第4讲 平方根与算术平方根
- 格式:doc
- 大小:231.00 KB
- 文档页数:4
For personal use only in study and research; not for commercial use6.1平方根、算术平方根、立方根例题讲解第一部分:知识点讲解1、学前准备【旧知回顾】2.平方根(1)平方根的定义:一般的,如果一个数的平方等于a ,那么这个数叫做a 的平方根,也叫做二次方根。
即若a x =2,)0(≥a ,则x 叫做a 的平方根。
即有a x ±=,(0≥a )。
(2)平方根的性质:(3)注意事项: a x ±=,a 称为被开方数,这里被开方数一定是一个非负数(0≥a )。
(4)求一个数平方根的方法:(5)开平方:求一个数平方根的运算叫做开平方。
它与平方互为逆运算。
3. 算术平方根(1)算术平方根的定义:若a x =2,)0(≥a ,则x 叫做a 的平方根。
即有a x ±=,(0≥a )。
其中a x =叫做a 的算术平方根。
(2)算术平方根的性质:(3)注意点:在以后的计算题中,像22-52)(++,其中,25分别指的是2和5的算术平方根。
4.几种重要的运算: ① b a ab ∙=()0,0>>b a , ab b a =∙()0,0>>b a② b a b a =)0,0(>≥b a , b a ba =)0,0(>≥b a ③ a a =2)()0(≥a , a a =2 , a a =2-)(★★★ 若0<+b a ,则()b a b a b a b a --=+-=+=+2)(5.立方根(1)立方根的定义:一般地,如果一个数的立方等于a ,那么这个数叫做a 的立方根,也叫做三次方根。
即若a x =3,则x 叫做a 的立方根。
即有3a x =。
(2)立方根的性质:(3)开立方求一个数的立方根的运算叫做开立方,它与立方互为逆运算。
6.几个重要公式:③ 333b a ab ∙= , 333ab b a =∙ 333b a b a = )0(≠b , 333b a b a = )0(≠b ④ a a =33)(可以为任何数)a (, a a =33 ,a a --33=)( 第二部分:例题讲解题型1:求一个数的平方根、算术平方根、立方根。
平方根与算术平方根知识点 1 :平方根1.算术平方根的定义如果一个正数的平方等于,即,那么这个正数叫做的算术平方根(规定0的算术平方根还是0);,读作“的算术平方根”,叫做被开方数. 注意:有意义时,≥0,≥0. 2.平方根的定义如果,那么叫做的平方根.求一个数的平方根的运算,叫做开平方.平方与开平方互为逆运算. (≥0)的平方根的符号表达为是的算术平方根.知识点2:平方根和算术平方根的区别与联系1.区别:(1)定义不同;(2)结果不同: 2.联系:(1)平方根包含算术平方根;(2)被开方数都是非负数;(3)0的平方根和算术平方根均为0.注意:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;负数没有平方根.(2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的另一个平方根.因此,我们可以利用算术平方根来研究平方根.知识点3:平方根的性质知识点4:平方根小数点位数移动规律被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动1位..x a 2x a =x a a a a a a a a a 2x a =x a a a a (0)a a ≥a a a ±a 20||000a a a a a a a >⎧⎪===⎨⎪-<⎩()20aaa =≥62500250=62525= 6.25 2.5=0.06250.25=【典例分析】【考点1:算术平方根】【典例1】求下列各数的算术平方根:(1)100;(2);(3)0.0001.【变式1-1】求下列各数的算术平方根.(1)196 (2)(3)0.04 (4)100 (5)(﹣6)2.【变式1-2】求下列各式的值:(1);(2);(3)【考点2:算术平方根的性质】【典例2】(2022秋•崇川区校级月考)已知a,b满足(a﹣1)2+=0,则a+b的值是()A.﹣2B.2C.﹣1D.0【变式2-1】(2021秋•滨海县期末)已知实数x,y满足+(y+1)2=0,则x﹣y等于()A.1B.﹣1C.﹣3D.3【变式2-2】(2022春•绥江县期中)若(a﹣1)2+=0,则(a﹣b)2022=()A.1B.﹣1C.0D.2022【考点3:算术平方根的估算】【典例3】(2022•东丽区二模)估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【变式3-1】(2022•河西区模拟)估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【变式3-2】(2020秋•福田区期末)设n为正整数,且n<<n+1,则n的值为()A.7B.8C.9D.10【变式3-3】(2018•台州)估计+1的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【典例4】(2015秋•萧山区期中)已知,则0.005403的算术平方根是()A.0.735B.0.0735C.0.00735D.0.000735【变式4-1】(2019春•港口区期中)若=5.036,则=.【变式4-2】(2022春•渝中区校级月考)若≈7.149,≈22.608,则的值约为()A.71.49B.226.08C.714.9D.2260.8【考点4:平方根】【典例5】求下列各数的平方根(1)49;(2);(3);(4)0.0016.【变式5-1】(2021秋•卫辉市月考)求下列各数的平方根(1)49 (2);(3)2;(4)0.36;(5)(﹣)2.【变式5-2】(2022秋•青羊区校级期中)若m2=4,则m=()A.2B.﹣2C.±2D.±【考点5 :利用平方根的定义解方程】【典例6】(2022秋•莲湖区校级月考)求下列各式中x的值.(1)9x2﹣25=0;(2)(x﹣1)2=36.【变式6-1】(2022秋•江阴市校级月考)求下列各式中x的值:(1)x2﹣4=0;(2)(x﹣1)2﹣9=0.【变式6-2】(2022秋•新城区期中)已知2x2﹣8=0,求x的值.【考点6:利用平方根的定义求参数】【典例7】(2021春•昭阳区校级月考)若一个正数的平方根是2m﹣4与3m﹣1,求这个正数的算术平方根.【变式7-2】(2022春•仁怀市校级月考)若m是169的正的平方根,n是121的负的平方根,求:(1)m+n的值;(2)(m+n)2的平方根.【变式7-3】(2021秋•河南月考)已知一个数m的两个不相等的平方根分别为a+2和3a﹣18.(1)求a的值;(2)求这个数m.【变式7-3】(2022秋•朝阳区校级月考)已知一个正数m的平方根为2n+1和4﹣3n.(1)求m的值;(2)|a﹣1|++(c﹣n)2=0,a+b+c的平方根是多少?【考点7:平方根的实际应用】【典例8】(2022秋•南岗区校级期中)小李同学想用一块面积为400cm2的正方形纸片,沿着边的方向裁出一块面积为300cm2的长方形纸片,使它的长宽之比为2:3,他不知道能否裁得出来,正在发愁,这时小于同学见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”(1)长方形纸片的长和宽是分别多少cm?(2)你是否同意小于同学的说法?说明理由.【变式8】(2022秋•市北区期中)某新建学校计划在一块面积为256m2的正方形空地上建一个面积为150m2的长方形花园(长方形花园的边与正方形空地的边平行),要求长方形花园的长是宽的2倍.请你通过计算说明该学校能否实现这个计划.。
第4讲 平方根和算术平方根平方根:思考:如果一个数的平方等于9,这个数是多少?观察并填表:定义:一般的,如果一个数x 的平方等于a ,那么这个数叫做a 的平方根或者二次方根。
即如果x 2=a ,那么x 叫做a 的平方根,记为±a 。
求一个数a 的平方根的运算,叫做开平方。
练习:下列数字的平方根是多少? 36 _______ 0.01________ 2516________ 0________ -9_________ 3______ 5_________ 13________ 41________ 57________注意:1.负数没有平方根;2. 正数有两个平方根,她们互为相反数,0的平方根是0.练习:一个正数的平方根分别是2a-1和-a+2,这个数是多少?例1.(1)9的平方根是( )A.3B.±3C.-3D.81(2)3的平方根是( ) A.3 B.±3 C.-3 D.9练1--1.(1)16的平方根是( )A.4B.±4C.-4D.256(2)6的平方根是( ) A.6 B.±6 C.- 6 D.36例2.(1)下列各数中没有平方根的是( )A.0B.-82C.2)41( D.-(-3)(2)下列说法正确的是( )A.±0.02是0.4的平方根B.非负数的平方根都不大于本身C.因为32=9,所以9的平方根是3D.平方根等于本身的数是0练2--1.(1)下列各数中没有平方根的是()A.(-1)2B.1C.-|-1|D.|-7|(2)下列说法正确的是()A.4的平方根是2B.非负数的平方根都不大于本身C.若x是a的平方根,则x2=aD. 平方根等于本身的数是0和1练2--2.(1)下列各数中没有平方根的是()A. -12B.0C.(-1)2D.|-(-3)-7|(2)下列说法正确的是()A.数a的平方根是正数B.数a的绝对值是正数C.16的平方根等于4D.3是9的平方根例3.(1)若x2=(-3)2,则x为_______;2x2-50=0,则x为_______;(x+1)2-9=0,则x为_______.(2)已知:一个正数的两个平方根分别为2a-2和a-4,求a的值。
a a a a a a ⎨ ⎩ 北师大版八年级上册数学第 4 讲《平方根和开平方》知识点梳理【学习目标】1. 了解平方根、算术平方根的概念,会用根号表示数的平方根.2. 了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根.【要点梳理】要点一、平方根和算术平方根的概念1. 平方根的定义如果 x 2 = a ,那么 x 叫做a 的平方根.求一个数a 的平方根的运算,叫做开平方. a 叫做被开方数. 平方与开平方互为逆运算.2. 算术平方根的定义正数a 的两个平方根可以用“ ± ”表示,其中 表示a 的正平方根(又叫算术平方根),读作 “根号a ”; - 表示a 的负平方根,读作“负根号a ”.要点诠释:当式子 有意义时, a 一定表示一个非负数,即≥0, a ≥0.要点二、平方根和算术平方根的区别与联系1. 区别:(1)定义不同;(2)结果不同: ± 和2. 联系:(1)平方根包含算术平方根; (2)被开方数都是非负数;(3)0 的平方根和算术平方根均为 0.要点诠释:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;负数没有平方根.(2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的另一个平方根.因此,我们可以利用算术平方根来研究平方根.要点三、平方根的性质⎧a a > 0 =| a |= ⎪0 a = 0 ⎪-a a < 0( a )2 = a (a ≥ 0)要点四、平方根小数点位数移动规律 aa 225 1 (-4)2 0 0 16 被开方数的小数点向右或者向左移动2 位,它的算术平方根的小数点就相应地向右或者向左移动1 位.例如: = 250 , = 25 , = 2.5 , = 0.25 .【典型例题】类型一、平方根和算术平方根的概念1、下列说法错误的是( )A.5 是 25 的算术平方根B.l 是 l 的一个平方根C. (-4)2的平方根是-4 D.0 的平方根与算术平方根都是 0【答案】C ;【解析】利用平方根和算术平方根的定义判定得出正确选项.A. 因为 =5,所以本说法正确;B. 因为± =±1,所以 l 是 l 的一个平方根说法正确;C. 因为± =± 16 =±4,所以本说法错误;D. 因为± =0, =0,所以本说法正确; 【总结升华】此题主要考查了平方根、算术平方根的定义,关键是明确运用好定义解决问题. 举一反三:【变式】判断下列各题正误,并将错误改正:(1) -9 没有平方根.( )(2) = ±4 .( )(3) (- 1 )2 的平方根是± 1 .( )10 (4) - - 2 是 5 104 的算术平方根.( ) 25【答案】√ ;×; √; ×,提示:(2)2、 填空:= 4 ;(4) 2 是 5 4 的算术平方根. 25(1) -4 是 的负平方根.62500 625 6.25 0.0625 161 81 1 81 x - 3 (3)的算术平方根为 . (4) 若 = 3 ,则 x = ,若 = 3 ,则 x = .【思路点拨】(3) 就是 1 的算术平方根= 1 ,此题求的是 1 的算术平方根. 81 【答案与解析】(1)16;(2) 1 ; 1 1 9 9 ;±3 16 4 (3) (4) 9 3【总结升华】要审清楚题意,不要被表面现象迷惑.注意数学语言与数学符号之间的转化. 举一反三:【变式 1】下列说法中正确的有( ):①3 是 9 的平方根. ② 9 的平方根是 3.③4 是 8 的正的平方根.④ -8 是 64 的负的平方根.A .1 个B .2 个C .3 个D .4 个【答案】B ;提示:①④是正确的.【变式 2】(2015•凉山州)的平方根是 . 【答案】±3.解:因为=9,9 的平方根是±3,所以答案为±3.3、(2016•古冶区二模)如果一个正数的平方根为 2a+1 和 3a-11,则 a=( ) A .±1 B.1 C. 2 D. 9【思路点拨】根据一个正数的平方根有两个,且互为相反数列出方程,求出方程的解即可得到 a 的值.【答案】C .【解析】解:根据题意得:2a+1+3a-11=0解得:a=2. 故选 C.【总结升华】此题主要考查了平方根的性质:一个正数有两个平方根,它们互为相反数. 举一反三:【变式】代数式 y = 有意义,则 x 的取值范围是 .(2)1 表示 的算术平方根, 1 = . 16 16 x x 2144 169 36 【答案】 x ≥ 3 .类型二、利用平方根解方程4、(2015 春•鄂州校级期中)求下列各式中的 x 值,(1)169x 2=144(2)(x ﹣2)2﹣36=0.【思路点拨】(1) 移项后,根据平方根定义求解; (2) 移项后,根据平方根定义求解.【答案与解析】解:(1)169x 2=144,x 2 = 144 ,169x=± ,x=± 12 . 13 (2)(x ﹣2)2﹣36=0,(x ﹣2)2=36,x ﹣2= ± ,x ﹣2=±6,∴x=8 或 x=﹣4.【总结升华】本题考查了平方根,注意一个正数的平方根有两个,他们互为相反数. 类型三、平方根的应用5、要在一块长方形的土地上做田间试验,其长是宽的 3 倍,面积是 1323 平方米.求长和宽各是多少米?【答案与解析】解:设宽为 x ,长为 3 x ,由题意得, x ·3 x =13233 x 2 =1323x = ±21 x =-21(舍去)答:长为 63 米,宽为 21 米.【总结升华】根据面积由平方根的定义求出边长,注意实际问题中边长都是正数.。
尖子生培优教材数学七年级上第四讲。
平方根与立方根讲义及答案第四讲:平方根与立方根知识导引:平方根和立方根的概念在数学中起到了十分重要的作用。
这些概念是通过逆运算来建立的,并且有多种不同的情况。
因此,理解这些概念的最好方法是从平方和立方的概念开始。
此外,还应该学会使用平方根、立方根等知识去解决一些简单的实际问题。
1.有关平方根:1) 一个正数有正负两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。
2) 算术平方根a的双重非负性:a≥0;a≥0.3) a的三层含义:开方的运算符号,表示对a进行开方运算;特征符号,表示a的算术平方根;表示一种新的数,是开不尽方的数(即无理数)的表示形式。
2.有关立方根:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
因此,任何数都有立方根。
3.实数的几种非负形式:1) a≥0(a为实数);2) a < 0,|a|≥0(a为实数)。
4.算术平方根的主要性质:1) (√a)²=a;2) a≥0,√(a²)=a;3) ab≥0,√(ab)=√a·√b(a≥0,b≥0);4) a≥0,b>0,(√a/√b)²=a/b。
典例精析:例1:填空题:1) (-3)的算术平方根是______。
2) 平方根等于它本身的数是______。
3) 和数轴上的点一一对应的数是______。
例1-1:下列说法正确的有:(填入相应的序号)。
①-8是64的平方根;②4的算术平方根是2;③任何数都有立方根;④6根2是2;⑤根是±8;⑥9=±3.例1-2:已知x+2+y-3+(z+1)²=______,求x+y+z的平方根。
例2:比较大小:1) -23与-32.2) 1/2,x,x,x(<x<1)。
例2-1:设a=3-2,b=2-3,c=3-2,则a、b、c的大小关系是( )。
A、a>b>cB、a>c>bC、c>b>aD、b>c>a例3:观察下列等式:32/22=23,33=33=43,34.可得出一般规律是______。
平方根知识点总结【学习目标】1•了解平方根、算术平方根的概念,会用根号表示数的平方根.2•了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根.【要点梳理】要点一、平方根和算术平方根的概念1•算术平方根的定义如果一个正数x的平方等于a,即x2= a,那么这个正数x叫做a的算术平方根(规定0的算术平方根还是0);a的算术平方根记作■. a,读作“ a的算术平方根”,a叫做被开方数.要点诠释:当式子.a有意义时,a一定表示一个非负数,即>0,a >0.2•平方根的定义如果x2=a,那么x叫做a的平方根.求一个数a的平方根的运算,叫做开平方.平方与开平方互为逆运算.a(a > 0)的平方根的符号表达为_-、a(a_O),其中,a是a的算术平方根.要点二、平方根和算术平方根的区别与联系1•区别:(i)定义不同;(2)结果不同:和a2•联系:(1)平方根包含算术平方根;(2)被开方数都是非负数;(3)0的平方根和算术平方根均为0.要点诠释:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;负数没有平方根.(2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写岀它的另一个平方根.因此,我们可以利用算术平方根来研究平方根要点三、平方根的性质要点四、平方根小数点位数移动规律被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动1位.例如:,62500 =250,、、宓=25,,625 =2.5,0.062^0.25 .【典型例题】类型一、平方根和算术平方根的概念1、若2m —4与3m —1是同一个正数的两个平方根,求m的值.【思路点拨】由于同一个正数的两个平方根互为相反数,由此可以得到2m —4=—(3m —1),解方程即可求解.【答案与解析】解:依题意得2 m —4 = —(3m —1 ),解得m = 1;••• m的值为1.【总结升华】此题主要考查了平方根的性质:一个正数有两个平方根,它们互为相反数.举一反三:【变式】已知2a —1与一a + 2是m的平方根,求m的值.【答案】2a —1与—a + 2是m的平方根,所以2 a —1与—a + 2相等或互为相反数.2 2解:①当2a —1 = —a + 2时,a = 1,所以m =(2a —1) =(2x 1 —1)=1②当2 a —1+(—a + 2)= 0时,a =—1,2 2 2所以m =(2a—1 ) =[2x(—1)—1]2=(七)=92、X为何值时,下列各式有意义?(1)X2; (2)、X 一4 ; (3)、、X • 1 • ■ 1 一X ; (4) ― 1 -x —3【答案与解析】解:(1)因为X2_0,所以当X取任何值时,X2都有意义.(2)由题意可知:x-4亠0,所以x亠4时,x-4有意义.「x+1^0 >(3)由题意可知:解得:一1乞X岂1 •所以「1冬X岂1时•• X • 1 • 1 - X有意义.J -x X0「x—1 兰0(4)由题意可知:,解得X _ 1且X = 3 .x -3 式0:(X -1所以当X _1且x=3时,有意义.x —3【总结升华】(1)当被开方数不是数字,而是一个含字母的代数式时,一定要讨论,只有当被开方数是非负数时,式子才有意义.(2)当分母中含有字母时,只有当分母不为0时,式子才有意义.举一反三:【变式】已知b =4. 3a -2 2 . 2 -3a 2,a b【答案】^3a—2 二0 2113 1解:根据题意,得'则a ,所以b = 2,二2,2-3^0.3 a b 2 21 1二的算术平方根为a b类型二、平方根的运算3、求下列各式的值.1 ___________ 1 ____ -、.话 - .900.3 5【思路点拨】 (1)首先要弄清楚每个符号表示的意义 •( 2)注意运算顺序.【答案与解析】解:⑴、.252 -242 LI 「32 42 二「49 L 一无=7 5 = 35 ; ⑵,201 一1预一 1「81 一〕0.6 一〕30 =9—0.2 一6 —1.7 . ^43 5 V 4 3 5 2【总结升华】(1)混合运算的运算顺序是先算平方开方,再乘除,后加减,同一级运算按先后顺序进行. (2)初学可以根据平方根、算术平方根的意义和表示方法来解,熟练后直接根据Ja 2=a(a .0)来解.类型三、利用平方根解方程4、求下列各式中的 X .2 2(1) x -361 =0; (2) x 1 289 ;(3) 9(3x+2 f —64 =0 【答案与解析】 解:(1)丁 x 2 -361 =0••• x 2 =361••• x = 一 361 = 192(2)丁(x +1 ) =289 • x 1 二.289 • x + 1 = ± 17x = 16 或 x =- 18.K{ A 2(3)••• 9(3x+2 丫-64 = 064• 3x 2 2二98•- 3x 2 = 32十149 9【总结升华】本题的实质是一元二次方程,开平方法是解一元二次方程的最基本方法.(2) ( 3)小题中运用了整体思想分散了难度.举一反三:【变式】求下列等式中的X :(1 )若X2=1.21,则x = ________ ;(2) X2=169,则x = __________ ;2 2 2(3)若X ,则X = ___________ ;(4)若X 2 ,贝U X = ____________ .43【答案】(1 )± 1.1 ; ( 2)± 13;( 3) ; ( 4)± 2.2类型四、平方根的综合应用5、已知a、b 是实数,且..2a 6 |b _=0,解关于X的方程(a • 2)x • b2二a _ 1 .【答案与解析】解:••• a、b 是实数,.2a 6 |b —|=0,2a 6 _ 0, |b-辽|_0,••• 2a 6 = 0 , b「.2 二0 .a = — 3,b = •. 2 .把a =—3, b-2 代入(a+2)x+b2= a-1,得—X + 2 = —4,二X = 6.【总结升华】本题是非负数的性质与方程的知识相结合的一道题,应先求岀a、b的值,再解方程•此类题主要是考查完全平方式、算术平方根、绝对值三者的非负性,只需令每项分别等于零即可.举一反三:【变式】若X2—1 •y 1 =0,求X2011- y2012的值.【答案】解:由x2「1y • 1 = 0,得x2「1 = 0 , y T = 0,即X= 1 , y = -1 .2011 2012 ,2011 / 八2012①当X = 1, y =—1 时,X y =1 (—1) =2 .②当X =—1, y =—1 时,X y =(一1) (一1) =0 .2 26、小丽想用一块面积为400 cm的正方形纸片,沿着边的方向裁出一块面积为300 cm 的长方形纸片,使它长宽之比为3:2,请你说明小丽能否用这块纸片裁出符合要求的长方形纸片【答案与解析】解:设长方形纸片的长为3X ( X >0) cm,则宽为2 X cm,依题意得3X 2X =300.6X2-300 .x2=50.X >0,x 二空50.长方形纸片的长为3, 50 cm .•/ 50 > 49,/• .50 7.••• 3・.50 .21,即长方形纸片的长大于20cm .2由正方形纸片的面积为400 cm ,可知其边长为20 cm ,•长方形的纸片长大于正方形纸片的边长答:小丽不能用这块纸片裁岀符合要求的长方形纸片20 cm的正方形纸片裁【总结升华】本题需根据平方根的定义计算岀长方形的长和宽,再判断能否用边长为岀长方形纸片.。
第四讲 平方根与算术平方根
一.知识要点
1.平方根:
2.算数平方根:
3.开平方:求一个数a 的平方根的运算,叫开平方,其中a 叫被开方数.
①0>a 时,
0=a 时,
0<a 时,
= =⎧⎪⎨⎪⎩
(重难点)
③开平方运算与 互为逆运算,所以我们可以通过 来求一个数的平方根.
4.平方根与算术平方根的联系与区别(重点)
联系: (1)具有包含关系: .
(2)存在条件相同: .
(3) 0的 都是0.
区别:(1)
(2)
(3)
5.平方根的性质
.
6.算术平方根具有以下性质:
(1) .
(2) .
二.典例分析:
例1.求下列各数的平方根和算术平方根:
(1)900; (2)1; (3)64
49; (4) 14; (5)-9 (6)(-4)2 (7) 10-2 平方根:
算术平方根:
例2.下列说法正确的是( )
A 的平方根是±2;
B .2a -一定没有算术平方根;
C .表示3的算术平方根的相反数;
D .0.9的算术平方根是0.3;
例3.下列说法中正确的有( )
①-2是-4的平方根; ②2是2(-2)的算术平方根; ③2
(-2)的平方根是2; ④8的平方根是4;
⑤5 ⑥3的平方根; 9±; ⑧1的平方根是本身.
A .1个
B .2个
C .3个
D .4个
例4.判断下列各数是否有平方根?并说明理由.
(1)(-3)2; (2)0; (3)-0.01; (4)-52; (5)-a 2; (6)a 2-2a +2
例5.自由下落的物体的高度h (米)与下落时间t (秒)的关系为h =4.9t 2,有一铁球从19.6米高的建筑物上 自由下落,到达地面需要多长时间?
例6.下列式子中正确的是( )
A =
B .0.6=-
C 13=
D 6=±
例7.填空题
(1)27-的算术平方根是 . (2的算术平方根是 ;
(3的平方根是 ; (4)2(-4)的平方根是 ;算术根是 ;
(5)若22(7)x =-,则x = ; (62=,则25x +的平方根是 . 例8.指出下列各式有意义的条件:
(1)(2(3)(4
(5
例9.计算:【准确使用2(0)a a =≥ ||a =这两个性质解题】
(1)2_____;= (2)2_____;= (3)2_____;= (4)2_____;=
(5)2_____;= (6)_____;= (7_____;= (8_____;=
(9_____;= (10_____;=
例10.已知3a b -+22a b +的值.
例11.若数m 的平方根是32+a 和12-a ,求m 的值.
例12.已知:一个正数的平方根是2a -1与2-a ,求a 的平方的相反数的立方根.
例13.已知2a -1和a -11是一个数的平方根,求这个数.
例14.已知2x -1的平方根是±6,2x +y -1的平方根是±5,求2x -3y +11的平方根.
例15.先阅读所给材料,再解答下列问题:若1-x 与x -1同时成立,则x 的值应是多少?有下面的解题过程:1-x 和x -1都是算术平方根,故两者的被开方数x x --1,1都是非负数,而1-x 和x -1是互为相反数. 两个非负数互为相反数,只有一种情形成立,那就是它们都等于0,即1-x =0,x -1=0,故1=x .
问题:①已知,21221+-+
-=x x y 求y x 的值. ②已知779y x x =
-+-+,求(xy —64)的算术平方根.
三.巩固训练
1.(1)9的平方根是_____,算术平方根是_____. (216____.
(3)4|5|9
-的平方根是______. (4_____ 的算术平方根.
(5) 42()3
--的平方根是______. (6)-4的平方根是_________.
(7______. (8)(-5)0的平方根是______ . 2.平方根等于它本身的数是______________;算数方根等于它本身的数是____________;
算术平方根与平方根相等的数是________________.
3. 若a 是b 的平方根,则b 的平方根是________.
4.若x 是4的平方根,y 是2
(3)-的算术平方根,则xy =______.
52,y =-_________.
63,则a=_______;
70,=则a+3b=_________.
8.一个正偶数的算术平方根是m ,则和这个正偶数相邻的下一个正偶数的算术平方根是 .
9.已知0≤x ≤3= .
10a 的取值范围是 .
11.求各式中的x 的值
(1)2719
x =. (2) 26x = (3) 24(23)49x -= (4) 2(1)121x +=
12.观察下列各等式:
===,……,请你将发现的规律用含自然数n (n ≥1)的等式表示出来.。