高观点下的中学数学,作业一
- 格式:docx
- 大小:201.73 KB
- 文档页数:4
“高观点”下的中学数学的实践与认识一、本文概述《“高观点”下的中学数学的实践与认识》是一篇旨在探讨如何在中学数学教育中融入高观点教学理念的文章。
文章首先介绍了“高观点”教学理念的定义和内涵,指出这种教学理念对于提升学生数学素养、培养学生的创新能力和解决问题的能力具有重要意义。
接着,文章分析了当前中学数学教育面临的挑战,如教学内容单教学方法陈旧、学生缺乏实践机会等问题,并提出了在“高观点”下解决这些问题的策略和方法。
文章强调,中学数学教育的目标不仅仅是传授知识,更重要的是培养学生的数学思维和解决问题的能力。
因此,文章提倡将高观点教学理念引入到中学数学教学中,通过引导学生从更高的层次和更广阔的视角去理解和应用数学知识,提升学生的数学素养和创新能力。
文章还指出,实现这一目标需要教师不断更新教育观念,改进教学方法,为学生提供更多的实践机会和探究空间。
在文章的结构上,本文先对“高观点”教学理念进行阐述,然后分析当前中学数学教育的问题和挑战,接着提出在“高观点”下解决这些问题的策略和方法,最后对实施这些策略和方法可能遇到的困难和挑战进行讨论和展望。
通过这篇文章,我们希望能够引起广大中学数学教师和教育管理者的关注,共同推动中学数学教育的发展和进步。
二、“高观点”下的中学数学教学实践“高观点”下的中学数学教学,不仅要求教师对数学知识有深入的理解和掌握,还需要他们具备从更高层次、更宽广的视角去看待和教授数学知识的能力。
这种教学方法的实践,能够帮助学生更好地理解和掌握数学知识,提高他们的数学素养和解决问题的能力。
将高等数学的知识和思维方法引入中学数学教学。
高等数学的知识和思维方法往往具有更高的抽象性和普适性,能够帮助学生更好地理解和掌握中学数学知识。
例如,在中学数学中引入微积分、线性代数等高等数学的知识,可以帮助学生更好地理解函数的性质、变量的变化等概念。
注重数学知识的应用和问题解决。
数学是一门应用广泛的学科,将数学知识应用到实际问题中,能够帮助学生更好地理解数学的应用价值,提高他们的数学素养和解决问题的能力。
高观点下的中学数学高观点下的的初等数学,这一重要思想发端于19世纪末,20世纪初的一场教育教学改革运动—克莱因·贝利运动.其中菲利克斯·克莱因不仅是一位伟大的数学家,也是现代国际数学教育的奠基人.他主张在现代数学观点指导下研究“高数”与“中数”之间的联系,高等数学中有许多方法,可以和中学数学相通,有些也可以迁移到中学数学中,高等数学的方法不仅可以使我们居高临下地观察初等数学问题,帮助我们确定解题思路,有时还能帮助我们发现某些初等问题的实质,寻求更一般、更简捷的解决问题的方法.(一)高观点下研究中学数学的必要性新一轮课程改革无论是从形式上还是从内容上,都对中学数学提出了许多新的课题,从内容上高等数学内容不断地下放到中学,从形式上,更强调教学活动的设计、开放性的教学和研究性的学习,更关注培养学生解决问题、分析问题的能力,以及所教知识的来龙去脉,这就使得高观点下研究中学数学,不仅是教学改革的迫切任务,也是新课改形势下中学数学教学改革的一个主流方向.具体表现为(1) 教学过程中,创设问题情境的需要. ◆例1:等差数列求和10012310010150S =++++=⨯L(1)(1)2123112(1)22n n n n n n S n n n n n ⎧+⎪+⎪=++++==⎨-+⎪++⎪⎩L 为奇数为奇数2(1)n S n n =+从高斯求和开始,再到一般等差数列的求和,从问题所呈现形式出发,引导学生积极思考倒写相加法是如何想到的,还原问题发生发展的过程。
把知识变得有血有肉,从而激发学生积极探索的兴趣. 例2 数列的递推公式 ◆河内塔问题相传在越南的某寺庙中有一个用n 个带孔的大小不等的圆盘磊成的塔,僧侣们每天挪动一次圆盘,一次只能挪动一个,任何时候大盘不得在小盘之上,将全部n个圆盘从A处挪到C处,最少需要多少天?(可放回B处)AB C1231,3,7,.a a a ===L 121,21n n n n a a a +=+=-教师要有渊博的数学知识,这样才能让你的课堂变得更加充实.本例想说明两点,一是已知递推公式,可以求出数列的任何一项,二是在有些计数问题中,我们也可利用数列的递推公式求解,这实际上也是递推公式的应用,通过这样的教学手段,将是课本知识变得更加丰富,更有活力. ◆例 平面上n条两两相交且无三条共点的直线可把平面分成几部分?11(1)2,1,12n n n n n a a a n a ++==++=+◆例 (F数列)有一儿童要上n阶楼梯,他一步可上一阶也可上两阶,问有多少不同上法?12(3)n n n a a a n --=+≥( 2 ) 高考题和竞赛题经常会有高等数学的背景 ◆例1 用四种不同颜色给图中区域染色,要求相邻区域不同色,,有多少不同染色方法? 这是著名的四色问题解法Ⅰ加法原理和乘法原理4312124321214321111120⨯⨯⨯⨯⨯+⨯⨯⨯⨯⨯+⨯⨯⨯⨯⨯⨯=分1、4同色与1、4不同色(2、4同色与2、4不同色)解法Ⅱ 本例也可以利用递推方法, 当4n ≥时,113432,4n n n a a a --+=⨯⨯=!教师站的越高,才能更容易指导学生掌握知识,抓住问题的实质,学生才能用更少的时间掌握通性同法.( 3 ) 学生的求知欲对教师提出了更高的要求 当今学生接受知识的渠道越来越多,知识面越来越广,老师必须有一桶水,才能教给学生一碗水. ◆例 四人各写一张明信片,然后交换,每人都收到不是自己写的明信片,有多少种不同方法?(高考题)分析:这是组合数学中错排问题,因为数比较小,可简单的分类,利用两个原理来解决,但若学生提出100人的错排,应如何解决呢?一般地,1,2,3,…,n的全排列,其中i(1≤i≤n)不在第i位,这样的错排共有多少个?解 1 (容斥原理) 用i A 表示i 在第i 位的全排列(n i ,,2,1Λ=),则nn A A A D I ΛI I 21==∑∑∑-+++-n n j i i A A A A A A S I ΛI I ΛI 21)1(=!0)1()!2()!1(!21nn n n nC n C n C n -++-+--Λ=)!1)1(!31!2111(!n n n -++-+-Λ解2 (递推公式)设n a a a Λ,,21为n Λ,2,1的一个错排,显然i a a i≠≠,11,分两类(1) 第1a 位是1,共2-n D 种方法;(2)第1a 位不是1,有1-n D 种方法.又1a 有(1-n )种取法,故))(1(21--+-=n n nD D n D 其中1,021==D D)!2(1)!1(1!21-+--=--n D n n D n n n D n n n 令!n D E nn=,则2111--+-=n n nE nE n n E !1)1()(1211n E E n E E n n n n n -==--=----Λ,又01=E!1)1(!31!21n E n n -++-=Λ,因此)!1)1(!31!21!111(!n n D n n -++-+-=Λ.◆例 2 过:,0:22221111=++=++c y b x a l c y b x a l 交点),(00y x P 的直线系0)()(22221111=+++++c y b x a c y b x a λλ),(),,(222111b a n b a n ==,1n 与2n 线性无关,可作为二维空间的一组基底,由平面向量基本定理可知该直线包含过),(00y x P 的任何直线.而0)()(222111=+++++c y b x a c y b x a λ表示的直线系不含2l ,原因是21n n λ+与2n 不共线. (二)排列组合的有关问题(1)多重复的排列和组合◆例1,一排七盏路灯,关掉其中互不相邻的三盏,且不关两端的路灯,有多少种方法?分析:4个a ,3个b 的全排列,要求b 互不相邻且不在两端的方法有34C◆例2:100=++z y x 的正整数解的个数?方法Ⅰ:98+97+…+1=299C方法Ⅱ:对应于97///=++z y x 非负整数解个数,又可转化为97个球与两个竖线的全排列方法数299C(也可理解为{a,b,c}的一个97可重组合,97个相同的球放入三个不同的盒子中的方法数).古典组合数学的主要原理有: ①两个基本原理 ②容斥原理③一一对应,和中学要求一致.(2)分配问题(k n ≥)◆例:4人分配到3个工厂,每个工厂至少1人的方法数为 3324A C .一般地,n 个人分配到k 个工厂,(n ≥k ),每个工厂至少1人的方法数?解:用i A 表示第i 个工厂空的方法数,(i =1,2…k )kk n A A A S k ⋅⋅⋅=⋅I I 21!=n k k k n k n k n k k C k C k C k )()1()2()1(21--+⋅⋅⋅--+--现代组合数学工具还有母函数和Fevver 图,在数学竞赛中经常看到,例如解决整数的分拆. (三)有关根据递推公式,求通项公式 (1))(1n f a a n n =-+型与)(1n f a a n n •=+型.利用累加法与累乘法. (2)q pa a n n +=+1型.◆例:,1,1211=+=+a a a n n 求?=na解:)1(211+=++n n a a ,令}{,1n n n b a b +=是等比数列,n n b 2= 12-=n n a(3))(1n f pa a n n +=+◆例:,1,3211=+=+a a a n n n 求n a解:)3(2311n n n n a a -=-++ 令}{,3n n n n b a b -=是等比数列,n n b 2-= 所以n n n a 23-=.也可化为(1)型(2)型 ◆例: ,1,211=+=+a n a a n n 求n a 解: ),1(21)1(1++=++++n a n a n n 1231--⨯=-n a n n(4) 11-++=n n n qa pa a 型解:特征方程:02=--q px x ,若有两个不相等实根βα,,则n n n a βλαλ21+=, 若有两个相等实根βα=,则n n n a αλλ)(21+=,若无实根,周期数列. ◆例: F 数列,)3(,1,12121≥+===--n a a a a a n n n ,求 n a解:特征方程: 251,012±==--x x x , nn n a )251()251(21-++=λλ 21,λλ 由21,a a 确定. (注:也可以化为一阶递推公式,再求通项公式) (5)分数型递推公式)(,)(1n n a f a dcx bax x f =++=+构造数列}{n a 当x x f =)(有两个不等实根βα,时,(即)(x f 有两个不动点),则k a a k a a n n n n (11βαβα--⋅=--++为常数). 当x x f =)(有两个相等实根0x 时,(即)(x f 有唯一不动点),则存在常数k 使得k x a x a n n +-=-+00111.当x x f =)(无不动点时,往往是周期数列. 此种形式的数列,有时也可采用倒数法或三角换元. ◆例: 2,1111=-+=+a a a a nnn 求 n a解: x xx f -+=11)(, 方程x xx =-+11无实根,则数列{n a }是一周期数列,(周期是4).+===θθtan(,tan 221a a л/4)…,)1(tan[-+=n a n θ л/4](6)生成函数,例F 函数由递推公式求通项公式,往往是通过构造新数列,把递推公式变形成等差或等比数列,通过求新数列通项公式,再求原数列通项,差分方程中有太多这样的例子.以上只是我对这两部分的一些简单认识,其余章节也有一些类似的问题.。
高等数学观点下的中学数学高等数学观点下的中学数学,这个话题听上去有点儿高大上,对吧?说白了,就是把那些看似复杂的数学概念,搬到我们熟悉的中学数学里,没错,咱们都曾在课堂上认真听讲的那些内容。
说到高等数学,大家脑海里肯定浮现出那一堆看起来像外星文的公式和符号,让人头大。
但是,如果你稍微把视角拉回一点,看看中学数学,哎,真的有惊喜。
先说说代数。
大家应该都经历过那个让人捧心口的“解方程”的过程,哎,心里想着:“这玩意儿到底有什么用?”当我们用高等数学的眼光去看待代数,哇,发现它其实是解谜的游戏。
就像找寻宝藏一样,把未知数藏在方程里,咱们用各种方法挖掘出来,真是过瘾!你看,代数的公式就像是魔法,运用得当,什么都能解决。
想想看,生活中那些看似复杂的问题,其实归根结底也是在“解方程”嘛。
无论是购物算折扣,还是计划行程,都可以用代数的方式来思考。
再聊聊几何。
几何就像是在画画,线条、角度、面积……都是画布上的元素。
高等数学里的几何则把这些元素放大,变成一幅幅美丽的画卷。
想象一下,平面图形转化成立体,真是像魔法一样!中学的时候,咱们常常用直尺和圆规,画出各种图形,嘿,实际上,高等数学告诉我们,这些图形背后还有深刻的逻辑和美感。
比如,圆的性质让人感叹,什么直径、弦、切线,简直像是在解读宇宙的奥秘!我们用几何学来理解世界,理解那些隐藏在平凡背后的不平凡。
再看看函数,啊,函数可谓是数学中的明星。
中学的时候,我们学习的那些图像,像是抛物线、正弦波,简直就是数学的舞蹈。
高等数学则把这些舞蹈推向了更高的境界。
想象一下,把函数的变化当作生活中的各种情绪波动,是不是更贴近我们自己的经历?生活不就是一场函数的图像吗?高兴时,上升,低落时,下降。
用函数来解释生活的起伏,听起来是不是特别有意思?当你能用函数去描绘自己的生活状态,那种感觉就像是找到了人生的说明书。
还有微积分,哎呀,这个东西初听起来就让人觉得复杂,它就像是观察时间的流逝和变化。
就你认为的某个具有高等数学背景的中学数学问题进行讨论,并写成一篇3000字以上的论文。
高观点下的中学解题策略1 对于解题课教学有关概念的把握1.1数学家对数学“问题”及其解决的论述美国当代数学家哈尔莫斯详细阐述了问题对数学的重要性:“数学家存在的理由,就是解决问题.因此,数学的真正组成部分是问题和解.”“数学的产生及发展都是为了回答人们提出问题的需要,是问题的不断提出与解决在向数学输送着新鲜的血液,促进着数学的生长与发育,所以说,问题是数学的心脏.”数学家波利亚长期致力于“怎样解题”的研究,他指出:“掌握数学就是意味着善于解题,不仅善于解一些标准的题,而且要善于解一些要求独立思考、思路合理、见解独到和有发明创造的题.”法国著名数学家阿达玛在其名著《数学领域中的发明心理学》把学生的解题过程与数学家的发明创造相提并论:“一个学生解决某一代数或几何问题的过程与数学家做出发现或创造的过程具有相同的性质,至多只有程度上的差异.”1.2数学问题的意义数学问题是指数学上要求回答或解释的题目,需要研究或解决的矛盾,是为实现教学目标而要求师生解答的问题系统.一个完整的数学题包含条件、结论、解题方法三个要素.从具体范围看,数学问题可以是一个待求解的答案、一个待证明的结论、一个待求作的图形、一个待判断的命题、一个待建立的概念、一个待解决的实际问题、一个待寻求的问题解法等形式;从教学场景看,数学问题有课堂上的提问、范例、练习和所解决的概念、定理、公式,有学生的课外作业和测验试题,有师生共同进行的研究性课题等;从问题要素看,可分为标准性题(三个要素都已知)、训练性题(三个要素中有一个未知)、探索性题(三个要素中有两个未知).传统意义上的数学问题具有接受性、封闭性和确定性的特征.其内容是熟知的,学生通过对教材的模仿操作性练习,就能较好地完成;其结构是常规的,答案基本确定、条件不多不少,可以按照现成的公式或常规的思路获得解决.主要目的在于巩固和变式训练,题目的挑战性不是很强.现代意义上的数学问题具有灵活性、应用性和探究性等特征.包含数学情景题、数学应用题、数学开放题、数学探究题等崭新形式.它们拉近了数学与实际、数学与自然、数学与其它学科的距离,正在改变着传统解题教学的环境、格局和意义.1.3数学解题的认识解题就是“解决问题”,即求出数学题的答案,这个答案在数学上也叫做“解”,所以,解题就是找出题的解的活动.教学中的解题是一个再创造或再发现的过程,是数学学习的核心内容.解题是真正发生数学教育的关键环节,尚未出现解题的数学学习总给人一种尚未深入到实质或尚未进入到高潮的感觉.解题是掌握数学并学会“数学地思维”的基本途径.概念的掌握、技能的熟练、定理的理解、能力的培养、素质的提高等都离不开解题实践活动.解题也是评价学生认知水平的重要手段和方式.尽管不能认为是惟一的方式,也是当前用得最多、操作最方便、公众认可度最高的一种方式.可以说解题贯穿了认知主体的整个学习生活乃至整个生命历程.解题教学的基本含义是,通过典型数学题的学习,去探究数学问题解决的基本规律,学会像数学家那样“数学地思维”.对高中数学教学中的解题课而言,不仅要把“题”作为研究的对象,把“解”作为研究的目标,而且要把“题解”也作为对象,把开发智力、促进“人的发展”作为目标.传统意义上的解题,比较注重结果,强调答案的确定性,偏爱形式化的题目.而现代意义上的“问题解决”,则更注重解决问题的过程、策略以及思维的方法,更注重解决问题过程中情感、态度、价值观的培养.作为数学教育口号的“问题解决”,对问题的障碍性和探究性提出了较高的要求.波利亚在《数学的发现》中将问题理解为“有意识地寻求某一适当的行动,以便达到一个被清楚地意识到但又不能立即达到的目的.解决问题就是寻找这种活动.”第六届国际数学教育大会报告指出:“一个(数学)问题是一个对人具有智力挑战特征的、没有现成的直接方法、程序或算法的未解决的情境.”这类题目可以称为“问题”.“问题解决”是数学学科的一个永恒的课题.从信息论的观点探讨解题的思维过程.数学解题有形象思维、直觉思维和逻辑思维的综合作用.数学解题的过程是两个维度上相关信息的有效组合,即从理解题意中捕捉有用的信息,从记忆网络中提取有关的信息,并把这两组信息组成一个和谐的逻辑结构.数学解题的思维过程是“有用捕捉”、“有关提取”、“有效组合”三位一体的工作.有用捕捉,即通过观察从理解题意中捕捉有用的信息,主要是弄清条件是什么?结论是什么?各有几个?如何建立条件与结论之间的逻辑联系?有关提取.即在“有用捕捉”的刺激下,通过联想而从解题者头脑中提取出解题依据与解题方法.良好的认知构结和机智的策略选择是连续提取、不断捕捉的基础.有效组合.即将上述两组信息资源,加工配置成一个和谐的逻辑结构.逻辑思维能力是有效组合的基础.1.4高中学生的心理和认知发展规律高中学生处于青少年中期,是个体身心发展的剧变期.青少年的可能性思维使他们能运用假设检验去解决问题,提高了问题解决的速度和效率,能够有计划和预见地解决问题,思维和推理更具抽象性、预测性和灵活性.高中生的思维中虽然仍有形象思维的成分,但抽象逻辑思维已经占主导地位.除把具体情景和环境作为思维对象外,还开始实际思考自己和他人的思维,把抽象的思想意识作为思维对象.高中生的元认知能力大大增强,能够更好地监控自己的思维活动.他们运用更多的时间反思自己将要解决问题的思想观念和表象,具有了自我反省能力.他们的元记忆知识更加丰富,元理解能力已经发展到一个较高水平.根据高中学生的心理和认知发展规律可以看出,高中生已经能够承担较为复杂的学习任务,有能力参与高中数学解题课的教学,并顺利完成相应的教学任务.中学数学解题方法是数学方法论、学习论、思维论研究的重要组成部分.数学解题课具有教学功能、思想教育功能、发展功能和反馈功能.数学解题课的教学,可使学生加深对基本概念的理解,从而使概念完整化、具体化,牢固掌握所学知识系统,逐步形成完善合理的认知结构.数学解题课的教学,达到知识的应用,有利于启发学生学习的积极性.它是采用一段原理去解释具体的同类事物,由抽象到具体的过程.数学解题课的教学,也是一种独立的创造性活动.数学问题所提供的问题情境,需要探索思维和整体思维,也需要发散思维和收敛思维.因而可培养学生的观察、归纳、类比、直觉、抽象等合情推理以及寻找论证方法等演绎推理能力,准确、简要、清晰地表述以及判断、决策等一系列数学素养和能力,给学生以施展才华、发展智慧的机会.数学解题课是高中数学重要的基本课型之一.2 高中数学解题课的教学要求2.1课程标准对数学解题课的基本要求高中教育首先是人生发展的一个重要阶段,是学生生活的一部分,而不是服务于某一个既定目标的工具.高中阶段的任务应超越“单一任务”和“双重任务”这种教育工具化的倾向,实现从精英教育到大众教育的转变.定位于奠定高中生进一步学习的基础学力,养成其人生规划能力,培养公民基本素养并形成健全人格上.《数学课程标准》指出:“数学教育在学校教育中占有特殊的地位,它使学生掌握数学的基础知识、基本技能、基本思想,使学生表达清晰、思考有条理,使学生具有实事求是的态度、锲而不舍的精神,使学生学会用数学的思考方式解决问题、认识世界.”《数学课程标准》在界定高中数学课程性质时指出:“高中数学课程对于认识数学与自然界、数学与人文社会的关系,认识数学的科学价值、文化价值,提高提出问题、分析问题和解决问题的能力,形成理性思维,发展智力和创新意识具有基础性的作用.”《数学课程标准》关于高中数学课程性质中专门对数学的应用提出要求:“高中数学课程有助于学生认识数学的应用价值,增强应用意识,形成解决简单实际问题的能力.”《数学课程标准》在“建立合理、科学的评价体系”中提出,要“关注对学生数学地提出、分析、解决问题等过程的评价,以及在过程中表现出来的与人合作的态度、表达与交流的意识和探索的精神”.2.2数学解题课的教学目标高中数学解题课的目标是:在数学方法论、学习论、思维论、多元智能、建构主义等教育理论指导下,培养学生形成“提出问题—分析问题—解决问题—反思问题”的良好习惯和品质,形成理性思维,发展智力和创新能力.培养学生实事求是的态度、锲而不舍的精神,学会用数学的思考方式解决问题、认识世界.培养学生在数学解题过程中表现出来的与人合作的态度、表达与交流的意识和探索的精神,全面提高学生的综合素质.倡导积极主动,创新学习方式;经历思维过程,培养数学素养;开展数学建模,培养应用意识;强调返璞归真,揭示发展规律;体验数学美感,强化文化价值.解题课的教学应突出三个方面:一是使学生准确、灵活地掌握数学知识,扩大知识的联系;二是使学生形成分析和求解数学问题的思路和方法;三是发展学生的思维能力.数学解题教学的根本任务是发展学生的思维潜能,促进学生整体素质的提高,通过素质的全面提高反过来带动学业成绩的提高.2.3数学解题课的特点该课型应体现学生的学习活动是在“解决问题中学习”,也就是把已经掌握的基本概念,基本公式、法则、定理,迁移到不同情境下加以应用,找出解决问题的方法.解题课的教学过程应着力展现解题思维的全过程,充分发掘数学教材中没有具体表述的能力、智力的教育因素,注意对解题策略、思维方法、解题技巧等进行分类、归纳、评价.根据数学问题的难度、学生的知识基础及思维能力水平,铺设合适的梯度,设计好同类知识的训练题组.解题课的教学,应让师生共同交流解题思维的全过程,引导学生自己动脑、动手、动口,积极参与解题教学活动;引导学生自我评价、优化解题思路,改进解题策略,从而寻求最优的解题方法.解题活动以思维的“动”为最大特点.要提高数学解题能力,就必须拓展学生自由思维和联想的空间,让思维“动”起来.在传统的数学解题课教学中,课堂由老师支配,对课堂问题的思考、回答和讨论都是教师预设的,学生的一切活动都依赖于老师.学生不敢也不愿意突破固有的框架,学生的个性受到压抑,主体性得不到发挥,思维得不到发展.新课程理念要求教师的课堂以学生为主体,创设民主、和谐、宽松、自由的课堂环境,调动一切因素和状态,拓展学生思维活动空间.使学生主动地参与教学.在这样的环境里,师生平等,学生消除了胆怯和依赖心理,他们可以无拘无束地表现自己,表达自己对问题的想法和认识.学生的积极参与和质疑扩大了生生之间的信息交流与师生之间的信息反馈,有利于新思想、新方法的展示,也有利于问题的发现.这样,教师才能沿着学生的思想轨迹,综合学生反映出来的各种问题因势利导,澄清疑点,纠正错误,优化思想品质.2.4数学解题的规范解题是深化知识、发展智力、提高能力的重要手段.规范的解题能够养成良好的学习习惯,提高思维水平.在学习过程中做一定量的练习题是必要的,但并非越多越好,题海战术只能加重学生的负担,弱化解题的作用.要克服题海战术,强化解题的作用,就必须加强解题的规范.做到审题规范、表达规范、答案规范.审题规范是正确解题的关键.审题是对题目进行分析、综合、寻求解题思路和方法的过程,包括明确条件与目标、分析条件与目标的联系、确定解题思路与方法三部分.明确条件与目标,一是找出题目中明确告诉的已知条件,发现题目的隐含条件并加以揭示,二是明确要求什么或要证明什么,把复杂目标转化为简单目标;把抽象目标转化为具体目标.一个题目的条件与目标之间存在着一系列必然的联系,这些联系是由条件通向目标的桥梁.数学解题就是根据这些联系所遵循的数学原理确定解题思路.数学解题的实质就是分析这些联系与哪个数学原理相匹配.有些题目,这种联系十分隐蔽,必须经过认真分析才能加以揭示;有些题目的匹配关系有多种,而这正是一个问题有多种解法的原因.叙述规范是数学解题的重要环节.语言(包括数学语言)叙述是表达解题程式的过程,规范的语言叙述应步骤清楚、正确、完整、详略得当、言必有据.数学本身有一套规范的语言系统,切不可随意杜撰数学符号和数学术语,让人不知所云.怎样把数学的解答严谨地叙述出来是一件不容易做到的事,这有着较高的能力要求.总的说来,叙述要正确、合理、严密、简捷和清楚.把运算、推理、作图与所得的结果无误地加以叙述,是解题的一项基本要求.对列式、计算、推理、作图都要有充分的理由,遵循严格的思维规律,做到言必有据,理由充足,合乎逻辑性.要周密地考虑问题中的全部内容,不能遗漏,也不能重复.任何数学问题的解答都有一定的格式要求,无论哪种格式,叙述都应层次分明,条理清楚,表述规范.这里包含书写时要力求字迹清楚,作图正确,疏密适度,行款得体.所有这些能力的培养有一个渐进的过程.在不同的学习阶段,应提出不同的要求,教师在解题课教学过程中要作出示范,使学生学有榜样,逐步培养严谨的表达能力.答案规范是数学解题的成果体现.答案规范是指答案准确、简洁、全面,既注意结果的验证、取舍,又要注意答案的完整.要做到答案规范,就必须审清题目的目标,按目标作答.在数学解题课上,常常是先把问题转化成一般数学问题,再把一般数学转化为规范数学问题,最后的答案必须进一步转化到原有问题中去,并考虑到原有问题对解的各种限制和要求.2.5数学解题课教学的基本要求培养学生的问题意识.解题活动不仅指解决问题的过程,更重要的是指提出问题的过程,解决问题最困难的部分之一是提出正确的问题.问起于题,疑源于思.数学学习过程是一个复杂的思维过程,也是一个不断地“生题——质疑——释疑”的过程.大胆怀疑,是数学创造活动的特征.质疑,表现了一种求知欲,包含着智慧的火花;质疑,是一种探索精神,孕育着创造.要逐步培养学生敢于提出问题,勇于提出问题,善于提出问题的问题意识.合情推理与问题解决.数学既是严谨的演绎科学,又是实验性的归纳科学.数学的发生、发展过程是观察、实验、归纳、类比、猜想等合情推理与判断、证明等演绎推理的交织互动.数学问题的分析过程就是一种数学发现,观察、联想、类比、猜想、归纳、概括等合情推理是数学问题分析过程的主要形式.在数学问题解决教学过程中,引导学生通过经历可信的、自然的、有一定弯拐歧路的知识生长过程,模拟数学家研究数学的过程.从合情推理发现数学命题及其证明思路,再由演绎推理证明命题的真伪,正是人们发现、发明、创造的一般程序.数学探索、研究中艰难坎坷的体验和成功的喜悦,是人生十分珍贵的经历.只要引导学生勤于思考,他们在日常的阅读中,在听讲中,在解题中,总会有所思考,有所猜想,有所发现.这日常中的点滴发现,与重大的数学发现之间,并没有不可逾越的鸿沟.多元智能与问题解决.数学问题的解决依赖于逻辑/数学智能,又是空间智能、语言智能、自我认识智能、人际交往智能等综合作用的过程.数学解题课中要充分考虑多元智能在问题解决中的重要作用,分析不同个性特征对“问题解决”的影响,发展学生的数学心智.一般解题方法的教学.学习借鉴波利亚《怎样解题表》,逐步培养学生养成“理解题意——拟定方案——执行方案——反思回顾”的科学、规范的一般解题过程.了解波利亚的数学启发法与数学解题的常用模式及其在数学解题教学中的意义.从认知心理学与数学教育学的角度认识数学基础知识、基本技能与数学解题的关系,认识知识的合理组织、调控、信念在分析与解决问题中的意义,将数学解题与思维培养紧密结合起来.要熟悉数学解题的常用策略和方法,理解数学解题策略在数学解题及生活中的意义.熟悉数学解题的一般方法与技巧.重视学生的发散思维.思维是人脑反映事物的一般特性和事物之间规律性的联系,以已有知识为中介进行推断和解决问题的过程.任一思维现象均是多种思维形态的综合.根据思维所承担的任务不同,而对于某种思维形态有所侧重.发散思维是指在思维过程中信息向各种可能的方向扩散,不局限于既定的模式,从不同的角度寻找解决问题的各种途径.具体地说,就是依据定理、公式和已知条件,产生多种想法,广开思路,提出新的设想,发现和解决新的问题.发散思维富于联想,思路宽阔,善于分解、组合、引申、推广,灵活采用各种变通方法,在数学教学中,可以培养学习兴趣,提高解题能力.在解题课教学中,对于数学问题的讲解,要结合对方法的思考及方法的选择过程,应注意“抛砖引玉”,决不“能越俎代庖”.要引导学生“察言观色”,广泛地开展联想,寻找解决问题的多种途径.学会举一反三,重视学生发散思维的培养.重视解题的基本理念.无论解决什么问题,我们都不忘从“知识—方法—观念”的角度去审视题目,做到让学生心里有数,做到知识熟、方法活、观念有.基本知识熟就是熟悉知识的等价表述,熟悉知识的有关范例,做到“一道题就是一个观点,就是一种方法”;基本方法活就是活用“基本的逻辑证法、数形结合法、待定系数法与估算法”,做到用“有限去把握无限”;基本观念有则要求学生心中要有“一与多”、“有限与无限”、“数与形”、“整体与部分”等观念.重视学生的反思能力.在数学解题课教学中,要引导学生摆脱“题海战术”,提高数学素质,培养数学能力.使学生学会“反思”.做完一道题后,要再问几个为什么,并从中获得对下次解题有用的经验和教训.搞清楚“为什么”,才能在以后的解题中知道“做什么”和“如何做”.一道数学题,经过一番艰辛与苦思冥想解出答案后,我们应认真进行如下探索:命题的意图是什么;考核哪些方面的知识和能力;验证解题结论是否合理,命题所提供条件的应用是否完备;求解论证过程是否判断有据,严密完善;本题有无其他解法;众多解法哪一种最简捷;把本题的解法和结论进一步推广,能否得到普遍性结论,解此题的思路方法是什么等.反思的目的在于深化对知识的理解,促进知识结构的不断分解组合,使思维有一个正确可靠的基础.长期进行反思,还可培养学生对试题的鉴赏能力,对那些知识容量大,各知识间结构联系巧妙的试题产生美感,引起兴趣.2.6精心设计数学解题课的问题解题课的问题要处于学生的“最近发展区”.学生的认知系统和教师的认知系统是不一样的,教师在进行问题设计时,必须根据学生的“最近发展区”进行设计.学生的发展必须在现有的基础上发展,而学生课堂上的认知系统,就是他们以后逐步提高的“最近发展区”.要想使设计出的问题能达到预设目的,使学生根据问题进行讨论和学习,教师必须能够设计出切入到学生的认知系统的问题.反之,武断地根据教师自己的认知系统设计,只能使学生产生厌倦和畏难情绪,常有教师抱怨说“在课堂上无论怎样引导,学生总是启而不发”,其实关键是没有找出学生的“最近发展区”.如果问题处于学生的“最近知识区”,在老师的引导下,他们会很快解决这个问题,并能够获得独立完成思考的能力和成就感.解题课问题的设计要多功能化.数学问题应使学生加深对基本概念的理解,从而使概念完整化、具体化,牢固掌握所学知识系统,逐步形成和完善合理的认识结构.体现其教学功能、发展功能、检查功能和思想教育功能.解题课问题的选择要有针对性.问题要针对教学目标、针对知识点、针对学生的学习现状.问题选择要注意可行性,不宜过易也不宜过难.问题选择要有典型性,要克服贪多、贪全,既要注意到对知识点的覆盖面,又要能通过训练让学生掌握规律,达到“以一当十”的目的.要注意对课本例题的挖掘,课本例题均是经过专家多次筛选后精品,教师要精心设计和挖掘课本例题,编制一题多解、一题多变、一题多用的例题,提高学生灵活运用知识的能力.解题课的问题要有很强的探索性.一个问题的好坏,不在于它一定有多大的实用价值,而在于在该问题实施的过程中是否具有探索性,能否让学生更深入挖掘问题深处的内涵,能。
作业标题:期末考核题目 作业要求:就你认为的某个具有高等数学背景的中学数学问题进行讨论,并写成一篇3000字以上的论文。
高观点下的部分中学数学问题155370 林妙红摘要:随着高中新课程改革的深入,大学高等数学的内容被引入或者介绍了很多,如选修4部分。
中学数学与高等数学是密不可分的,若站在更高的视角(高等数学)来审视、理解初等数学显得明了简单了。
随着高考命题自主化的深入,越来越多的省和地区开始尝试自己命题,而在命题组中高校教师占很重要的地位。
他们在命题时,会受到自身研究氛围的影响,有关高等数学背景的问题会逐渐增加丰富起来。
本文运用高等数学的观点分析初等数学,着重用例子把初等数学问题用高等数学解法来解答,从中找到两者的联系。
关键词:高等数学;初等数学;函数的拐点问题;函数的凸凹性;分解因式;数列;不等式 一、引言随着高中课程的深入改革,大学高等数学的内容被引入了很多,如选修部分。
而实际上在必修部分新增的内容就已足够值得关注,这些内容的变化很有可能是高考试卷今后命题的趋势。
比如导数部分内容就丰富了很多。
1、函数的拐点问题例1(2007湖南文21)已知函数3211()32f x x ax bx =++在区间[11)-,,(13],内各有一个极值点.(II )当248a b -=时,设函数()y f x =在点(1(1))A f ,处的切线为l ,若l 在点A 处穿过函数()y f x =的图象(即动点在点A 附近沿曲线()y f x =运动,经过点A 时,从l 的一侧进入另一侧),求函数()f x 的表达式.解析:(II )思路一:由(1)1f a b '=++知()f x 在点(1(1))f ,处的切线l 的方程是(1)(1)(1)y f f x '-=-,即21(1)32y a b x a =++--, 因为切线l 在点(1())A f x ,处过()y f x =的图象, 所以21()()[(1)]32g x f x a b x a =-++--在1x =两边附近的函数值异号,则 1x =不是()g x 的极值点.而()g x 321121(1)3232x ax bx a b x a =++-++++,且 22()(1)1(1)(1)g x x ax b a b x ax a x x a '=++-++=+--=-++.若11a ≠--,则1x =和1x a =--都是()g x 的极值点.所以11a =--,即2a =-,又由248a b -=,得1b =-,故321()3f x x x x =--. 解法二:同解法一得21()()[(1)]32g x f x a b x a =-++-- 2133(1)[(1)(2)]322a x x x a =-++-+. 因为切线l 在点(1(1))A f ,处穿过()y f x =的图象,所以()g x 在1x =两边附近的函数值异号,于是存在12m m ,(121m m <<).当11m x <<时,()0g x <,当21x m <<时,()0g x >; 或当11m x <<时,()0g x >,当21x m <<时,()0g x <. 设233()1222a a h x x x ⎛⎫⎛⎫=++-+ ⎪ ⎪⎝⎭⎝⎭,则当11m x <<时,()0h x >,当21x m <<时,()0h x >; 或当11m x <<时,()0h x <,当21x m <<时,()0h x <. 由(1)0h =知1x =是()h x 的一个极值点,则3(1)21102ah =⨯++=, 所以2a =-,又由248a b -=,得1b =-,故321()3f x x x x =-- 点评 本题中“l 在点A 处穿过函数()y f x =的图象”实际上是指点A 处是函数的拐点。
专题三学号: 姓名: 1.用两种方法求下列函数的极值3(1)31y x x =-+,2,1233,0,1,1y x y x x =-==-=解:方法一,令则,(,1)(1,)0x x y y ∈-∞-∈+∞>所以,和时,故递增 ,(1,1)0x y y ∈-<时,故递减1,3,1,1x y x y =-=-所以,当时有极大值为当时有极小值为,,6y x =方法二、对函数二阶求导则,,1,60,13x y y x =-=-<=-当时故在时有极大值为 ,,1,60,11x y y x ==>=-当时故在时有极小值为 32(2)23121y x x x =--+,2,126612,0,1,2y x x y x x =--==-=解:方法一、令则,(,1)(2,)0,x x y y ∈-∞-∈∞>所以,当和时,故递增 ,(1,2)0,x y y ∈-<当时,故递减18219x y x y =-=-所以,当时有极大值为;当时有极小值为,,126y x =-方法二、对函数二阶求导,,1,180,18x y y x =-=-<=-当时故在时有极大值为 ,,2,180,219x y y x ==>=-当时故在时有极小值为222.,(,)56214812x y f x y x xy y x y =++--+问当取何值时取得最小值,,,,10614,648,0,2,1x y x y f x y f x y f f x y =+-=+-====-解:令则,,,,,,(2,1)(2,1)10,(2,1)6,(2,1)4xx xy yy A f B f C f -=-==-==-=驻点为,设200(,)(2,1)2AC B A f x y ->>-因为且,所以函数在处取得最小值为3.有一个繁华的商场,一天之中接待的顾客数以千计,川流不息。
如果商场有一个重要广告,想使所有的顾客都能听到,又已知任意的3个顾客中,至少有两个在商场里相遇。
高观点下的中学数学课程的主要任务和指导意义篇一:高观点下的中学数学课程是指在现代数学的高度基础上,重新审视中学数学的教学内容,旨在帮助学生更好地理解数学的本质和意义,提高学生的数学素养。
在中学数学课程中,主要任务包括以下几个方面:1. 培养学生的数学思维能力。
中学数学是数学的基础,对学生的数学思维能力有重要的培养作用。
通过高观点下的中学数学课程,可以帮助学生更好地理解数学的概念、方法和技巧,提高学生的数学思维能力。
2. 提高学生的数学素养。
数学素养是数学教育的核心,通过高观点下的中学数学课程,可以帮助学生更好地理解数学的意义和价值,提高学生的数学素养。
这不仅有利于学生在未来的学习和工作中更好地运用数学,也有利于培养学生的逻辑思维能力和科学素养。
3. 帮助学生更好地理解数学。
高观点下的中学数学课程旨在在现代数学的高度上重新审视中学数学的教学内容,帮助学生更好地理解数学的本质和意义。
通过课程的深入学习,学生可以更好地理解数学的概念、方法和技巧,提高学生对数学的认识和理解。
高观点下的中学数学课程具有重要的指导和借鉴意义。
通过课程的深入学习,学生可以更好地理解数学的本质和意义,提高学生的数学素养和思维能力,为学生在未来的学习和工作中更好地运用数学打下坚实的基础。
同时,高观点下的中学数学课程也具有重要的启示作用,为数学教育的改革和发展提供了重要的参考和借鉴。
篇二:高观点下的中学数学课程是指采用数学史和数学哲学的高度来重新审视中学数学课程,旨在帮助学生建立全面的数学素养,为其未来数学和科学领域的学习打下坚实的基础。
在这篇文章中,我们将探讨中学数学课程的主要任务和指导意义。
中学数学课程的主要任务是培养学生的数学思维能力和创新意识。
数学是一门抽象的学科,需要学生具备一定的思维能力才能更好地理解和掌握。
高观点下的中学数学课程通过引入数学史和数学哲学的概念,帮助学生理解数学的本质和内在联系,从而培养学生的数学思维能力和创新意识。
《高观点下中学数学—分析学》一1. A 的幂集A 2的构成形式是什么? 解: A 2={B|B ⊆A }2. A ,B 是两个集合,集合A ⨯B 的构成形式? 解:A ×B={(a ,b )| B b A a ∈∈,}3. 什么有限集?解:若集合A 中的元素个数|A|有限,则A 为有限集。
4. 什么叫函数)(x f 在点a 连续?解:设)(x f 在点a 的一个邻域内有定义,如果对于任何ε>0,都存在δ>0,使当 |x-a|<δ时,有| )(x f -)(a f |< ε,则称)(x f 在点a 连续。
5. 设A ,B 是两个集合且B A ⊂,则)(A B B --和A.是什么关系? 解:)(A B B --=A 。
6.的关系。
(与说明))()(C A B A C B A -⋂-⋃-解:).)()(C A B A C B A -⋂-=⋃-(。
7.设X B X A Y X f ⊂⊂→,,:,则什么关系?与)()()(B f A f B A f ⋂⋂. 解:)()()(B f A f B A f ⋂⊂⋂。
8. 设R 是X 中的关系,若φ=-1R R ,则称R 为什么?解:称R 为实数集。
9 X 是一集合,对于XB A 2,∈,规定,B A B A ⊂⇔<则称),2(<X是否是全序集?解:是。
{}d c b a X ,,,=,则a,{a}与集合X 的关系是什么?解:a X ∈,{a }⊆X.11. 函数)(x f 在开区间),(b a 内可导,则)(x f 在开区间),(b a 内是否连续?给出理由。
解:连续。
可导必连续。
)sin()cos()(22x x x f +=,求)(x f '.解:)(x f '=-sin(x 2)·2x +cos(x 2)·2x=2x[sin(x 2)+cos(x 2)]x f x f x =+)()(51,求)(x f .解:根据题意得:x f x f x =+)()(51 ① , xxf xf 1)11()1(5=+ ②,由①、②解得 。
“高观点”下的中学数学的实践与认识一、概述“高观点”下的中学数学,是指站在更高层次的理论和知识视角,重新审视和教授中学数学内容的一种教学理念。
它不仅仅关注中学阶段的具体数学知识和技能,而是将中学数学置于更广阔的数学科学体系中,引导学生更早地接触和了解高层次的数学概念和思想。
这种教学方式有助于培养学生的数学素养,加深他们对数学本质的理解,激发他们的创新思维和解决问题的能力。
在实践中,“高观点”下的中学数学需要教师具备深厚的数学基础和广博的知识视野,能够灵活地将高层次数学知识和思想融入中学数学教学中。
同时,也需要教师不断更新教学理念,积极探索适合学生认知发展的教学方法和手段。
通过“高观点”下的中学数学的教学实践,学生可以更早地接触到一些高层次的数学概念和思想,从而更深入地理解数学的本质和精髓。
这种教学方式不仅可以提高学生的数学素养和思维能力,还可以为他们未来的学习和研究打下坚实的基础。
“高观点”下的中学数学也面临一些挑战和困难。
如何根据学生的认知特点和实际情况,合理地选择和运用高层次数学知识和思想,使其与中学数学教学有机结合,是教师需要思考和解决的问题。
同时,如何激发学生的学习兴趣和积极性,使他们在学习过程中保持持久的动力和热情,也是教师需要关注的重要方面。
1. 阐述“高观点”在中学数学教学中的重要性。
“高观点”在中学数学教学中具有至关重要的地位。
所谓“高观点”,是指在教学过程中,教师不仅关注具体的数学知识点和解题技巧,更重视从更高层次、更广阔的视角来引导学生理解数学的本质和内在逻辑。
这种教学方法能够帮助学生跳出繁琐的公式和计算,深入理解数学的内在美感和应用价值,从而培养他们的数学素养和创新能力。
“高观点”有助于提升学生的数学思维能力。
通过从高层次审视数学问题,学生能够更好地理解数学概念和原理之间的内在联系,形成系统的数学知识体系。
这种思维方式不仅有助于学生在解题时灵活运用所学知识,还能够培养他们的逻辑思维能力和抽象思维能力,为未来的学习和工作打下坚实基础。
2021年第5期中学数学月刊•1•!观#指导下的中学*学+学郑毓信(南京大学哲学系210093)1“小数”的启示何谓“高观点指导下的数学教学”(包括小学与中学阶段)?由于相对于中学而言,这一论题应当说在小学获得了更多关注,因此,我们就可通过对于后一方面工作的综合考察引出关于如何做好“高观点指导下的中学数学教学”的直接启示.主要包括这样几点:第一,“高观点指导下的数学教学”不应仅仅被理解成将更高层面的一些内容“下放”到较低层次,如将方程、负数等原先属于中学的内容提前到小学进行教学.当然,我们不应完全排斥后一方面的工作,而应进行积极、慎重的探索与试点,但这又不应被看成“高观点指导下的数学教学”的主要涵义,因为,后者应当集中于观念的问题,也即相应的指导思想,包括后者对于具体内容教学的指导与渗透$第二,这是小学层面在论及数学教育改革时经常提到的一个话题,即是“代数思维的渗透”,后者并被看成为小学教师更好从事算术内容的教学指明了努力方向,特别是,我们应当切实做好由“程序性(操作性)观念”向“结构性(关系性)观念”的转变,这也就是指,教学中我们不应唯一关注如何能够通过正确的计算去求得所需的结果,而应更加注重数量关系、特别是等量关系的分析.以下就是这方面的一段相关论述:小学低年级的教学中需要特别强调对等式的理解……在小学一年级时经常会让学生口算,比如3十4,这里值得注意的是我们要强调3+4“等于"7,而不要说“得到"7.因为这里的等号有两个层面的意义:一是计算结果,就是我们经常说的“得到“;二是表示“相等关系".我们在学生刚接触等号时就要帮助他们建立起对等号的这种相等关系的理解.因O,有时候让一年级的学生接触7=3+4这样的算式是有必要的,因为在这样的算式中,你就没法将等号说成“得到'"当然,这里也要尝试让学生理解7同样也等于4+33+4=4+3……在这之后,可以让学生尝试看两边都不止一个数的等式,如17+29& 16+30O外,还可以给学生利用相等关系判断正误的式子,比如,199+59=200+58,148+68=149+70—2,149+68=150+70—3.1*第三,尽管强调“代数思维的渗透”有一定道理,但这又应被看成“高观点指导下的数学教学”的一个实例:尽管由此我们也可获得关于后一方面工作的重要启示,但仍然不应以特殊代替一般,这也就指)就学数学教学而言)我们“数思维的渗透”看成“高观点指导下的数学教学”的)而更高面做出的析对中学数学教学当的)包括我们当对中学教学的内容做出相关究,如初中数学教学是否应当特别强调“变量思想的”第四,与各种具体数学思想的分析相对照,所谓“高观点指导下的数学教学”应当更加重视围绕数学教的行析思考)当这面的指导的教学工下就是这方面工作特别重要的两个环节:(1)关于数学教育基本目标的认识应当切实可行,而不应停留于“大而空”的论述.例如,关于“深度学习”的以下论述就可被看成后一方面的一个典型例子:“深度学习'深'在哪里?首先'深'在人的心灵里,'深'在人的精神境界上,还'深'在系统结构中,'深'在教学规律中2更一般地说,我们既应明确肯定一般性教育理论的指导作用,但又应当从专业的角度做出进一步的分析思考.例如,这显然也是我们面对“努力提升学生的核心素养”这一总体性教育思想应当采取的立场,特别是,我们不应满足于能够正确地去复述“核心素养”的“3个方面、6大要素、18个基本要点”,并能通过逐条对照去发现每一堂课的不足之处与努力方向;恰恰相反,作为数学教育工作者,我们应当进一步去思考数学作为一门基础学科对于提升个人与社会的整体性素养究竟有哪些特别重要、甚至是不可取代的作用,并能通过“理论的实践性解读”很好落实于自己的每一天工作、每一堂课!以下就是笔者在这一方面的具体思考:数学教育的主要目标应是促进学生思维的发展,特别是,能帮助学生逐步学会更清晰、更深入、更全面、更合理地进行思考,并能由理性思维逐步走向理性精神.3进而,这又应被看成“高观点指导下的数学教学”的主要涵义,即我们应当通过自己的教学很好落实上述的主张,而不应满足于数学基础知识与基本技能•2•中学数学月刊2021年第5期的教学.简言之,数学教学应当努力实现的这样一个境界,即是“用深刻的思想启迪学生”.在此我们并应对“帮助学生学会思维”与“帮助学生学会数学地思维”做出明确的区分.相信读者由以下分析即可清楚地认识到这样一点,包括我们为什么不应将所谓的“三会”(会用数学的眼光观察世界,用数学的思维思考世界,用数学的语言表达世界看成数学教育的主要目标:大多数学生将来未必会从事数学或其他与数学直接相关的工作,“数学思维”也不是唯一合理的思维形式(对于“数学语言”和“数学眼光”我们显然也可引出同样的结论),从而,与后一主张相对照,我们就应更加注重著名数学家波利亚的以下论述:“一个教师,他若要同样地去教他所有的学生一一未来用数学和不用数学的人,那么他在教解题时应当教三分之一的数学和三分之二的常识.对学生灌注有益的思维习惯和常识也许不是一件太容易的事,一个数学教师假如他在这方面取得了成绩,那么他就真正为他的学生们(无论他们以后是做什么工作的)做了好事.能为那些70%的在以后生活中不用科技数学的学生做好事当然是一件最有意义的事情.”5进而,依据上面分析相信读者也可更好理解笔者为什么又要提出努力做好“数学深度教学”这样一个主张,后者即是指,数学教学必须超越具体知识和技能深入到思维的层面,由具体的数学思维方法和策略过渡到一般性的思维策略与思维品质的提升,并应帮助学生由在教师(或书本)指导下进行学习逐步转变为学会学习,包括善于通过同学之间的合作与互动进行学习,从而真正成为学习的主人.简言之,这就是对于这里所说的“高观点”的进一步解读.(2)尽管相关论述提到了三个“深化”或“提升”,但我们并不应将其中的对立双方,如“具体知识和技能的学习”与“思维的学习”等,看成绝对地相互排斥、互不兼容的,我们更不应脱离数学知识、技与数学思的学习性思的教学和努力提升学生的思维品质,而应更加注重后者的渗透与指导,从而使我们的教学达到更大的深度.再者,由于中小学教学内容不同,从而在这方面也应有不同的要求,特别是,我们应根据学生的认知水平很好地去把握相应的“度”,而不应好高x远,脱离实际;但就总体而言,我们又应始终坚持促进学生的思维发展这样一个总方向,特别是,努力做好以下一些方面的工作:联系的观点与思维的深刻性,变化的思想与思的活性)结、思和再与思的性$第五,我们应清楚地看到切实做好“高观点指导下的数学教学”的现实意义:当前的中学数学教学在很大程度上被看成完全集中于“习题教学”,现实中更可看到“题海战术”泛滥这样一个现象;但是,即使我们暂时不去论及如何才能很好地落实“立德”这)依相关做真提升学生解决问题的能力,而只是使我们的学生和教师始终处于巨大的压力之下.因为,正如人们普遍地认识到,学生解题过程中思维策略的产生往往具有以下几个特征[7]:1)非逻辑性,2)快速性,3)个体性,,)或性,而就与教学工的论特与规范性质构成了直接冲突.但在笔者看来,后者恰又更清楚表明了这点,相对个的解题策略或数学思维方法的学习而言,我们应当更加重视一般性思维策略与学生思维品质的提升.另外,尽管解题策略的发现、包括结果的猜想等常常表现为顿悟,也就是“快思”的结果,但这恰又是数学教当发的个要,帮助学学“间的思考”,因为,有过后的间思考相关发现才得的展和清楚的表,包括必要的检验、理解与改进;更一般地说,我们又应特别重视“结、思与再”的工,当此成“长时间思考”的主要内容.但是,上述目标是否真的可行?以下就以初一数学教学为对此做出析$读联系自己的教学做出进一步的分析,这并可被看成先前所提到的“理论的实践性解读”这一思想的具体运用.2用案例说话:聚焦初一数学教学除去具体内容的教学以外,“习题教学”显然也数学教学要的个面,更与“的思想与思维的灵活性”密切相关.由于笔者对此已专门撰文进行了分析-w,在此就不再赘述.⑴如众所知,研究对象由“数”扩展到了由数和的“式”中学数学的个明区,当,对此我们简解“”的,因为,这也意味着达到了更高的抽象层次,并为学生逐步学会用“联系的观点”进行分析思考、从而达到更大的了很好的入点,当,后为指导教学有益学更好握相关的识和技能.具体地说,尽管我们在此关注的主要是“式”的运算,但又应当将此与学生已学过的数的运算联系起来,更好地发挥“类比”这一方法在认识活动中的2021年第5期中学数学月刊•3•重要作用,特别是,我们应以学生已学过的数的知识为背景帮助他们很好地建立关于新的学习内容的整体性认识,从而就可在学习中获得更大的自觉性.例如,“式的运算”的学习也是按照由“加减”到“乘除”这样一个顺序逐步展开的;我们还可通过“乘法公式”“因式分解”与小学所学的“速算法”和“数的分解”的直接类比帮助学生更好掌握相关的内容.当然,除去所说的“共同点”以外,我们也应十分重视它们的不同点,即如“同类项”概念的引入等.另外,在直接的比关,由“式”与“因式分解”的学习更加集中,从而我们在教学中也就不应唯一关注计算技能的掌握,而应更加突出这样一个思想,即我们应当善于根据需要与情境对“式”做出适当变形,这可以看成“变化的思想与思维的灵活性”的具体应甩当然,从更高的层面看,这一内容的学习也有助于学生很好认识成功应用“类比联想”的这样一个关键:“求同存异”.再者,由于学生在小学阶段往往未能很好建立起关于“数学结构”的整体性认识,特别是清楚地认识它的丰富性和层次性,因此,我们在教学中就学对相关内容做出和“再认识”,从而很好地实现这样一个目标:“以发展代替重复,以深刻达成简约”.①当然,“式”的引入也更清楚地表明了数学结构的层次性质——从认识的角度看,这意味着达到了更高的抽象层次,包括这样一个更深层次的认识:我们应将“优化”看成数学学习的本质.(2)如果说“由少到多,由简单到复杂”即可被看成数学发展的基本形式,那么,数学认识的发展就可被归结为“化多为少,化复杂而简单”,从而也就更清楚地表明了这样一点:数学学习主要是一个不断优化的过程,而不仅仅是指知识和技能以及“数学经验”的简单积累,尽管后者确又可以被看成为认识的发展和深化提供了现实的可能性和必要的途径.特殊地,我们显然也可从上述角度更好认识学习方程的意义,包括通过这一内容的学习帮助学生很好认识“优化”对于数学学习的特殊重要性,从而逐步地学会学习,并能真正成为学习的主人.进而,从上述角度我们显然也可更好理解笔者的这样一个看法:如果说小学阶段教师不允许学生用由各种非正规渠道提前学到的方程方法去求解算术应用题尚有一定道理,因为,这时学生对于方程的掌握往往只是一种机械的运用,而未能达到真正的理解,而且,算术应用题的学习对于学生学会思维也有重要作用;那么,在初中学习方程时再做出类似的规定,也即只允许学生用方程方法、而不准用算术方法去求解问题,就可说完全没有道理.因为,解题教学最重要的目标就是努力提升学生解决问题的能力,而后者主要地又是指我们能否综合地、灵活地应用各种方法去解决问题,而不是指所使用的方法是否符合某种外部的硬性规定一一也正因此,上述规定事实上就只能被看成解题活动“程式化和机械化”的一种表现.™与此相对照,我们应当更加重视如何能够帮助学生很好认识方程方法相对于算术方法的优点,又由于优化的实现主要取决于我们能否使之真正成为学生的自觉选择,而非基于外部压力的被动服从.因此,我们在教学中也就应当特别重视比较与反思的工作,这也就是指,教学中我们不仅不应禁止学生用算术方法求解问题,还应积极鼓励他们用多种不同的解决)特)更有意让学生有更多时间进行比较和体会,包括认真的反思,从而就不仅可以顺利地实现相关的过渡或优化,也可通过这一过程很好地体会到养成长时间思考的习惯和能力、特别是“总结、反思与再认识”的重要性$最后)我们可通过程的教学帮助学数学发展的形式和径)后指)相关内容的学习有定的间)在学握了程的相关后)我们可引导他们对将来的学习做出“预测”,也即研究对象“由多”“由高”“由程式”等发展的合理性,包括这样一个重要的认识:数学认的发展主要表现为“多为)复为简”)我们并应善于通过类比联想、通过化归去实现上述的目标.(3)尽管上述分析集中于“式的运算”与“方程”的教学,我们显然也可从同一角度对初一数学的其他内容做出分析,包括它们各自又有什么特殊之处.例如,除去“数学结构”的丰富性和层次性以外,负数的引入显然也有助于我们更好地认识数学系统的开放性和发展性,特别是,现实需要并非促进数学发展的唯一因素,在很大程度上也是由数学的①也正因此,对于相关内容的教学我们就不应认为只是涉及到了一些具体技能、特别是有很多学生早已通过各种渠道进行了学习就掉以轻心,即如教学中只是一带而过,而没有注意分析学生是否已经达到了真正的理解,更未能认真地思考如何能够通过自己的教学使学生有新的提高.例如,通过“乘法公式”的学习我们即可对学生是否已经达到了更高的抽象层次做出必要的检验;另外,教学中我们显然也应注意避免这样一种倾向,即仅仅从纯形式的角度去理解相应的“变化”,如“计算”与“因式分解”,但却未能很好地指明我们究竟为什么要做出这样的变化,包括我们又如何能够通过相关内容的教学提升学生的思维品质.内在因素决定的,或者说,就是表现出了很强的相对独立性.因为,这正是这方面的一个基本事实:“负数不是测量出来的.凡是能够量出来的都是正数.”进而,由以下论述我们即可更好地认识教学中突出这样一点的重要性:“负数是由具体数学向形式数学的第一次转折.要完全掌握这种转折中出现的问题,需要有高度的抽象能力.”(克莱因语)“我认为超越直观而运用推理方法的首先是负数.”(弗赖登塔尔语)另外,“幕的运算”的学习显然也为我们更好理解“化多为少,化复杂为简单”这样一个思想提供了重要的契机,因为,由高级运算(乘方、乘除)向较低层次运算(乘、加减)的转变正是“幕的运算”的明显特点,从而,我们也就可以以此为背景做出进一步的思考,即我们能否借助“幕的运算”实现运算的简化——如众所知,从历史的角度看,正是后一方面思考直接导致了“对数计算法”的创建,尽管后者的重要性由于计算机的发明已不复存在,但仍可被看成通过适当变化解决问题的又一范例.再则,就几何内容的教学而言,我们则应突出这样一个思想:“数学家有这样的倾向,一旦依赖逻辑的联系能取得更快的进展,他就置实际于不顾.”丄我们更应通过自己的教学帮助学生很好理解采取这一做法的优越性,也即我们应当按照“由简单到复杂”“由一维到高维”这样一个顺序、而不是日常的认识顺序去从事相关的研究,包括逐步形成这样一个更加重要的认识:数学学习的主要功能就是有助于人们思维方式与行为方式的改进.还应强调的是,正如波利亚的上述引言所已表明的,我们不应将“逻辑思维”“数学思维”与“常识(和有益的思维习惯)”绝对地对立起来,而应清楚地看到它们之间的同一性;当然,我们在此所应追求的不是“常识”的简单回归,而是其在更高层面的重构.①(4)通过上述途径我们显然也可帮助学生很好由“数学思”“高数学思”的过渡,而不至于因为中小学数学教学在这方面有不同要求而出现一时无法适应中学数学学习的情况.在此还可特别提及笔者针对小学数学教学提出的这样两个“大道理”()小学关于“数的认识与运算”的教学不仅应当突出“比较”这一核心概念,从而帮助学生很好掌握“大小”“倍数”“分数”“比”等概念,也应帮助学生逐步建立关于“数学结构”的整体性认识,特别是清楚地认识它的丰富性与层次性、开放性与统一性等,并能真正做好“化多为少”“化复杂为简单”,包括更好认识数学与现实世界之间的关系.2)小学几何教学不仅应当突出“度量”这一核心概念,很好发挥直观认知的作用,也应努力实现对于“度量几何”与“直观几何”的必要超越,即应对图形的特征性质及其相互关系的逻辑分析予以足够的重视.显然,如果小学数学能够按照这样的思想去进行教学,传统上中小学数学教学之间的巨大间距就将不复存在.显然,基于同样的理由,中学(特殊地,初中)数学教师也应认真地去思考什么是中学(初中)数学教学的“大”,而为学来的数学学习做好必要的准备.(5)我们还可从同一角度对其他一些密切相关的问题做出自己的分析,如教学中为什么应给学生更多的表述机会,包括积极提倡“合作学习”这样一种学习方式.因为,这些都十分有益于学生的深入思考,如表述前主体显然必须对自己的想法做出梳理、评价与改进,仔细倾听别人的想法也十分有助于学生通过比较、反思与再认识对自己的已有想法做出改进,等等.当然,教师也应在这些方面给学生必要的指导,而不只是停留于“大声地说、仔细地听”这的性要再者,就当前而言,这应当说又是特别重要的一个认识:数学教育的主要任务应是帮助学生学会思维、乐于思维,而不是学会解题,我们更不应唯一集中于如何能够通过大量练习、机械记忆和简单模仿使学生在各类考试中取得较好成绩.毋宁说,即使在这面我们通过更高面的析做“而精”,包括通过“习题教学”的改进更有效地促进学生思维的发展,从而自然也就能够取得更好的成绩.最后,尽管我们在此是以初一数学教学作为直接对象行析的)相关结论有超出这范围的普遍意义,后者即是指,无论就小学、初中或高中的数学教学,或是课堂教学和习题教学而言,我们都应以“促进学生思维的发展”作为主要的指导思想)“教学”为数学教学的主要笔在这面有这个:有在做出持续努力,也即很好地落实不同阶段数学教学的同一性与连续性,我们才能对于“努力提升学生的核心”这教的性做出己的有贡献,并切实防止与纠正因深深陷入“应试教育”而无法自拔这样一个巨大的危险.愿我们大家都能在上述方向做出切实的努力!(下转第14页)①在笔者看来,我们也可从后一角度去理解弗赖登塔尔的这样一个论述:“数学的本质是人们的常识4''R.绍其引入的必要性来帮助学生自然地内化相关知识.3.2引导学生积极表达数学能力的培养离不开数学思想的交流,观点与观点的碰撞交流往往能够迸发出对数学内容更深层次的理解,而学生是否愿意交流则显得很关键.课堂的数学交流一般是由教师发起并进行引导,教师在数学交流过程中的作用至关重要,在引导的过程中,能否激发学生的表达兴趣与欲望对交流的质量有重要的影响.在交流过程中,教师可以通过将最终的问题分拆为几个难度逐级递增的小问题来培养学生的成就感、激发学生的表达欲望.当学生遇到表达困难时,可以及时对所提问题进行解释或者补充描述,鼓励学生说出哪怕部分观点和想法,也可以在提出问题以后给予学生足够的交流和思考的时间.在交流表达的过程中,鼓励学生及时地对同伴的交流内容进行补充与反馈,培养学生的自我效能和思辨意识. 3.3丰富交流表达方式数学交流与表达的形式比较多样,既可以是生生之间的对话,也可以是师生之间的讨论,甚至可以是与数学书面形式语言的交流.信息传递的方向可以是阐述自我观点的输出,也可以是对对方观点聆听的输入.表达的方式既可以是口头表达,也可以是书面表达,以上种种丰富的表达形式为教师的教学提供了不同的选择.教师可以让学生用自己喜欢的方式进行数学交流.比如将思维过程用语言、算式、图表等记录下来进行展示,或者在教学过程中通过小组合作的形式,选派小组代表进行数学观点的表述和交流,然后同(上接第4页)参考文献-1.章勤琼.小学阶段“早期代数思维”的内涵及教学——默尔本大学教授麦克斯•斯蒂芬斯访谈录[J..小学教学,2016(11).-2.刘月霞,郭华.深度学习:走向核心素养(理论普及读本)[M..北京:教育科学出版社,2018(6-37.-3.郑毓信.数学教育视角下的“核心素养”[J..数学教育学报,2016(3).-4.史宁中.人是如何认识和表达空间的[J..小学教学,2019(3).-5.波利亚.数学的发现(第二卷)[M..内蒙古:内蒙古人民出版社,1981(82.-6.郑毓信.“数学深度教学”的理论与实践[J..数学教学2019(5)伴进行补充,还可以通过数学写作的方式与别人交流自己在学习中的收获,或者通过为学生提供表达的逻辑框架,让学生的表达形式更加规范,并在此过程中提高表达的能力.数学交流的目的是为了更好地理解数学,而理解数学的目的又是为了更好地交流,数学理解和数学交流之间是互为因果的关系.教师在教学过程中了可通过高学的表达)可以通过为学生提供规范的表达示范一一教师本身就是数学表达很好的榜样,引导学生关注数学的多重表征以增加表达方式的选择、加强数学阅读指导以丰富和完善数学语言系统、关注学生语言表达过程中的缺陷以及时完善语言表达等方式,对初中生的与表达行参考文献-1.和学新.论数学教学的表达策略[J..数学教育学报,2006(4)(94-96-2.王薇.数学交流表达能力目标:中美两国的比较及启示[J..外国中小学教育,2016(11):59-64.-3.中华人民共和国教育部.义务教育数学课程标准(2011年版)-M..北京:北京师范大学出版社2012-4.邓清,夏小刚.数学思维视域下“教表达”的再认识与思考数学教育学报,2019,28(5):47-50.-5.夏鹏翔,部舒竹.日本小学数学教育改革新动向——培养“表达能力比较教育研究,2011,33(9):86-90-6.史宁中,林玉慈,陶剑等.关于高中数学教育中的数学核心素养——史宁中教授访谈之七课程•教材•教法,2017,37(4):8-14.[7.戴再平.数学习题理论[M..上海:上海教育出版社,1991:96-97.-.郑毓信.中学数学解题教学之我见-..中学数学月刊202010-11"4-9.郑毓信.“数学深度教学”十讲-..小学数学教师, 2019(7-8)〜2020(5).-0.郑毓信.高观点指导下的小学数学教学(14)[M..福建教育,2020(11)〜2021(1-3).-11.郑毓信.初中数学教学之忧思与建言[M..数学教学,2020(12).-12.弗赖登塔尔.作为教育任务的数学[M..上海:上海教育出版社,1995:45.-13.唐瑞芬.弗赖登塔尔在中国-..数学教学,2003(5),。
第三章课后作业
一、必做作业:
1. 用两种方法求下列函数的极值: (1)3
31y x x =-+
解:
解法一:332
-='x
y ,x y 6='',
令0='y ,得到:1±=x ,当1=x 时,0>''y ,y 取得极小值且1-=极小值y ;当1-=x 时,0<''y ,y 取得极大值且3=极大值y ;
解法二:令: 32031()()y x x x x x αβ=-+=-++
3
2
2
2
0000(2)(2)x x x x x x x αααβ=+-+-++
比较系数得到: ① 020=-x α;②32020-=-x x α;③12
0=+βαx
由①得02x =α,代入②得12
0=x ,故,1100-==x x 或。
若10
=x ,则,2=α,代入③得1-=β,从而有:
1)2()1(2-+-=x x y ;
当x 在1的附近,显然有02>+x ,又0)1(2
≥-x ;所以:11)2()1(2
-≥-+-=x x y ,即函数y 在处10=x 取得极小值-1.
若10
-=x ,则,2-=α,代入③得3=β,从而有:
3)2()1(2+-+=x x y ;
当x 在-1的附近,显然有02<-x ,又0)1(2≥+x ;所以:33)2()
1(2
≤+-+=x x y ,即函数y 在处10-=x 取得极大值3.
(2)3
2
23121y x x x =--+. 解:
解法一: 12662
--='x x
y ,612-=''x y ,
令0='y ,得到:12-=或x ,当2=x 时,0>''y ,y 取得极小值且19-=极小值
y ;当1-=x 时,0<''y ,
y 取得极大值且8=极大值y ;
解法二:
32203222
0000231212()() 22(2)2(2)2y x x x x x x x x x x x x x αβαααβ
=--+=-++=+-+-++令
比较系数得:
①3)2(20-=-x α;②12)2(202
0-=-x x α;③122
0=+βαx 由①得2
320-
=x α
,代入②得0202
0=--x x ,故,1200-==x x 或。
若20=x ,则,2
5
=α,代入③得19-=β,从而有:
19
)2
5
()2(22-+-=x x y ;当
x 在
2的附近,显然有
02
5
>+
x ,又0)2(2
≥-x ;
所以:1919)2
5
()2(22
-≥-+-=x x y ,即函数y 在处20=x 取得极小值-19. 若10
-=x ,则,2
7
-
=α,代入③得8=β,从而有: 8)2
7()1(22
+-+=x x y ;
当x 在-1的附近,显然有027<-x ,又0)1(2
≥+x ;所以:88)2
7
()1(22
≤+-+=x x y ,即函数y 在处10-=x 取得极大值8.
2. 问当,x y 取何值时,22(,)56214812f x y x xy y x y =++--+取得最小值.
解:先求二次函数的偏导数⎩⎨⎧-+=-+=8
4614
610y x f y x f y x ,并令0;0==y x f f ,解得
1,2-==y x ,此为),(y x f 的驻点,且),(y x f 在2R 上是连续的,因此在点
(2,-1)上取得最小值2。
即当1,2-==y x 时,
),(y x f 取得最小值2.
3. 有一个繁华的商场,一天之中接待的顾客数以千计,川流不息.如果商场有一个重要广告,想使所有的顾客都能听到,又已知当天任意的3个顾客中,至少有两个在商场里相遇.问商场至少广播几次,就能使这一天到过商场里的所有顾客都能听到.
解:依题意,顾客人数至少为三人,当第一个顾客到来时,为了使广播的次数少一些,可以先不播,一直等到有人要离开商场时,则必须开播。
可见,第一次
广播应在第一个顾客将离开而未离开商场之前。
第一次开播时,第2,3位顾客可能到了,也可能未到,考虑最坏的情况,他们还未进来或还未全进来,那么第二次开播则应在第三个顾客进来之后。
而第二个顾客根据条件则知道,他一定会在第一个顾客离开之前进来,或在第三个顾客进来之后才离开,因此,他一定听到广播。
所以,至少播2次就可以了。
这个对任意的3≥n 也成立。
设:第一个离去的顾客为A ,最后一个进来的顾客为B ,若按上述方法广播2次之后,仍有顾客C 没听见,则C 必在A 离去之后才进来,且在B 进来之前就离去,于是C 与A 、B 均未相遇。
这与已知条件矛盾。
所以,商场至少需要广播2次,当天全体顾客都可以听到了。
4.
22101x x
-+>+. 解:原式可化为:①01112
22>+-++x
x x x ,由于012
>+x ,因此,只要01122>-++x x x ,①式即可成立。
因此
110112222->+⇔>-++x x x x x x ②
(1)当1≥x 时,不等式②两边均为正数,两边平方符号不变,即
222424221
((1)213
x x x x x x >-⇔+>-+⇔>
1x x x ⇔>
<≥从而; (2)当1-≤x 时,01,0122>-<+x x x 而,从而不等式②不成立,无解;
(3)当10<≤
x 时,01,0122<->+x x x ,从而不等式②恒成立,即不
等式的解为10<≤x ;
(4)当01<<
-x 时,不等式②两边均为负数,两边平方符号改变,即
3
3
,333331)1()1(2
2
2
2
2
<<-<<-⇔<⇔-<+x x x x x x 从而
综上所述,可以知道不等式的解集为⎭⎬⎫
⎩
⎨⎧->33x x .
5. 设0,1,2,i a i >=…,n 求证:12121212(
)n n
a a a a a a n n a a a a a a n
++++≥ .
证明:原不等式等价于12121212ln()ln()n n
a a a a a a n n a a a a a a n
+++++≥ ,即要证明:
n
a a a a a a a a a a a a n
n n n ++++≥++21212211ln
)(ln ln ln 。
设函数
0,ln )(>=x x x x f ,求得1ln )(+='x x f ,
x
x f 1
)(=
'',由于
0)(,0>''>x f x 从而有,因此,)(x f 在定义域0>x 上为凹函数,则由凹函
数的性质可知: )()()()(,02121n
a a a f n a f a f a f a n
n i
++≥++>∀有
,从而有
n a a a n a a a n a a a a a a n
n n n ++++≥++21212211ln
ln ln ln 成立,即n
a a a a a a a a a a a a n
n n n ++++≥++21212211ln
)(ln ln ln .
因此,原不等式成立.。