弯曲应力及强度设计(问题)
- 格式:ppt
- 大小:328.50 KB
- 文档页数:15
弯曲变形的强度条件和强度计算当梁受到一组垂直于其轴线的力即横向力或位于轴线平面内的外力偶作用时,梁的轴线由一条直线变为曲线,称为弯曲变形。
如果梁的几何形状材料性能和外力都对称于梁的纵向对称面则称为对称弯曲。
如果梁变形后的轴为形心主惯性平面内的平面曲线则称为平面弯曲。
本课程中主要研究以对称弯曲为主的平面弯曲,如图1所示。
图1 平面弯曲一、梁弯曲时的内力——剪力和弯矩梁的横截面上有两个分量——剪力和弯矩,它们都随着截面位置的变化而变化,可表示为F S=F S(x)和M=M (x),称为剪力方程和弯矩方程。
为了研究方便,通常对剪力和弯矩都有正负规定:使微段梁发生顺时针转动的剪力为正,反之为负,如图2所示;使微段梁上侧受拉下侧受压的弯矩为正,反之为负,如图3所示。
图2 剪力的正负图3 弯矩的正负例1:试写出下图所示梁的内力方程,并画出剪力图和弯矩图。
解:(1)求支反力=∑C M:0310126=⨯--⋅AyF,kN7=AyF=∑Y:010=-+ByAyFF,kN3=ByF(2)列内力方程剪力:⎩⎨⎧<<-<<=63kN33kN7)(S xxxF弯矩:⎩⎨⎧≤≤≤≤⋅-⋅-=633mkN)6(3mkN127)(xxxxxM(3)作剪力图和弯矩图二、梁弯曲时的正应力在一般情况下,梁的横截面上既有弯矩又有剪力。
若梁上只有弯矩没有剪力,称为纯弯曲。
本讲主要讨论纯弯曲时横截面上的应力——正应力。
梁横截面上的正应力大小与该点至中性轴的距离成正比,即正应力沿截面宽度均匀分布,沿高度呈线性分布,如图4所示。
图4 梁弯曲时的正应力分布图即有yIxMz)(=σ(1)中性轴把截面分成受拉区和受压区两部分,且最大拉应力和最大压应力发生在上下边缘处,其值为max max y I Mz=σ。
令max y I W z z=,即有:zW M =max σ (2)式中,W z 称为抗弯截面系数,它与横截面的几何尺寸和形状有关,量纲为[长度]3,常用单位为mm 3或m 3。
梁的应力及强度计算梁是一种常见的结构元件,用于承受或分配荷载。
在设计和分析梁的过程中,计算梁的应力及强度是非常重要的。
本文将详细介绍梁的应力及强度计算方法。
首先,梁的应力定义为单位面积上的力,用公式表示为:σ=M*y/I其中,σ表示梁的应力,M表示梁的弯矩,y表示距离中性轴的垂直距离,I表示梁的截面惯性矩。
梁的应力通常包括弯曲应力、剪切应力和轴向应力。
弯曲应力是由于弯曲力引起的应力,计算公式为:σ_b=M*y/I其中,σ_b表示弯曲应力。
剪切应力是由于纵向剪力引起的应力,计算公式为:τ=V*Q/(b*t)其中,τ表示剪切应力,V表示纵向剪力,Q为形状系数,b为梁的宽度,t为梁的厚度。
轴向应力是由于轴向力引起的应力,计算公式为:σ_a=N/A其中,σ_a表示轴向应力,N表示轴向力,A表示梁的截面积。
梁的强度是指在给定的荷载下梁能够承受的最大应力。
在计算梁的强度时,通常需要将不同种类的应力进行合并。
弯曲强度是指梁在弯曲荷载下的抗弯矩能力。
根据材料的弯曲性能和形状,可以采用破坏理论或变形理论计算梁的弯曲强度。
剪切强度是指梁在剪切荷载下的抗剪切能力。
根据材料的剪切性能和梁的几何形状,可以计算出梁的剪切强度。
轴向强度是指梁在轴向荷载下的抗轴向力能力。
轴向强度的计算通常基于材料的抗拉性能。
在进行梁的应力及强度计算时,还需要考虑其他因素,如材料的弹性模量、断裂韧性和安全系数等。
总之,梁的应力及强度计算是结构设计和分析中必不可少的一部分。
通过合理的计算方法,可以确保梁在荷载下的正常工作和安全使用。
工程力学中的弯曲应力和弯曲变形问题的探究与解决方案引言:工程力学是研究物体受力和变形规律的学科,其中弯曲应力和弯曲变形问题是工程力学中的重要内容。
本文将探讨弯曲应力和弯曲变形问题的原因、计算方法以及解决方案,旨在帮助读者更好地理解和应对这一问题。
一、弯曲应力的原因在工程实践中,当梁、梁柱等结构承受外力作用时,由于结构的几何形状和材料的力学性质不同,会导致结构发生弯曲变形。
弯曲应力的产生主要有以下几个原因:1. 外力作用:外力作用是导致结构弯曲的主要原因之一。
例如,悬臂梁受到集中力的作用,会导致梁的一侧拉伸,另一侧压缩,从而产生弯曲应力。
2. 结构几何形状:结构的几何形状对弯曲应力有直接影响。
例如,梁的截面形状不均匀或不对称,会导致弯曲应力的分布不均匀,从而引起结构的弯曲变形。
3. 材料力学性质:材料的力学性质也是导致弯曲应力的重要因素。
不同材料的弹性模量、屈服强度等参数不同,会导致结构在受力时产生不同的弯曲应力。
二、弯曲应力的计算方法为了准确计算弯曲应力,工程力学中提出了一系列的计算方法。
其中最常用的方法是梁的弯曲方程和梁的截面应力分析。
1. 梁的弯曲方程:梁的弯曲方程是描述梁在弯曲过程中受力和变形的重要方程。
根据梁的几何形状和受力情况,可以得到梁的弯曲方程,并通过求解该方程,计算出梁在不同位置的弯曲应力。
2. 梁的截面应力分析:梁的截面应力分析是通过分析梁截面上的应力分布情况,计算出梁在不同位置的弯曲应力。
该方法根据梁的几何形状和材料的力学性质,采用静力学平衡和弹性力学理论,计算出梁截面上的应力分布,并进一步得到梁的弯曲应力。
三、弯曲变形问题的解决方案针对弯曲变形问题,工程力学提出了一系列的解决方案,包括结构改进、材料选择和加固措施等。
1. 结构改进:对于存在弯曲变形问题的结构,可以通过改进结构的几何形状,增加结构的刚度,从而减小结构的弯曲变形。
例如,在梁的设计中,可以增加梁的截面尺寸或改变梁的截面形状,以增加梁的抗弯刚度。
6-3、图示矩形截面梁受集中力作用,试计算1-1横截面上a 、b 、c 、d 四点的正应力。
解:(1)外力分析,判变形。
荷载在纵向对称面内,与轴线垂直,梁发生平面弯曲。
中性轴z 轴过形心C 与载荷垂直,沿水平方向。
(2)内力分析,弯矩图如图(b )所示,1-1横截面的弯矩为:1115230(M -=-⨯=-⋅kN m)(3)应力分析,梁上边有弯矩图,上侧纤维受拉。
1-1横截面上的a 点处于拉伸区,正应力为正;c 点处于中性层上,正应力为零;b 、d 两点处于压缩区,正应力为负。
3111111max2301011.1110.1800.36a a zzzM M M y y I I W σ---⨯=⋅=⋅===⨯⨯Pa MPa 。
11.11b a σσ=-=-MPa0c σ= 31133010(0.1500.050)7.4110.1800.312d d zM y I σ-⨯=-⋅=-⨯-=-⨯⨯Pa MPa37M kN V 图(kN)(a)(c)(b)(c)(e)(d)2+q l /8MkN ·m)(f)(b)180q题6-3图 题6-5图6-5、两根矩形截面简支木梁受均布荷载q 作用,如图所示。
梁的横截面有两种情况,一是如图(b)所示是整体,另一种情况如图(c)所示是由两根方木叠合而成(二方木间不加任何联系且不考虑摩擦)。
若已知第一种情况整体时梁的最大正应力为10MPa ,试计算第二种情况时梁中的最大正应力,并分别画出危险截面上正应力沿高度的分布规律图示。
解:(1)外力分析,判变形。
荷载在纵向对称面内,与轴线垂直,梁发生平面弯曲。
第一种情况中性层为过轴线的水平纵向面,中性轴z 轴过整体形心C 与载荷垂直,沿水平方向。
而第二种情况,两根木梁以各自的水平纵向面为中性层发生弯曲,两根中性轴为与荷载垂直的水平形心主轴。
如图所示。
(2)内力分析,判危险面:弯矩图如图(b )所示,跨中截面为危险面。
弯曲正应力强度条件(一)弯曲正应力强度条件什么是弯曲正应力强度条件?弯曲正应力强度条件是机械工程中重要的概念。
在设计和分析弯曲加载下的结构时,必须考虑结构元素的弯曲正应力强度。
弯曲正应力强度是指在弯曲加载下,结构元素所承受的正应力是否超过其抗弯承载力。
如果正应力超过了抗弯承载力,就会导致结构元素的破坏。
弯曲正应力强度条件的计算方法为了确定结构元素是否满足弯曲正应力强度条件,可以使用以下计算方法:1.计算弯曲强度:通过分析结构元素的几何形状、材料特性和施加的载荷,可以计算出结构元素的抗弯承载力。
这是判断弯曲正应力强度是否满足条件的关键步骤。
2.计算正应力:在确定了结构元素的抗弯承载力后,可以通过应力分析来计算结构元素上产生的正应力。
这可以通过应力公式和几何形状计算得出。
3.比较正应力和抗弯承载力:将计算得到的正应力与抗弯承载力进行比较。
如果正应力小于抗弯承载力,则结构元素满足弯曲正应力强度条件,否则需要进行结构优化或者增加材料强度。
弯曲正应力强度条件的应用领域弯曲正应力强度条件广泛应用于机械工程中。
以下是一些典型的应用领域:•桥梁设计:在桥梁设计中,弯曲正应力强度条件的满足将确保桥梁结构的稳定性和安全性。
工程师需要计算桥梁结构元素在不同载荷下的正应力,并与其抗弯承载力进行比较,以确保结构的可靠性。
•建筑设计:在建筑设计中,弯曲正应力强度条件的考虑能够保证建筑物的承重能力和稳定性。
结构工程师需要对建筑元素的强度进行计算和分析,以确保其满足弯曲正应力强度条件。
•机械设备设计:在机械设备设计中,弯曲正应力强度条件对于保证设备的工作正常运行和寿命具有重要意义。
工程师需要进行强度计算,并对设备结构进行优化,以满足弯曲正应力强度条件。
结论弯曲正应力强度条件是机械工程中不可忽视的重要概念。
通过计算弯曲强度、正应力和比较,我们可以判断结构元素是否满足弯曲正应力强度条件。
合理应用弯曲正应力强度条件,能够保证结构的安全性和可靠性,在不同领域的设计和分析中发挥着至关重要的作用。
弯曲抗压设计强度rw
首先,弯曲抗压设计强度rw的计算通常涉及材料的力学性能,比如抗压强度、杨氏模量等。
这些参数可以通过实验室测试或者材料手册获得。
在计算过程中,需要考虑到材料的弹性和塑性变形,以及可能存在的缺陷和不均匀性。
其次,弯曲抗压设计强度rw还受到结构形状、尺寸和加载方式的影响。
不同形状和尺寸的结构在受到相同载荷时,其弯曲抗压设计强度rw会有所不同。
此外,不同的加载方式(比如静载和动载)也会对rw产生影响。
另外,材料的温度、湿度等环境因素也会对弯曲抗压设计强度rw造成影响。
一些材料在高温或者潮湿环境下会出现强度下降的情况,因此在实际工程中需要考虑这些因素对rw的影响。
最后,对于不同的工程应用,设计师还需要考虑到安全系数的问题。
在实际设计中,通常会将弯曲抗压设计强度rw乘以一个安全系数,以确保结构在使用过程中不会发生失效。
综上所述,弯曲抗压设计强度rw是一个复杂的参数,其计算和
应用需要考虑材料性能、结构形状、加载方式、环境因素和安全系
数等多个方面的因素。
在工程设计中,需要进行全面的分析和计算,以确保结构的稳定性和安全性。