第15讲 弯曲切应力、弯曲强度条件
- 格式:doc
- 大小:388.50 KB
- 文档页数:6
材料力学笔记之——弯曲切应力、梁的强度条件横力弯曲的梁横截面上既有弯矩又有剪力,所以横截面上既有正应力又有切应力。
下面,讨论几种常见截面梁的弯曲切应力。
矩形截面从发生横力弯曲的梁上截取长度为dx的微段,该段梁上没有载荷作用,微段两侧截面上的剪力相等,但方向相反。
右侧截面上的弯矩相对左侧截面有增量,因为弯矩不等,因而两截面上的正应力也不相同。
对于狭长矩形截面,由于梁的侧面上无切应力,根据切应力互等定理,截面上两侧边各点处的切应力与边界相切,即与边界平行,梁发生对称弯曲,对称轴y轴上的切应力一定沿着y方向,在狭长截面上切应力沿宽度方向变化不大。
于是,关于横截面上切应力的分布规律,作以下假设:横截面上各点的切应力的方向都平行于剪力;切应力沿截面宽度均匀分布,即与中性轴平行的横线上各点的切应力大小相等。
截面高宽比大于2的情况下,以上述假定为基础得到的解与弹性理论的精确解相比,有足够的精确度。
根据切应力互等定理,横截面垂直的纵向截面上应存在与横截面上大小相等的切应力。
沿矩中性轴距离y的纵向面把微段截开,取纵向面下侧微元,受力如图所示。
左侧截面上正应力的合力为右侧截面上正应力的合力为显然这两个合力大小不等,纵向截面上必存在一个沿轴向的力使微段保持平衡,这个力为切应力的合力,这也证明了纵向截面上存在切应力,由于d x 是小量,则设纵向面的切应力均匀分布根据平衡条件即其中由切应力互等定理及剪力与弯矩之间的微分关系可得其中:b为截面上矩中性轴为y的横线的宽度,对于矩形截面为常数;I z为整个横截面对中性轴的惯性矩;S z*为横截面上矩中性轴为y的横线以外部分的面积对中性轴的静矩;F s为横截面上的剪力。
其中代入切应力计算公式切应力沿截面高度为抛物线分布,当y=0时,即中性轴处有截面上的最大切应力角应变为可见角应变大小沿截面高度也为抛物线分布,此时横力弯曲时横截面翘曲形状如下图,验证了横力弯曲变形不满足平面假设。
剪力不变的横力弯曲,相邻横截面上的切应力相同,翘曲程度也相同,纵向纤维的长度不因截面翘曲而改变,因此不会引起附加的正应力。
第8章 弯曲变形本章要点【概念】平面弯曲,剪力、弯矩符号规定,纯弯曲,中性轴,曲率,挠度,转角。
剪力、弯矩与荷载集度的关系;弯曲正应力的适用条件;提高梁的弯曲强度的措施;运用叠加法求弯曲变形的前提条件;截面上正应力分布规律、切应力分布规律。
【公式】 1. 弯曲正应力 变形几何关系:yερ=物理关系:Ey σρ=静力关系:0N AF dA σ==⎰,0y AM z dA σ==⎰,2zz AAEI EM y dA y dA σρρ===⎰⎰中性层曲率:1MEIρ=弯曲正应力应力:,My Iσ=,max max z M W σ=弯曲变形的正应力强度条件:[]maxmax zM W σσ=≤ 2. 弯曲切应力矩形截面梁弯曲切应力:bI S F y z z S ⋅⋅=*)(τ,A F bh F S S 2323max ==τ工字形梁弯曲切应力:dI S F y z z S ⋅⋅=*)(τ,A F dh F S S ==max τ圆形截面梁弯曲切应力:bI S F y z z S ⋅⋅=*)(τ,A F S 34max =τ弯曲切应力强度条件:[]ττ≤max3. 梁的弯曲变形梁的挠曲线近似微分方程:()''EIw M x =-梁的转角方程:1()dwM x dx C dx EIθ==-+⎰ 梁的挠度方程:12()Z M x w dx dx C x C EI ⎛⎫=-++ ⎪⎝⎭⎰⎰ 练习题一. 单选题1、 建立平面弯曲正应力公式zI My /=σ,需要考虑的关系有()。
查看答案A 、平衡关系,物理关系,变形几何关系B 、变形几何关系,物理关系,静力关系;C 、变形几何关系,平衡关系,静力关系D 、平衡关系, 物理关系,静力关系;2、 利用积分法求梁的变形,不需要用到下面那类条件()来确定积分常数。
查看答案A 、平衡条件B 、边界条件C 、连续性条件D 、光滑性条件3、 在图1悬臂梁的AC 段上,各个截面上的()。
第六章 弯曲应力和强度1、 纯弯曲时的正应力 横力弯曲时,0≠=Q dxdM。
,纯弯曲时,梁的横截面上只有弯曲正应力,没有弯曲剪应力。
根据上述实验观察到的纯弯曲的变形现象,经过判断、综合和推理,可作出如下假设: (1)梁的横截面在纯弯曲变形后仍保持为平面,并垂直于梁弯曲后的轴线。
横截面只是绕其面内的某一轴线刚性地转了一个角度。
这就是弯曲变形的平面假设。
(2)梁的纵向纤维间无挤压,只是发生了简单的轴向拉伸或压缩。
(2)物理关系根据梁的纵向纤维间无挤压,而只是发生简单拉伸或压缩的假设。
当横截面上的正应力不超过材料的比例极限P ρ时,可由虎克定律得到横截面上坐标为y 处各点的正应力为y EE ρεσ==该式表明,横截面上各点的正应力σ与点的坐标y 成正比,由于截面上ρE为常数,说明弯曲正应力沿截面高度按线性规律分布,如图所示。
中性轴z 上各点的正应力均为零,中 性轴上部横截面的各点均为压应力,而下部各点则均为拉应力。
(3)静力关系截面上的最大正应力为zI My maxmax =σ 如引入符号m axy I W zz =则截面上最大弯曲正应力可以表达为zW M=max σ 式中,z W 称为截面图形的抗截面模量。
它只与截面图形的几何性质有关,其量纲为[]3长度。
矩形截面和圆截面的抗弯截面模量分别为: 高为h ,宽为b 的矩形截面:621223maxbh h bh y I W zz ===直径为d 的圆截面:3226433maxd d d y I W z z ∏=∏==至于各种型钢的抗弯截面模量,可从附录Ⅱ的型钢表中查找。
若梁的横截面对中性轴不对称,则其截面上的最大拉应力和最大压应力并不相等,例如T 形截面。
这时,应把1y 和2y 分别代入正应力公式,计算截面上的最大正应力。
最大拉应力为:zt I My 1)(=σ 最大压应力为:ze I My 2)(=σ 2、横力弯曲时的正应力zI My=σ 对横力弯曲时的细长梁,可以用纯弯曲时梁横截面上的正应力计算公式计算梁的横截面上的弯曲正应力。
第15讲教学方案——弯曲切应力、弯曲强度条件
§5-3 弯曲切应力
梁受横弯曲时,虽然横截面上既有正应力
σ,又有剪应力 τ。
但一般情况下,剪应力对
梁的强度和变形的影响属于次要因素,因此对由剪力引起的剪应力,不再用变形、物理和静力关系进行推导,而是在承认正应力公式(6-2)仍然适用的基础上,假定剪应力在横截面上的分布规律,然后根据平衡条件导出剪应力的计算公式。
1.矩形截面梁
对于图6-5所示的矩形截面梁,横截面上作用剪力Q 。
现分析距中性轴z 为y 的横线1aa 上的剪应力分布情况。
根据剪应力成对定理,横线1aa 两端的剪应力必与截面两侧边相切,即与剪力Q 的方向一致。
由于对称的关系,横线1aa 中点处的剪应力也必与Q 的方向相同。
根据这三点剪应力的方向,可以设想1aa 线上各点剪应力的方向皆平行于剪力Q 。
又因截面高度h 大于宽度b ,剪应力的数值沿横线1aa 不可能有太大变化,可以认为是均匀分布的。
基于上述分析,可作如下假设:
1)横截面上任一点处的剪应力方向均平行于剪力 Q 。
2)剪应力沿截面宽度均匀分布。
基于上述假定得到的解,与精确解相比有足够的精确度。
从图6-6a 的横弯梁中截出dx 微段,其左右截面上的内力如图6-6b 所示。
梁的横截面尺寸如图6-6c 所示,现欲求距中性轴z 为y 的横线1aa 处的剪应力 τ。
过1aa 用平行于中性层的纵截面11cc aa 自dx 微段中截出一微块(图6-6d )。
根据剪应力成对定理,微块的纵截面上存在均匀分布的剪应力 τ'。
微块左右侧面上正应力的合力分别为1N 和2N ,其中
*
1I 1**
z z
A
z
A S I M dA I My dA N ==
=⎰⎰σ (a )
*
1II 2)()(*
*
z z
A
z A S I dM M dA I y dM M dA N +=+=
=⎰⎰σ (b) 式中,*A 为微块的侧面面积,)(II I σσ为面积*A 中距中性
轴为 1y 处的正应力,⎰=
*
1
*A
z dA y S 。
由微块沿x 方向的平衡条件
∑=0x ,得
021='-+-dx b N N τ (c )
将式(a )和式(b )代入式(c ),得
0*
='-bdx S I dM z z
τ 故 z
z
bI S dx dM *
='τ
因
ττ='=,Q dx
dM
,故求得横截面上距中性轴为 y 处横线上各点的剪应力τ为 z
z
bI QS *=τ (6-3) 式(6-3)也适用于其它截面形式的梁。
式中,Q 为截面上的剪力; z I 为整个截面对中
性轴z 的惯性矩;b 为横截面在所求应力点处的宽度;*
y S 为面积*A 对中性轴的静矩。
对于矩形截面梁(图6-7),可取1bdy dA =,于是
)4
(222
2111*
y h b dy by dA y S h y
A
z
-===⎰
⎰
这样,式(6-3)可写成
)4
(222
y h I Q z -=τ
上式表明,沿截面高度剪应力 τ按抛物线规律变化(图6-7b )。
在截面上、下边缘处, y=±
2
h
,τ=0;在中性轴上,z=0,剪应力值最大,其值为
A
Q
23max =
τ (6-4) 式中A =bh ,即矩形截面梁的最大剪应力是其平均剪应力的2
3倍。
2.圆形截面梁
在圆形截面上(图6-8),任一平行于中性轴的横线aa 1两端处,剪应力的方向必切于圆周,并相交于y 轴上的c 点。
因此,横线上各点剪应力方向是变化的。
但在中性轴上各点剪应力的方向皆平行于剪力Q ,设为均匀分布,其值为最大。
由式(6-3)求得
A
Q
34max =
τ (6-5) 式中24
d A π
=
,即圆截面的最大剪应力为其平均剪应力
的3
4倍。
3.工字形截面梁
工字形截面梁由腹板和翼缘组成。
式(6-3)的计算结果表明,在翼缘上剪应力很小,在腹板上剪应力沿腹板高度按抛物线规律变化,如图6-9所示。
最大剪应力在中性轴上,其值为
Z
z dI S Q max
max
)(*=
τ 式中(S *z )max 为中性轴一侧截面面积对中性轴的静矩。
对于轧制的工字钢,式中的max
*
)(z z
S I 可以从型
钢表中查得。
计算结果表明,腹板承担的剪力约为(0.95~0.97)Q ,因此也可用下式计算τmax 的近似
值
d
h Q 1max ≈
τ 式中h 1为腹板的高度,d 为腹板的宽度。
§5-4 弯曲强度计算
根据前节的分析,对细长梁进行强度计算时,主要考虑弯矩的影响,因截面上的最大正应力作用点处,弯曲剪应力为零,故该点为单向应力状态。
为保证梁的安全,梁的最大正应力点应满足强度条件
][max
max max σσ≤=
z
I y M (6-6) 式中][σ为材料的许用应力。
对于等截面直梁,若材料的拉、压强度相等,则最大弯矩的所在面称为危险面,危险面上距中性轴最远的点称为危险点。
此时强度条件(6-6)可表达为
][max
max σσ≤=
z
W M (6-7) 式中
z W =
max
y I z
(6-8) 称为抗弯截面系数(或抗弯截面模量),其量纲为[长度]3。
国际单位用m 3或mm 3。
对于宽度为 b 、高度为 h 的矩形截面,抗弯截面系数为
6
2122
3
bh h bh W z ==
(6-9) 直径为 d 的圆截面,抗弯截面系数为
32
2
643
4
d d
d W z ππ
== (6-10)
内径为 d ,外径为 D 的空心圆截面,抗弯截面系数为
()
()4
3
4
4
1322
164
απαπ-=-=D D
D W z , D
d
=α (6-11) 轧制型钢(工字钢、槽钢等)的 z W 可从型钢表中查得。
对于由脆性材料制成的梁,由于其抗拉强度和抗压强度相差甚大,所以要对最大拉应力点和最大压应力点分别进行校核。
根据式(6-7),可以解决三类强度问题,即强度校核,截面设计和许用载荷计算。
需要指出的是,对于某些特殊情形,如梁的跨度较小或载荷靠近支座时,焊接或铆接的壁薄截面梁,或梁沿某一方向的抗剪能力较差(木梁的顺纹方向,胶合梁的胶合层)等,还需进行弯曲剪应力强度校核。
等截面直梁的max τ一般发生在 max Q 截面的中性轴上,此处弯曲正应力0=σ,微元体处于纯剪应力状态,其强度条件为
()
][max
max max
ττ≥=
*
z
z bI S Q (6-12)
式中][τ为材料的许用剪应力。
此时,一般先按正应力的强度条件选择截面的尺寸和形状,然后按剪应力强度条件校核。