第二讲 循证医学中常用统计学指标和Meta分析统计过程演示文稿
- 格式:ppt
- 大小:4.63 MB
- 文档页数:44
循证医学实践中常用的统计分析指标和方法循证医学是一种基于科学方法、临床经验和病患价值观的医学实践方法。
在循证医学中,统计分析是非常重要的一环,帮助医生和研究人员判断不同治疗方法的有效性和副作用。
本文将介绍循证医学中常用的统计分析指标和方法。
一、描述性统计指标1. 平均数(Mean):平均数是一组数据的总和除以数据的个数,用来表示样本或总体的中心位置。
2. 中位数(Median):中位数是一组数据按顺序排列后位于中间的数值,可以用来衡量数据的分布偏移程度。
3. 众数(Mode):众数是一组数据中出现次数最多的数值,常用于表达数据的集中趋势。
4. 方差(Variance):方差衡量数据集中在平均值附近的程度,是各数据离平均值的偏差平方的平均,用来衡量数据的离散程度。
5. 标准差(Standard Deviation):标准差是方差的平方根,用来度量数据偏离平均值的平均距离,标准差越大表示数据的离散程度越大。
二、推断统计方法1. 假设检验(Hypothesis Testing):假设检验用于判断两组数据之间的差异是否具有统计学意义,常用于对比不同治疗方法的疗效。
2. 置信区间(Confidence Interval):置信区间是用来表示样本估计值的不确定性范围,通常以95%的置信水平表示。
3. 相关分析(Correlation Analysis):相关分析用来研究两组变量之间的关系强度和方向,常用于评估治疗方法与结果之间的关联性。
4. 回归分析(Regression Analysis):回归分析用来建立预测模型,通过研究自变量与因变量之间的关系,预测结果变量的数值。
5. 生存分析(Survival Analysis):生存分析用来研究某一事件发生时间与其他因素之间的关系,常用于评估治疗方法对患者生存时间的影响。
三、实例应用以某种药物疗效评估为例,研究者收集了100位患者的数据,其中50位接受药物A治疗,50位接受药物B治疗。