S n R360lRnR1lR =2SlR1lR ×22×2﹣S3602 ﹣ π.360 23602应选 A .【例 2 】( 2014 ?资阳) 如图,扇形 AOB 中,半径 OA=2 ,∠ AOB=120° , C 是 的中点,连接 AC 、BC ,则图中阴影部分面积是()A . ﹣2B .Sn R 21lR ﹣2C .﹣D .﹣360 2解答: 连接 OC ,∵∠ AOB=120° , C 为弧 AB 中点,∴∠ AOC= ∠ BOC=60° ,∵ OA=OC=OB=2 ,∴ △AOC 、 △BOC 是等边三角形,∴ AC=BC=OA=2 ,21lR =Sn R 21 l R, △ BOC 边BC∴ △AOC 的边 AC 上的高是Sn R 36023602Sn R 21lR 上的高为360 2 ,2/21n R 21n R 2Sn R 21 lRn R 21∴阴影部分的面积是 SlR ﹣ S3602 lR ﹣ 1lR ×2×+ S360 2 36023602S n R2 S n R 21lR2 Sn R 21lR1lR ×2×3602 = Sn R1lR π﹣23602 ,应选 A .360 2360 2【例 3】( 2013?资阳) 钟面上的分针的长为 1,从 9点到 9点 30分,分针在钟面上扫过的面积是( )A2B21lR πC21lR πD π.Sn R 1lR π. S n R. S n R.360 2360 2360 2解答 从 9点到 9点 30分分针扫过的扇形的圆心角是180°,:Sn R 21lR = π.应选: A .则分针在钟面上扫过的面积是:3602【例 4】( 2015 成都) 如图,正六边形 ABCDEF 内接于⊙ O ,半径为 4,则这个正六边形的边心距OM 和 BC 弧线的长分别为( )A . 2,B . ,C . ,D . ,【课后练习】1、(2015 南充) 如图, PA 和 PB 是⊙ O 的切线,点 A 和 B 的切点, AC 是⊙ O 的直径,已知∠ P=40°,则∠ ACB 的大小是(B )A .40°B . 60°C . 70°D .80°2、(2015 达州) 如图,直径 AB 为 12 的半圆,绕 A 点逆时针旋转 60°,此时点 B 旋转到点 B ′,则图中阴影部分的面积是(B )A . 12πB . 24πC . 6πD . 36π3/213、(2015 内江)如图,在⊙ O 的内接四边形ABCD 中, AB 是直径,∠ BCD =120 °,过 D 点的切线PD 与直线 AB 交于点 P,则∠ ADP 的度数为()A . 40°B. 35°C. 30° D . 45°剖析:连接BD ,∵∠DAB=180°-∠C=50°,AB 是直径,∴∠ ADB =90°,∠ ABD =90°-∠ DAB=40°,∵ PD 是切线,∴∠ ADP =∠ B=40°.应选 A .4、( 2015 自贡)如图, AB 是⊙ O的直径,弦CD⊥ AB,∠ CDB= 30°, CD=,则阴影部分的面积为A. 2πB.πC.D.剖析:∠ BOD= 60°5、(2015凉山州)如图,△ ABC 内接于⊙ O,∠ OBC=40 °,则∠A 的度数为()A . 80° B. 100° C. 110° D . 130°6、(2015凉山州)将圆心角为90°,面积为 4πcm 2的扇形围成一个圆锥的侧面,则所围成的圆锥的底面半径()A . 1cmB . 2cm C. 3cm D . 4cm7、(2015泸州)如图, PA、 PB 分别与⊙ O 相切于 A、B 两点,若∠ C=65°,则∠ P 的度数为()A.65°B. 130°C.50°D. 100°8、( 2015 眉山)如图,⊙ O 是△ ABC 的外接圆,∠ ACO=450,则∠ B 的度数为()A. 300B. 350C. 400 D 4509、(2015 巴中) 如图,在⊙ O 中,弦 AC ∥半径 OB ,∠ BOC=50°,则∠ OAB 的度数为()A .25°B . 50°C . 60°D .30°10 、( 2015 攀枝花) 如图,已知⊙ O 的一条直径 AB 与弦 CD 订交于点 E ,且 AC=2, AE= , CE=1,则图中阴影部分的面积为() A .B .C .D .11 、( 2015 甘孜州) 如图,已知扇形 AOB 的半径为 2,圆心角为 90°,连接 AB ,则图中阴影部分的面积 是 ()A . π﹣ 2B . π﹣ 4C .4π﹣ 2D . 4π﹣ 412 、( 2015 达州) 已知正六边形 ABCDEF 的边心距为 cm ,则正六边形的半径为 cm .13 、( 2015 自贡) 如图,已知 AB 是⊙ O 的一条直径,延长 AB 至 C 点,使 AC=3BC , CD 与⊙ O 相切于 D 点.若 CD = ,则劣弧 AD 的长为.14、( 2015 遂宁) 在半径为 5cm 的⊙ O 中, 45°的圆心角所对的弧长为cm .15、( 2015 宜宾) 如图, AB 为⊙ O 的直径,延长 AB 至点 D ,使 BD =OB , DC 切⊙ O 于点 C ,点 B 是Sn R 2 1 lR3602的中点,弦 CF 交 AB 于点 E . 若⊙ O 的半径为 2,则 CF = .16 、( 2015 泸州) 用一个圆心角为 120°,半径为 6 的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径是.17 、( 2015 眉山) 已知⊙ O 的内接正六边形周长为 12cm ,则这个圆的半经是_________cm .18 、( 2015 广安) 如图, A . B .C 三点在⊙ O 上,且∠ AOB =70°,则∠ C=度.19 、24. ( 2015 巴中) 圆心角为 60°,半径为 4cm 的扇形的弧长为cm .20 、( 2015 甘孜州) 如图, AB 是⊙ O 的直径,弦 CD 垂直均分半径 OA ,则∠ ABC 的大小为 度.二、圆的基本性质【例 1 】( 2016 ?资阳) 如图,在⊙O 中,点 C 是直径 AB 延长线上一点,过点 C 作⊙ O 的切线,切点为 D ,连接 BD .( 1 )求证:∠ A= ∠ BDC ;( 2 )若 CM 均分∠ ACD ,且分别交 AD 、 BD 于点 M 、 N ,当 DM=1 时,求 MN 的长.【解答】解:(1)如图,连接OD ,∵ AB 为⊙ O 的直径,∴∠ADB=90°,即∠ A+∠ ABD=90°,又∵ CD 与⊙ O 相切于点 D ,∴∠ CDB+ ∠ ODB=90°,∵OD=OB ,∴∠ ABD= ∠ ODB ,∴∠ A= ∠ BDC ;( 2 )∵ CM 均分∠ ACD ,∴∠ DCM= ∠ ACM ,又∵∠ A= ∠ BDC ,∴∠ A+ ∠ ACM= ∠ BDC+ ∠ DCM ,即∠ DMN=∠ DNM,∵∠ ADB=90°,D M=1 ,∴ DN=DM=1,∴ MN==.【例 2】( 2015 ?资阳)如图 11,在△ABC中, BC是以 AB为直径的⊙ O的切线,且⊙ O与AC订交于点 D , E 为 BC的中点,连接 DE .(1)求证: DE 是⊙ O的切线;(2)连接 AE,若∠ C=45°,求 sin∠ CAE的值 .解答:解:( 1)连接 OD, BD ,∴ OD=OB ∴∠ ODB= ∠OBD .∵AB 是直径,∴∠ ADB=90°,∴∠ CDB=90° .∵E为 BC 的中点,∴ DE=BE ,∴∠ EDB= ∠EBD ,∴∠ ODB+ ∠EDB= ∠ OBD+ ∠EBD ,即∠ EDO= ∠ EBO .∵BC是以 AB 为直径的⊙ O的切线,∴ AB ⊥ BC ,∴∠ EBO=90°,∴∠ODE=90°,∴ DE是⊙ O的切线;( 2)作 EF⊥ CD 于 F,设 EF=x∵∠ C=45°,∴ △CEF、△ ABC 都是等腰直角三角形,∴CF=EF=x ,∴ BE=CE= x,∴ AB=BC=2 x,在 RT △ABE 中, AE= = x,∴ sin∠ CAE= =.【例 3 】( 2014 ?资阳)如图, AB 是⊙ O的直径,过点 A 作⊙ O的切线并在其上取一点C,连接 OC交⊙ O 于点 D , BD 的延长线交 AC 于 E,连接 AD .( 1)求证:△CDE ∽ △CAD ;( 2)若 AB=2 , AC=2,求AE的长.解答:(1)证明:∵ AB是⊙ O的直径,∴∠ ADB=90° ,∴∠ B+∠BAD=90° ,∵AC 为⊙ O的切线,∴ BA ⊥ AC ,∴∠ BAC=90°,即∠ BAD+ ∠DAE=90°,∴∠ B= ∠ CAD ,∵OB=OD ,∴∠ B=∠ ODB ,而∠ ODB= ∠ CDE ,∴∠ B= ∠ CDE ,∴∠ CAD= ∠ CDE,而∠ ECD= ∠ DCA ,∴△ CDE ∽ △CAD ;( 2)解:∵ AB=2 ,∴ OA=1 ,在 Rt△AOC 中, AC=2S n R21lR n R21360 2 ,∴OC=S360lR=3,∴ CD=OC ﹣ OD=3 ﹣ 1=2 ,2∵ △CDE ∽ △CAD ,∴S n R21lR = S n R21lR ,即 S n R21lR = S n R21lR3602360236023602 n R21S lR,∴ CE=3602.【例 4】( 2013?资阳)在⊙ O中, AB 为直径,点 C为圆上一点,将劣弧沿弦AC 翻折交 AB 于点 D,连接 CD .(1)如图 1,若点 D与圆心 O重合, AC=2 ,求⊙ O的半径 r;(2)如图 2,若点 D与圆心 O不重合,∠ BAC=25°,请直接写出∠ DCA 的度数.解答 ( 1)如图,过点 O 作 OE ⊥ AC 于 E ,则 AE= Sn R 21lR AC= S n R 21lR ×2=1 ,:3602 3602∵翻折后点 D 与圆心 O 重合,∴ OE=n R 2 1SlR r ,3602在 Rt △AOE 中, AO 2=AE 2+OE 2,即 r 2=12+(S n R 21lR r ) 2,解得 r=360 2 S n R 2 1lR ; 3602( 2)连接 BC ,∵ AB 是直径,∴∠ ACB=90° ,∵∠ BAC=25° ,∴∠ B=90°﹣∠ BAC=90° ﹣25°=65°,Sn R 2 1 lRSn R 2 1 lR依照翻折的性质,360 2 所对的圆周角等于3602所对的圆周角,∴∠ DCA= ∠B ﹣∠ A=65°﹣ 25°=40°.【课后练习】1、(2015 达州) 如图, AB 为半圆 O 的在直径, AD 、 BC 分别切⊙ O 于 A 、 B 两点, CD 切⊙ O 于点 E ,连接 OD 、 OC ,以下结论:①∠ DOC =90°,② AD +BC=CD ,③ Sn R 2 1Sn R 21lR3602lR,④ OD : OC=DE :EC ,⑤360 2 ,正确的有()A .2 个B .3 个C .4 个D .5个剖析: 如图,连接 OE ,∵AD 与圆 O 相切, DC 与圆 O 相切, BC 与圆 O 相切,∴∠DAO= ∠DEO= ∠OBC=90 °,∴DA=DE , CE=CB , AD ∥BC 。
一、课题:中考复习之——与圆有关的计算
二、学习目标:
知识与能力:了解正多边形的概念及正多边形和圆的关系;会计算圆的弧长及扇形面积
过程与方法:1、指导学生经历观察、猜想、验证、计算,归纳平移、旋转、轴对称、割补、等积变换等方法,掌握平行线、三角形、圆的有关性质定理的运用;
2、鼓励学生在认真观察之后进行小组讨论,交流解题方法,探索最优解题途径;
3、引导学生利用知识把复杂图形转化成简单几何图形进行求解,掌握转化的思想.
情感态度与价值观:培养学生计算认真、细致、耐心的良好品质。
通过自主编题,激发学生学习热情和求知欲望,在探究过程中体会到成功的喜悦和学习的快乐,通过合作交流,培养学生的团队精神。
三、重点、难点:
重点:与圆有关的面积计算
难点:灵活运用转化思想,将复杂问题(图形)转化为简单问题(图形),提高求综合图形面积的计算能力
四、学法、教法:
学法:熟练运用公式进行正多边形、弧长、扇形面积的计算;学会运用转化的数学思想探究问题的本质,寻求到解决问题的最优方法。
教法:采用启发式教学,从学生原有知识出发,充分发挥学生的主体作用。
同时注重知识间的联系,类比迁移。
重视分层,使不同层次的学生让学生在主动中学数学、用数学,领悟数学的基本思想方法。
五、教学过程
图1 图2 图3
②在图2中画出上述的角和线段。
③就这三个图你能否尝试编一道
、知识点二:弧长及扇形面积公
1,圆内接正六边形
、从图中找出一段弧________
、一个扇形______________
图1 图2 图3
你能否计算出你找的弧长,扇形的面积?并思考是否有更简单的
图1 图2 图3
图4 图5
课件准备:
C 3π
D 9π
2
图1 图2
2、如图2,AB
CD⊥AB,∠CDB
23,则阴影部分的面积为___________
★★智力冲浪
六、评价分析:
为了达到最佳教学效果,在课堂教学中,一方面根据课堂上学生的态度、表情而做出即时性评价。
在评价时,坚持“积极评价”的原则,采用“激励”机制,始终运用以下三种“激励”方法:①预先性激励(期待性激励);②及时性激励;③总结性激励。
一方面,利用课堂练习反馈表现,充分发挥反馈结果的潜在功能(评价功能、调控功能、教育功能),灵活安排教学细节,从而达到教学的预期效果。
平日教学中,始终采用小组量化评比机制,学生每一次的精彩发言、板前讲解、作业完成、课堂表现等等,课代表都会自动的给予相应的分值,两个星期一总结,给予精神和物质上的奖励。