4指数函数与对数函数基础知识点及练习题
- 格式:doc
- 大小:163.50 KB
- 文档页数:3
指数函数和对数函数知识点总结适用于高一应届学习及高三一轮复习指数函数和对数函数知识点总结及练习题一.指数函数(一)指数及指数幂的运算a am ar as ar s (ar)s ars (ab)r arbr(二)指数函数及其性质1.指数函数的概念:一般地,形如y a(a 0且a 1)叫做指数函数。
xmn二.对数函数(一)对数1.对数的概念:一般地,如果a N(a 0且a 1),那么x叫做以a为底N的对数,记作x logaN,其中a叫做底数,N叫做真数,logaN叫做对数式。
2.指数式与对数式的互化幂值真数xax log指数对数适用于高一应届学习及高三一轮复习3.两个重要对数(1)常用对数:以10为底的对数lgN(2)自然对数:以无理数e 2.***** 为底的对数lnN(二)对数的运算性质(a 0且a 1,M 0,N 0)①logaM logaN logaMN ②logaM logaN loga③logaM nlogaM ④换底公式:logab 关于换底公式的重要结论:①logamb(三)对数函数1.对数函数的概念:形如y logax(a 0且a 1)叫做对数函数,其中x 是自变量。
M Nnlogcb(c 0且c 1)logcannlogab ②logab logba 1 m适用于高一应届学习及高三一轮复习基本初等函数练习题1.已知集合M { 1,1},N {x|12x 1 4,x Z},则M∩N=()2A.{-1,1}B.{0}C.{-1}D.{-1,0} 2.设11b1a() () 1,则()333abaaabbaabaaA.a a bB.a b aC.a a bD.a b a 3.设y1 40.9,y2 80.48,y3 () 1.5,则()12A.y3 y1 y2B.y2 y1 y3C.y1 y3 y2D.y3 y1 y2 4.若()122a 11()3 2a,则实数a的取值范围是()211A.(1,+∞)B.(,+∞)C.(-∞,1)D.(-∞,)221-5.方程3x1=的解为()9A.x=2B.x=-2C.x=1D.x=-1116.已知实数a,b满足等式(a=()b,则下列五个关系式:①0ba;②ab0;③0ab;23④ba0;⑤a=b。
指数函数及其性质1.指数函数概念一般地,函数叫做指数函数,其中是自变量,函数的定义域为.2.指数函数函数性质:函数名称定义图象定义域值域过定点奇偶性单调性函数值的变化情况变化对图象的影响指数函数函数且叫做指数函数图象过定点,即当时,.非奇非偶在上是增函数在上是减函数在第一象限内,从逆时针方向看图象,逐渐增大;在第二象限内,从逆时针方向看图象,逐渐减小 .对数函数及其性质1.对数函数定义一般地,函数叫做对数函数,其中是自变量,函数的定义域.2.对数函数性质:函数名称定义函数对数函数且叫做对数函数图象定义域值域过定点奇偶性图象过定点,即当非奇非偶时,.单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,从顺时针方向看图象,看图象,逐渐减小 .逐渐增大;在第四象限内,从顺时针方向指数函数习题一、选择题aa ≤ b,则函数 f ( x ) =1?2x 的图象大致为 ()1.定义运算 a ?b =>b a b2.函数 f ( x ) = x 2-bx + c 满足 f (1 + x ) =f (1 - x ) 且 f (0) =3,则 f ( b x ) 与 f ( c x ) 的大小关系是()xxA . f ( b ) ≤ f ( c ) x xB . f ( b ) ≥ f ( c )xxC . f ( b )> f ( c )D .大小关系随 x 的不同而不同3.函数 y = |2 x - 1| 在区间A . ( - 1,+∞ )C . ( - 1,1)( k - 1, k + 1) 内不单调,则 k 的取值范围是 ()B . ( -∞, 1)D . (0,2)4.设函数 f ( x ) =ln [( x -1)(2 -x)] 的定义域是 ,函数 ( ) = lg(x - 2x -1) 的定义域是 ,Ag xaB若 ?,则正数a 的取值范围 ()ABA . a >3B . a ≥ 3C . a > 5D . a ≥ 5.已知函数 f (x = 3- a x -3, x ≤ 7,若数列 { a n 满足 a n = f (n )(n ∈ * ,且 {a n }是递5 ) a x - 6, x >7. } N) 增数列,则实数a 的取值范围是 ()A . [ 9, 3)B . ( 9, 3) 44C . (2,3)D . (1,3)2x16.已知 a >0 且 a ≠ 1,f ( x ) = x - a ,当 x ∈ ( - 1,1) 时,均有 f ( x )< 2,则实数 a 的取值范围 是( )1 1 A . (0 , 2] ∪ [2 ,+∞ ) B . [ 4, 1) ∪ (1,4]11C . [ 2, 1) ∪ (1,2]D . (0 , 4) ∪ [4 ,+∞ )二、填空题xa7.函数 y = a ( a >0,且 a ≠ 1) 在 [1,2] 上的最大值比最小值大 2,则 a 的值是 ________.8.若曲线 | y | = 2 x + 1 与直线 y =b 没有公共点,则b 的取值范围是 ________.| x|的定义域为9. (2011 ·滨州模拟 ) 定义:区间 [x 1,x 2 ]( x 1<x 2) 的长度为 x 2- x 1. 已知函数 y = 2 [a , b] ,值域为 [1,2] ,则区间 [a , b] 的长度的最大值与最小值的差为 ________.三、解答题10.求函数y=2x2 3x 4 的定义域、值域和单调区间.11.(2011 ·银川模拟 ) 若函数y=a2x+ 2a x-1( a>0 且a≠ 1) 在x∈ [- 1,1]上的最大值为14,求a 的值.12.已知函数f (x) = 3x,(a+ 2) = 18, (x) =λ·3ax-4x的定义域为 [0,1] .f g(1)求 a 的值;(2) 若函数g( x) 在区间 [0,1] 上是单调递减函数,求实数λ的取值范围.1. 解析:由? = a a≤ b x2x x≤0,b a>b x>0 .1答案: A2. 解析:∵f (1 +x) =f (1 -x) ,∴f ( x) 的对称轴为直线x=1,由此得 b=2.又 f (0)=3,∴c=3.∴f ( x)在(-∞,1)上递减,在(1,+∞)上递增.x≥2x≥ 1,∴ (3 x) ≥(2 x) .若 x≥0,则3f f若 x<0,则3x<2x<1,∴f (3x)> f (2x).∴f (3x)≥ f (2x).答案: A3.解析:由于函数 y=|2x-1|在(-∞,0)内单调递减,在(0,+∞)内单调递增,而函数在区间 ( k- 1,k+ 1) 内不单调,所以有答案: Ck-1<0<k+1,解得-1<k<1.4.解析:由题意得: A=(1,2)x x>1x x>1在(1,2)上恒成立,即,a- 2且 a>2,由 A? B知 a- 2x x上恒成立,令x x xln a-2xln2>0 ,所以函数a-2 - 1>0 在 (1,2)u( x)=a- 2- 1,则u′( x) =au ( x ) 在 (1,2) 上单调递增,则 u ( x )> u (1) = a - 3,即 a ≥ 3.答案: B*f ( n ) 为增函数,5. 解析: 数列 { a } 满足 a = f ( n )( n ∈ N ) ,则函数nna >18- 6- ) × 7- 3,所以 3- a >0注意 a>(3,解得 2<a <3.aa8-6> 3- a × 7-3答案: C1 2x1 21 x x21的图象,6. 解析: f ( x )<? x -a < ? x - <a ,考查函数 y = a与 y =x - 2222当 a >1 时,必有 a-1≥1,即 1<a ≤ 2,21 1当 0<a <1 时,必有 a ≥ ,即 ≤a <1,2 2 1 综上, 2≤ a <1 或 1<a ≤ 2. 答案: C7. 解析: 当 a >1 时, y x在 [1,2] 上单调递增,故 2a3x= a a - a = ,得 a = . 当 0<a <1 时, y = a2 22a在 [1,2] 上单调递减,故 a -a = 2,得 a = 2. 故 a =2或 2.1131 3答案: 2或28. 解析: 分别作出两个函数的图象,通过图象的交点个数来判断参数的取值范围.x+1 与直线 y = b 的图象如图所示,由图象可得:如果x+ 1 与直线 y = b曲线 | y | = 2 | y | = 2没有公共点,则 b 应满足的条件是 b ∈ [- 1,1] .答案: [- 1,1]9. 解析: 如图满足条件的区间 [a , b] ,当 a =- 1, b = 0 或 a = 0, b = 1 时区间长度最小,最小值为 1,当 a =- 1,b = 1 时区间长度最大,最大值为2,故其差为 1.答案: 110. 解: 要使函数有意义,则只需- x 2-3x + 4≥ 0,即 x 2+ 3x -4≤ 0,解得- 4≤ x ≤ 1.∴函数的定义域为 { x | -4≤ x ≤ 1} .223225 令 t =- x - 3x + 4,则 t =- x - 3x + 4=- ( x + ) +4,2253∴当-4≤ x ≤ 1 时, t max = 4 ,此时 x =- 2, t min = 0,此时 x =- 4 或 x =1.∴0≤t ≤ 25 . ∴0≤ -x 2- 3x + 4≤ 5 .4 2∴函数 y = ( 1)x 23 x4的值域为 [ 2 , 1] .8223 225由 t =- x - 3x + 4=- ( x + )+4( - 4≤ x ≤ 1) 可知,23当- 4≤ x ≤- 2时, t 是增函数,3当- 2≤ x ≤1 时, t 是减函数.根据复合函数的单调性知:y = ( 1 )x 23 x 4在 [ - 4,- 3 3] 上是减函数,在 [ - ,1] 上是增函数.22 233∴函数的单调增区间是 [ - 2, 1] ,单调减区间是 [ - 4,- 2] . 11. 解: 令x22tt >0y= t+ 2t1= ( t+ 1)2,其对称轴为t =- 1.该二次函数a = ,∴ ,则--在[ - 1,+ ∞ ) 上是增函数.x12①若 a >1,∵x ∈ [ - 1,1] ,∴t = a ∈ [ a , a ] ,故当 t = a ,即 x =1 时, y max =a + 2a - 1=14,解得 a = 3( a =- 5 舍去 ) .②若 0<a <1,∵x ∈ [ - 1,1] ,∴ = x∈1 1=-时,a [ a , ] ,故当 t = ,即 1t a ax12y max = (a + 1) - 2= 14.11∴a =3或- 5( 舍去 ) .1综上可得 a = 3 或 3.12. 解: 法一: (1) 由已知得 a2 aa =log 32.3 += 18? 3 = 2?(2) 此时 g ( x ) = λ·2x - 4 x ,设 0≤ x 1<x 2≤ 1,因为 g ( x ) 在区间 [0,1] 上是单调减函数,所以 g ( x ) - g ( x ) = (2 x - 2x )( λ- 2x - 2x )>0 恒成立,即 λ<2x + 2x 恒成立.1 2 1 2 2 1 2 1由于 2x 2+ 2x 1>2 + 2 = 2,所以实数 λ的取值范围是λ≤ 2.法二: (1) 同法一.(2) 此时 g ( x ) = λ·2x - 4x ,因为 g ( x ) 在区间 [0,1] 上是单调减函数,所以有 g ′( x ) = λln2 ·2x - ln4 ·4x = ln2 [- 2 ·(2x )2+ λ·2x] ≤0 成立.x2 设 2 = u ∈ [1,2] ,上式成立等价于-2u+ λu ≤0 恒成立.因为 u ∈ [1,2] ,只需 λ≤2u 恒成立,所以实数 λ的取值范围是λ≤ 2.对数与对数函数同步练习一、选择题1、已知 3a2 ,那么 log3 8 2log 3 6 用 a 表示是()A 、 a 2B 、 5a2C 、 3a (1 a)2D 、 3a a 22、 2log a (M 2N ) log a Mlog a N ,则M的值为()A 、1NB 、4C 、1D 、 4 或 1413 、 已 知 x 2 y 2 1, x0, y 0 , 且 log a (1 x) m,log a n,则 log a y 等 于1 x()A 、 m nB 、 m nC 、 1m nD 、 1m n224、如果方程 lg 2 x (lg5lg 7)lgx lg5 glg 7 0 的两根是 ,,则 g的值是()A 、 lg5 glg 7B 、 lg35C 、 35D 、13515、已知 log 7[log 3 (log 2 x)] 0,那么 x2等于( )A 、1B 、13 C 、1D 、1322 2336、函数 ylg2 1 的图像关于()1 xA 、 x 轴对称B 、 y 轴对称C 、原点对称D 、直线 yx 对称7、函数 ylog (2 x 1) 3x2 的定义域是()A 、 2,1 U 1,B 、 1,1 U 1,32C 、 2,D 、 1,328、函数 ylog 1 (x 2 6x17) 的值域是()2A 、 RB 、 8,C 、, 3D 、 3,9、若 log m 9 log n 9 0 ,那么 m, n 满足的条件是( )A 、 m n 1B 、 n m 1C 、 0 n m 1D 、 0 m n 110、 log a 2 1,则 a 的取值范围是()3A 、 0, 2U 1,B 、 2,C 、 2,1D 、 0, 2U 2,3333 311、下列函数中,在 0,2 上为增函数的是()A 、 ylog 1 ( x1)B 、 y log 2 x 2 12C 、 ylog 2 1D 、 ylog 1 ( x 2 4x 5)x212、已知 g( x) log a x+1 ( a 0且a 1) 在 10, 上有 g( x)0 ,则 f ( x)a x 1 是( )A 、在 ,0上是增加的 B 、在 ,0 上是减少的C 、在, 1 上是增加的D 、在,0 上是减少的二、填空题13、若 log a 2 m,log a 3 n, a 2 m n 。
指数函数与对数函数知识点:x比较两个幂值的大小,是一类易错题,解决这类问题,首先要分清底数相同还是指数相同,如果底数相同,可利用指数函数的单调性;指数相同,可以利用指数函数的底数与图象关系(对数式比较大小同理)记住下列特殊值为底数的函数图象:3. 研究指数,对数函数问题,尽量化为同底,并注意对数问题中的定义域限制4. 指数函数与对数函数中的绝大部分问题是指数函数与对数函数与其他函数的复合问题,讨论复合函数的单调性是解决问题的重要途径。
复合函数的单调性法则是:同增异减 步骤:(1)球定义域并分解复合函数(2)在定义与范围内分别讨论分解后的函数的单调性 (3)很据复合函数的单调性法则得出结论【典型例题】例1. (1)下图是指数函数(1)y =a x ,(2)y =b x ,(3)y =c x ,(4)y =d x 的图象,则a 、b 、c 、d 与1的大小关系是( )y x1O(4)(3)(2)(1)A. a <b <1<c <dB. b <a <1<d <cC. 1<a <b <c <dD. a <b <1<d <c剖析:可先分两类,即(3)(4)的底数一定大于1,(1)(2)的底数小于1,然后再从(3)(4)中比较c 、d 的大小,从(1)(2)中比较a 、b 的大小。
解法一:当指数函数底数大于1时,图象上升,且底数越大,图象向上越靠近于y 轴;当底数大于0小于1时,图象下降,底数越小,图象向右越靠近于x 轴.得b <a <1<d <c 。
故选B 。
解法二:令x =1,由图知c 1>d 1>a 1>b 1,∴b <a <1<d <c 。
例2. 已知2x x +2≤(41)x -2,求函数y =2x -2-x 的值域。
解:∵2x x +2≤2-2(x -2),∴x 2+x ≤4-2x , 即x 2+3x -4≤0,得-4≤x ≤1。
又∵y =2x -2-x 是[-4,1]上的增函数,∴2-4-24≤y ≤2-2-1。
4.4.1 对数函数的概念必备知识基础练知识点一 对数函数的概念1.下列函数表达式中,是对数函数的有( )①y =log x 2;②y =log a x (a ∈R );③y =log 8x ;④y =ln x ;⑤y =log 12(-x )(x <0);⑥y=2log 4(x -1)(x >1).A .1个B .2个C .3个D .4个2.已知f (x )为对数函数,f ⎝ ⎛⎭⎪⎫12=-2,则f (34)=________.知识点二对数型函数的定义域3.函数f (x )=log 2(x 2+3x -4)的定义域是( ) A .[-4,1] B .(-4,1)C .(-∞,-4]∪[1,+∞)D .(-∞,-4)∪(1,+∞) 4.函数f (x )=1log 122x +1的定义域为________.知识点三对数函数模型的实际应用5.某种动物的数量y (单位:只)与时间x (单位:年)的函数关系式为y =a log 2(x +1),若这种动物第1年有100只,则第7年它们的数量为( )A .300只B .400只C .500只D .600只6.某公司为了业务发展制定了一个激励销售人员的奖励方案,在销售额为x 万元时,奖励y 万元.若公司拟定的奖励方案为y =2log 4x -2,某业务员要得到5万元奖励,则他的销售额应为________万元.关键能力综合练 一、选择题 1.给出下列函数:①y =log 23x 2;②y =log 3(x -1);③y =log (x +1)x ;④y =log πx .其中是对数函数的有( ) A .1个 B .2个 C .3个 D .4个 2.已知函数f (x )=11-x的定义域为M ,g (x )=ln(1+x )的定义域为N ,则M ∩N 等于( )A .{x |x >-1}B .{x |x <1}C .{x |-1<x <1}D .∅3.已知函数f (x )=log a (x +1),若f (1)=1,则a =( ) A .0 B .1 C .2 D .3 4.函数y =1log 2x -2的定义域为( ) A .(-∞,2) B .(2,+∞)C .(2,3)∪(3,+∞)D .(2,4)∪(4,+∞)5.函数f (x )=log 2(3x+1)的值域为( ) A .(0,+∞) B.[0,+∞) C .(1,+∞) D.[1,+∞)6.(探究题)设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,lg x ,x >1,则f (f (10))的值为( )A .lg 101B .1C .2D .0 二、填空题7.若f (x )=log a x +a 2-4a -5是对数函数,则a =________.8.若f (x )是对数函数且f (9)=2,当x ∈[1,3]时,f (x )的值域是________.9.(易错题)函数f (x )=lg ⎝⎛⎭⎪⎫2kx 2-kx +38的定义域为R ,则实数k 的取值X 围是________.三、解答题10.求下列函数的定义域:(1)y=1log2x+1-3;(2)y=log(2x-1)(3x-2);(3)已知函数y=f[lg(x+1)]的定义域为(0,99],求函数y=f[log2(x+2)]的定义域.学科素养升级练1.(多选题)已知函数f(x)=log a(x+1),g(x)=log a(1-x)(a>0,a≠1),则( ) A.函数f(x)+g(x)的定义域为(-1,1)B.函数f(x)+g(x)的图象关于y轴对称C.函数f(x)+g(x)在定义域上有最小值0D.函数f(x)-g(x)在区间(0,1)上是减函数2.设函数f(x)=log a x(a>0且a≠1),若f(x1x2…x2 017)=8,则f(x21)+f(x22)+…+f(x22 017)=________.3.(情境命题—生活情境)国际视力表值(又叫小数视力值,用V表示,X围是[0.1,1.5])和我国现行视力表值(又叫对数视力值,由缪天容创立,用L表示,X围是[4.0,5.2])的换算关系式为L=5.0+lg V.(1)请根据此关系式将下面视力对照表补充完整;V 1.5②0.4④L ① 5.0③ 4.0(2)甲、乙两位同学检查视力,其中甲的对数视力值为 4.5,乙的小数视力值是甲的2倍,求乙的对数视力值.(所求值均精确到小数点后面一位数,参考数据:lg 2≈0.301 0,lg 3≈0.477 1)4.4 对数函数4.4.1 对数函数的概念必备知识基础练1.解析:符合对数函数的定义的只有③④. 答案:B2.解析:设f (x )=log a x (a >0,且a ≠1),则log a 12=-2,∴1a 2=12,即a =2,∴f (x )=,∴f (34)=34=log 2(34)2=log 2243=43.答案:433.解析:一是利用函数y =x 2+3x -4的图象观察得到,要求图象正确、严谨;二是利用符号法则,即x 2+3x -4>0可因式分解为(x +4)(x -1)>0,则⎩⎪⎨⎪⎧x +4>0,x -1>0或⎩⎪⎨⎪⎧x +4<0,x -1<0,解得x >1或x <-4,所以函数f (x )的定义域为(-∞,-4)∪(1,+∞).答案:D4.解析:由题意有⎩⎪⎨⎪⎧2x +1>0,2x +1≠1,解得x >-12且x ≠0,则f (x )的定义域为⎝ ⎛⎭⎪⎫-12,0∪(0,+∞).答案:⎝ ⎛⎭⎪⎫-12,0∪(0,+∞)5.解析:由题意,知100=a log 2(1+1),得a =100,则当x =7时,y =100log 2(7+1)=100×3=300.答案:A6.解析:由题意得5=2log 4x -2,即7=log 2x ,得x =128. 答案:128关键能力综合练1.解析:①②不是对数函数,因为对数的真数不是仅有自变量x ;③不是对数函数,因为对数的底数不是常数;④是对数函数.答案:A2.解析:∵M ={x |1-x >0}={x |x <1},N ={x |1+x >0}={x |x >-1},∴M ∩N ={x |-1<x <1}.答案:C3.解析:∵f (1)=log a (1+1)=1,∴a 1=2,则a =2,故选C. 答案:C4.解析:要使原函数有意义,则⎩⎪⎨⎪⎧x -2>0,log 2x -2≠0,解得2<x <3或x >3,所以原函数的定义域为(2,3)∪(3,+∞),故选C.答案:C5.解析:∵3x >0,∴3x +1>1.∴log 2(3x+1)>0.∴函数f (x )的值域为(0,+∞). 答案:A6.解析:由题 f (f (10))=f (lg 10)=f (1)=12+1=2.故选C. 答案:C7.解析:由对数函数的定义可知,⎩⎪⎨⎪⎧a 2-4a -5=0,a >0,a ≠1,解得a =5.答案:58.解析:设f (x )=log a x ,∵f (9)=2,∴log a 9=2,∴a =3,∴f (x )=log 3x 在[1,3]递增,∴y ∈[0,1].答案:[0,1]9.解析:依题意,2kx 2-kx +38>0的解集为R ,即不等式2kx 2-kx +38>0恒成立,当k =0时,38>0恒成立,∴k =0满足条件.当k ≠0时,则⎩⎪⎨⎪⎧k >0,Δ=k 2-4×2k ×38<0,解得0<k <3.综上,k 的取值X 围是[0,3). 答案:[0,3)10.解析:(1)要使函数有意义,则有⎩⎪⎨⎪⎧x +1>0,log 2x +1-3≠0,即x >-1且x ≠7,故该函数的定义域为(-1,7)∪(7,+∞). (2)要使函数有意义,则有⎩⎪⎨⎪⎧3x -2>0,2x -1>0,2x -1≠1,解得x >23且x ≠1,故该函数的定义域为⎝ ⎛⎭⎪⎫23,1∪(1,+∞). (3)∵0<x ≤99,∴1<x +1≤100. ∴0<lg(x +1)≤2, ∴0<log 2(x +2)≤2, 即1<x +2≤4,即-1<x ≤2. 故该函数的定义域为(-1,2].学科素养升级练1.解析:f (x )+g (x )=log a (x +1)+log a (1-x )所以⎩⎪⎨⎪⎧x +1>01-x >0,解得-1<x <1,函数f (x )+g (x )的定义域为(-1,1),故A 正确;f (-x )+g (-x )=log a (-x +1)+log a (1+x ),所以f (x )+g (x )=f (-x )+g (-x ),所以函数f (x )+g (x )是偶函数,图象关于y 轴对称,故B 正确;f (x )+g (x )=log a (x +1)+log a (1-x )=log a (x +1)(1-x )=log a (-x 2+1),令t =-x 2+1,则y =log a t ,在x ∈(-1,0)上,t =-x 2+1单调递增,在x ∈(0,1)上,t =-x 2+1单调递减,当a >1时,y =log a t 单调递增,所以在x ∈(-1,0)上,f (x )+g (x )单调递增,在x ∈(0,1)上,f (x )+g (x )单调递减,所以函数f (x )+g (x )没有最小值,当0<a <1时,y =log a t 单调递减,所以在x ∈(-1,0)上,f (x )+g (x )单调递减,在x ∈(0,1)上,f (x )+g (x )单调递增,所以函数f (x )+g (x )有最小值为f (0)+g (0)=0,故C 错;f (x )-g (x )=log a (x +1)-log a (1-x )=log ax +11-x=log a ⎝⎛⎭⎪⎫-1+21-x ,令t =-1+21-x ,y =log a t .在x ∈(-1,1)上,t =-1+21-x 单调递增,当a >1时,f (x )+g (x )在(-1,1)单调递增,当0<a <1时,f (x )+g (x )在(-1,1)单调递减,故D错.故选AB.答案:AB2.解析:∵f (x 21)+f (x 22)+f (x 23)+…+f (x 22 017) =log a x 21+log a x 22+log a x 23+…+log a x 22 017 =log a (x 1x 2x 3…x 2 017)2=2log a (x 1x 2x 3…x 2 017) =2f (x 1x 2x 3…x 2 017), ∴原式=2×8=16. 答案:163.解析:(1)因为5.0+lg 1.5=5.0+lg 1510=5.0+lg 32=5.0+lg 3-lg 2≈5.0+0.477 1-0.301 0≈5.2, 所以①应填5.2; 因为5.0=5.0+lg V , 所以V =1,②处应填1.0;因为5.0+lg 0.4=5.0+lg 410=5.0+lg 4-1=5.0+2lg 2-1≈5.0+2×0.301 0-1≈4.6, 所以③处应填4.6;因为4.0=5.0+lg V ,所以lg V =-1.所以V=0.1.所以④处应填0.1.对照表补充完整如下:(2)则有4.5=5.0+lg V甲,所以V甲=10-0.5,则V乙=2×10-0.5.所以乙的对数视力值L乙=5.0+lg(2×10-0.5) =5.0+lg 2-0.5≈5.0+0.301 0-0.5≈4.8.。
第四章指数函数与对数函数【章节复习专项训练】【考点1】:指数、对数的运算例题1.下列各式正确的是()A .248πππ=B .23e =C .ln 6ln 2ln 3=D .lg 4lg 252+=【答案】D 【分析】由指数的运算法则可判断AB ;由换底公式可判断C ;由对数的加法运算法则可判断D.【详解】对于A ,22644ππππ+==,故A 错误;对于B ,23e =,故B 错误;对于C ,3ln 6log 6ln 3=,故C 错误;对于D ,()lg 4lg 25lg 425lg1002+=⨯==,故D 正确.故选:D.【变式1】以下对数式中,与指数式56x =等价的是()A .5log 6x =B .5log 6x =C .6log 5x =D .log 65x =【答案】A 【分析】根据指数式和对数式的关系即可得出.【详解】根据指数式和对数式的关系,56x =等价于5log 6x =.故选:A.【变式2】已知log 92a =-,则a 的值为()A .3-B .13-C .3D .13【答案】D 【分析】直接将对数式化为指数式求解即可.【详解】∵log 92a =-,0a >,∴29a -=,解得13a =,故选:D.【点睛】本题主要考查了对数的概念,属于基础题.【变式3】若1log 24a =,则a =()A .2B .4C .12D .14【答案】C 【分析】利用指数式与对数式的互化以及指数幂的运算即可求解.【详解】2111log 2442aa a =⇒=⇒=.故选:C 【点睛】本题考查了指数式与对数式的互化,考查了基本知识的掌握情况,属于基础题.【变式4】计算122121(2)()248n n n ++-⋅⋅(n ∈N *)的结果为()A .416B .22n+5C .2n 2-2n +6D .1(22n -7【答案】D 【分析】结合指数的运算公式化简即可求出结果.【详解】原式272221722626222122222n n n n n n -+-----⋅⎛⎫==== ⎪⋅⎝⎭,故选:D.【考点2】:指数函数、对数函数的概念例题1.下列函数表达式中,是对数函数的有()①y =log x 2;②y =log a x (a ∈R );③y =log 8x ;④y =ln x ;⑤y =log x (x +2);⑥y =log 2(x +1).A .1个B .2个C .3个D .4个【答案】B 【分析】根据对数函数的概念确定正确选项.【详解】形如log a y x =(0a >且1a ≠)的函数为对数函数,故③④为对数函数,所以共有2个.故选:B 【点睛】本小题主要考查对数函数的概念,属于基础题.【变式1】已知正整数指数函数()(2)x f x a a =-,则(2)f =()A .2B .3C .9D .16【答案】C 【分析】由函数是指数函数可求出3a =,即可求出(2)f .【详解】因为函数()(2)x f x a a =-是指数函数,所以21a -=,则3a =,所以()3x f x =,+∈x N ,所以2(2)39f ==.故选:C.【点睛】本题考查指数函数概念的理解,属于基础题.【变式2】若函数()f x 是指数函数,且()22f =,则()f x =()A .xB .2xC .12x⎛⎫ ⎪⎝⎭D .2x⎫⎪⎪⎝⎭【答案】A 【分析】利用待定系数法求解即可.【详解】解:由题意,设()(0xf x a a =>且)1a ≠,因为()22f =所以22a =,解得a =所以()xf x =.故选:A.【点睛】本题考查待定系数法求指数函数解析式,是基础题.【变式3】已知函数2x y a =⋅和2x b y +=都是指数函数,则a b +=()A .不确定B . 0C .1D . 2【答案】C 【分析】根据指数函数的概念,得到1a =,0b =,即可求出结果.【详解】因为函数2x y a =⋅是指数函数,所以1a =,由2x b y +=是指数函数,得0b =,所以1a b +=.故选:C.【点睛】本题主要考查由指数函数概念求参数的问题,属于基础题型.【变式4】已知函数f (x )=log a (x +1),若f (1)=1,则a =()A .0B .1C .2D .3【答案】C 【分析】根据指数式与对数式互化公式,结合代入法进行求解即可.【详解】∵f (1)=log a (1+1)=1,∴a 1=2,则a =2,故选:C.【考点3】:指数函数、对数函数的图像和性质例题1.如图,若1C ,2C 分别为函数log a y x =和log b y x =的图象,则()A .01a b <<<B .01b a <<<C .1a b >>D .b a l>>【答案】B 【分析】根据对数函数的图象特征,即可直接得到,a b 大小关系.【详解】根据1C ,2C 分别为函数log a y x =和log b y x =的图象,可得01b <<,01a <<,且b a <.故选:B 【点睛】本题考查根据对数函数图象求参数范围,注意规律的总结,属简单题.【变式1】函数()()ln 31y x x =-+的定义域是()A .()1,3-B .[]1,3-C .()(),13,-∞-+∞D .(][),13,-∞-+∞【答案】A 【分析】由对数函数定义要求其真数大于零构建不等式,求解即可.【详解】在对数函数()()ln 31y x x =-+中,真数()()()()310310x x x x -+>⇒-+<,所以()1,3x ∈-.故选:A 【点睛】本题考查求对数函数的定义域,属于基础题.【变式2】函数12(1)log 1y x =+-的图象一定经过点()A .()1,1B .()1,0C .()2,1D .()2,0【答案】C 【分析】根据对数函数的性质,结合图象的平移变换规律进行求解即可.【详解】把12log y x =的图象向右平移1个单位,再向上平移1个单位即可得到12(1)log 1y x =+-的图象,因为12log y x =的图象恒过(1,0)点,所以12(1)log 1y x =+-的图象经过点(2,1).故选:C 【点睛】本题考查了对数型函数恒过定点问题,考查了函数图象的平移变换性质,属于基础题.【变式3】已知函数()2xy a =-,且当0x <时,1y >,则实数a 的取值范围是()A .3a >B .23a <<C .4a >D .34a <<【答案】B 【分析】利用指数函数的性质求解即可【详解】当0x <时,1021y a >∴<-<,,解得23a <<,故选:B.【变式4】函数y =2|x |的图象是()A .B .C.D.【答案】B 【分析】将函数写成分段函数,再结合指数函数的图象,即可容易判断.【详解】y =2|x |=2,01,02x x x x ⎧≥⎪⎨⎛⎫<⎪ ⎪⎝⎭⎩,故当0x ≥时,函数图象同2x y =单调递增;当0x <时,函数图象同1()2xy =单调递减,且0x =时,1y =.满足以上条件的只有B .故选:B .【点睛】本题考查指数型函数的图象,属简单题.【考点4】:函数的零点与方程的解整式的乘法例题1.设1x ,2x 分别是函数()1x f x xa =-和()log 1a g x x x =-的零点(其中1a >),则122x x +的取值范围是()A .[2,)+∞B .(2,)+∞C .[3,)+∞D .(3,)+∞【答案】D 【分析】解法一:(图象法)根据题意可知12,x x 分别为x y a =与1y x =和log a y x =与1y x=交点的横坐标,,再根据同底数的指数对数函数互为反函数,有121x x =.代入1222122x x x x +=+,再根据区间(1,)+∞上单调递增,所以1223x x +>.解法二:(定义法)根据函数零点的定义可知1x 、2x 是方程1x a x=和1log a x x =的根,又1a >,所以函数1()xF x a x=-在(0,)+∞上单调递增,所以121x x =.代入1222122x x x x +=+在区间(1,)+∞上单调递增,所以1223x x +>.【详解】解:解法一:(图象法)根据函数零点的定义可知函数x y a =与1y x =的图象交点为111,x x ⎛⎫ ⎪⎝⎭,同理可得函数log a y x =与1y x =的图象交点为221,x x ⎛⎫ ⎪⎝⎭.又因为函数x y a =与log a y x =的图象关于直线y x =对称,函数1y x=的图象也关于直线y x =对称,所以点111,x x ⎛⎫ ⎪⎝⎭与点221,x x ⎛⎫ ⎪⎝⎭关于直线y x =对称,所以121x x =.由1a >可知21>x ,所以1222122x x x x +=+在区间(1,)+∞上单调递增,所以1223x x +>.故选:D解法二:(定义法)根据函数零点的定义可知1x 是方程1xa x=的根,所以1x 也是函数1()xF x a x=-的零点.同理可得2x 是方程1log a x x=的根,即221log a x x =,所以212x ax =,所以21x 也是函数1()xF x a x=-的零点.又1a >,所以函数1()xF x a x=-在(0,)+∞上单调递增,所以121x x =.由1a >可知21>x ,所以1222122x x x x +=+在区间(1,)+∞上单调递增,所以1223x x +>.故选:D 【点睛】本题考查了方程的根的确定、反函数性质的应用以及利用函数的单调性求最值,属于基础题.【变式1】函数()33x f x x =+的零点所在区间为()A .()1,0-B .()0,1C .()1,2D .()2,3【答案】A 【分析】判断出所给区间的端点值的乘积小于0可得答案.【详解】()()31213103f --=+-=-<;()()3003010f =+=>;()()3113140f =+=>;()()32232170f =+=>;()()33333540f =+=>;所以()()100f f -<.故选:A.【变式2】已知函数(),0ln ,0x e x f x x x ⎧≤=⎨>⎩,()()g x f x a =+,若()g x 恰有2个零点,则实数a的取值范围是()A .()1,0-B .[)1,0-C .()0,1D .(]0,1【答案】B 【分析】利用数形结合的方法,作出函数()f x 的图象,简单判断即可.【详解】依题意,函数()y f x =的图象与直线y a =-有两个交点,作出函数图象如下图所示,由图可知,要使函数()y f x =的图象与直线y a =-有两个交点,则01a <-≤,即10a -≤<.故选:B .【点睛】本题考查函数零点问题,掌握三种等价形式:函数零点个数等价于方程根的个数等价于两个函数图象交点个数,属基础题.【变式3】函数()232f x x x =-+的零点是()A .()1,0B .()1,0和()2,0C .1和2D .以上都不是【答案】C 【分析】当()0f x =时对应的x 的值即为所求的零点.【详解】令()0f x =,即2320x x -+=,解得:1x =或2x =,()f x ∴的零点是1和2.故选:C .【点睛】本题考查函数零点的求解问题,易错点是误认为零点为一个点的坐标,实际零点是函数值为零时,对应的自变量的值.【变式4】已知函数21ln ()xf x x -=,那么方程f (x )=0的解是()A .1=x eB .x =1C .x =eD .x =1或x =e【答案】C 【分析】通过解方程求得()0f x =的解.【详解】依题意()21ln 0xf x x -==,所以1ln 0,ln 1,x x x e -===.故选:C 【点睛】本小题主要考查函数零点的求法,属于基础题.【考点5】:用二分法求方程的近似解例题1.设f (x )=3x +3x -8,用二分法求方程3x +3x -8=0在(1,1.5)内的近似解的过程中,有f (1)<0,f (1.5)>0,f (1.25)<0,则该方程的根所在的区间为()A .(1,1.25)B .(1.25,1.5)C .(1.5,2)D .不能确定【答案】B 【分析】根据零点存在性定理即可判断零点所在区间.【详解】∵f (1.25)·f (1.5)<0,且f (x )是单调增函数,∴该方程的根所在的区间为(1.25,1.5).故选:B.【变式1】下列函数不宜用二分法求零点的是()A .f (x )=x 3-1B .f (x )=ln x +3C .f (x )=x 2++2D .f (x )=-x 2+4x -1【答案】C 【分析】根据二分法的概念可知,只有存在区间[](),a b a b <,使得()()0f a f b <,才能应用二分法求零点,即可判断出各选项对应的函数是否可用二分法求零点.【详解】对于A ,存在区间[]0,2,使得()()020f f <,所以A 宜用;对于B ,存在区间4,1e -⎡⎤⎣⎦,使得()()410f e f -<,所以B 宜用;对于C ,()(20f x x =≥,不存在区间[](),a b a b <,使得()()0f a f b <,所以C 不宜用;对于D ,存在区间[]0,1,使得()()010f f <,所以D 宜用.故选:C .【点睛】本题主要考查二分法的概念的理解以及应用,属于容易题.【变式2】函数33()log 2f x x x=-在区间[1,3]内有零点,则用二分法判断含有零点的区间为()A .31,2⎡⎤⎢⎥⎣⎦B .3,22⎡⎤⎢⎥⎣⎦C .52,2⎡⎤⎢⎥⎣⎦D .5,32⎡⎤⎢⎥⎣⎦【答案】C【分析】先求(1),(3)f f ,再求(2)f ,发现(3),(2)f f 异号,再求5(2f 的值,再利用零点存在性定理判断即可【详解】解:因为31(1)0,(3)022f f =-<=>,3433333(2)log 2log 2log 3log log 04f =-=-==<,353333355355log log log 3log log log 022524f ⎛⎫=-=-=>=> ⎪⎝⎭因此,函数f (x )的零点在区间52,2⎡⎤⎢⎥⎣⎦内,故选:C.【点睛】此题考查二分法判断零点,考查了零点存在性定理的应用,属于基础题.【变式3】用二分法求函数()f x 在(,)a b 内的唯一零点时,精确度为0.001,则经过一次二分就结束计算的条件是()A .||0.2a b -<B .||0.002a b -<C .||0.002a b ->D .||0.002a b -=【答案】B【分析】根据二分法的步骤分析可得.经过一次二分后,零点所在区间长度为||2b a -,结束计算的条件是零点所在区间的长度满足精确度,由此可得.【详解】据二分法的步骤知,经过一次二分后,零点所在区间长度为||2b a -,此时结束计算,所以||2b a -0.001<,所以||0.002b a -<.故选B【点睛】本题考查了二分法的步骤,属于基础题.【变式4】下面关于二分法的叙述,正确的是()A.用二分法可求所有函数零点的近似值B.用二分法求方程的近似解时,可以精确到小数点后的任一位C.二分法无规律可循D.只有在求函数零点时才用二分法【答案】B【分析】A C D进行判断,可以排除,从而选B.根据二分法的概念对,,【详解】只有函数的图象在零点附近是连续不断且在该零点左右两侧函数值异号,オ可以用二分法求函数的零点的近似值,故A错;二分法有规律可循,可以通过计算机来进行,故C错;求方程的近似解也可以用二分法,故D错.故选B.【点睛】本题考查了二分法的概念,属于基础题.。
(名师选题)(精选试题附答案)高中数学第四章指数函数与对数函数知识点总结全面整理单选题1、我国某科研机构新研制了一种治疗新冠肺炎的注射性新药,并已进入二期临床试验阶段.已知这种新药在注射停止后的血药含量c(t)(单位:mg/L)随着时间t(单位:h)的变化用指数模型c(t)=c0e−kt描述,假定某药物的消除速率常数k=0.1(单位:h−1),刚注射这种新药后的初始血药含量c0=2000mg/L,且这种新药在病人体内的血药含量不低于1000mg/L时才会对新冠肺炎起疗效,现给某新冠病人注射了这种新药,则该新药对病人有疗效的时长大约为()(参考数据:ln2≈0.693,ln3≈1.099)A.5.32hB.6.23hC.6.93hD.7.52h答案:C分析:利用已知条件c(t)=c0e−kt=2000e−0.1t,该药在机体内的血药浓度变为1000mg/L时需要的时间为t1,转化求解即可.解:由题意得:c(t)=c0e−kt=2000e−0.1t设该要在机体内的血药浓度变为1000mg/L需要的时间为t1c(t1)=2000e−0.1t1≥1000e−0.1t1≥1 2故−0.1t≥−ln2,t≤ln20.1≈6.93故该新药对病人有疗效的时长大约为6.93ℎ故选:C2、设alog34=2,则4−a=()A .116B .19C .18D .16答案:B分析:根据已知等式,利用指数对数运算性质即可得解 由alog 34=2可得log 34a =2,所以4a =9, 所以有4−a =19, 故选:B.小提示:本题考查的是有关指对式的运算的问题,涉及到的知识点有对数的运算法则,指数的运算法则,属于基础题目.3、青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L 和小数记录表的数据V 的满足L =5+lgV .已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据为( )(√1010≈1.259) A .1.5B .1.2C .0.8D .0.6 答案:C分析:根据L,V 关系,当L =4.9时,求出lgV ,再用指数表示V ,即可求解. 由L =5+lgV ,当L =4.9时,lgV =−0.1,则V =10−0.1=10−110=√1010≈11.259≈0.8.故选:C.4、函数y =2x −2−x ( ) A .是R 上的减函数 B .是R 上的增函数C .在(−∞,0)上是减函数,在(0,+∞)上是增函数D .无法判断其单调性 答案:B分析:利用指数函数的单调性结合单调性的性质可得出结论.因为指数函数f (x )=2x 为R 上的增函数,指数函数g (x )=2−x =(12)x为R 上的减函数,故函数y =2x −2−x 是R 上的增函数. 故选:B.5、已知函数f(x)={log 12x,x >0,a ⋅(13)x,x ≤0,若关于x 的方程f[f(x)]=0有且只有一个实数根,则实数a 的取值范围是( )A .(−∞,0)∪(0,1)B .(−∞,0)∪(1,+∞)C .(−∞,0)D .(0,1)∪(1,+∞) 答案:B分析:利用换元法设t =f (x ),则等价为f (t )=0有且只有一个实数根,分a <0,a =0,a >0 三种情况进行讨论,结合函数的图象,求出a 的取值范围.令f(x)=t ,则方程f[f(x)]=0等价于f(t)=0,当a =0时,此时当x ≤0时,f (x )=a ⋅(13)x=0,此时函数有无数个零点,不符合题意; 当a ≠0,则f(x)=a ⋅(13)x≠0,所以由f(t)=log 12t =0,得t =1,则关于x 的方程f[f(x)]=0有且只有一个实数根等价于关于x 的方程f(x)=1有且只有一个实数根,作出f(x)的图象如图:当a <0时,由图象可知直线y =1与y =f(x)的图象只有一个交点,恒满足条件; 当a >0时,要使直线y =1与y =f(x)的图象只有一个交点, 则只需要当x ≤0时,直线y =1与f(x)=a ⋅(13)x的图象没有交点,因为x ≤0 时,f (x )=a ⋅(13)x∈[a,+∞),此时f (x ) 最小值为a ,所以a >1,综上所述,实数a 的取值范围是(−∞,0)∪(1,+∞), 故选:B.6、已知函数f(x)=9+x 2x,g(x)=log 2x +a ,若存在x 1∈[3,4],对任意x 2∈[4,8],使得f(x 1)≥g(x 2),则实数a 的取值范围是( )A .(−∞,134]B .(134,+∞)C .(0,134)D .(1,4) 答案:A分析:将问题化为在对应定义域内f(x 1)max ≥g(x 2)max ,结合对勾函数和对数函数性质求它们的最值,即可求参数范围.由题意知:f(x)在[3,4]上的最大值大于或等于g(x)在[4,8]上的最大值即可. 当x ∈[3,4]时,f(x)=9x +x ,由对勾函数的性质得:f(x)在[3,4]上单调递增,故f(x)max =f(4)=94+4=254.当x ∈[4,8]时,g(x)=log 2x +a 单调递增,则g(x)max =g(8)=log 28+a =3+a , 所以254≥3+a ,可得a ≤134.故选:A7、已知a =log 20.6,b =log 20.8,c =log 21.2,则( ) A .c >b >a B .c >a >b C .b >c >a D .a >b >c答案:A分析:由对数函数得单调性即可得出结果. ∵y =log 2x 在定义域上单调递增,∴log 20.6<log 20.8<log 21.2,即c >b >a . 故选:A.8、下列各组函数中,表示同一个函数的是( ) A .y =1与y =x 0B .y =x 与y =(√x)2C .y =2log 2x 与y =log 2x 2D .y =ln 1+x 1−x 与y =ln (1+x )−ln (1−x )答案:D分析:分别计算每个选项中两个函数的定义域和对应关系,定义域和对应关系都相同的是同一个函数,即可得正确选项.对于A :y =1定义域为R ,y =x 0定义域为{x|x ≠0},定义域不同不是同一个函数,故选项A 不正确; 对于B :y =x 定义域为R ,y =(√x)2的定义域为{x|x ≥0},定义域不同不是同一个函数,故选项B 不正确; 对于C :y =2log 2x 的定义域为{x|x >0},y =log 2x 2定义域为{x|x ≠0},定义域不同不是同一个函数,故选项C 不正确;对于D :由1+x1−x >0可得(x +1)(x −1)<0,解得:−1<x <1,所以y =ln 1+x1−x 的定义域为{x|−1<x <1},由{1+x >01−x >0可得−1<x <1,所以函数y =ln (1+x )−ln (1−x )的定义域为{x|−1<x <1}且y =ln (1+x )−ln (1−x )=ln 1+x 1−x ,所以两个函数定义域相同对应关系也相同是同一个函数,故选项D 正确, 故选:D.9、方程log 2x =log 4(2x +3)的解为( ) A .−1B .1 C .3D .−1或3 答案:C分析:根据对数运算性质化为同底的对数方程,结合对数真数大于零可求得结果.∵log2x=log4(2x+3)=12log2(2x+3)=log2√2x+3,∴{x>02x+3>0x=√2x+3,解得:x=3.故选:C.10、中国的5G技术领先世界,5G技术的数学原理之一便是著名的香农公式:C=Wlog2(1+SN).它表示:在受噪声干扰的信道中,最大信息传递速度C取决于信道带宽W,信道内信号的平均功率S,信道内部的高斯噪声功率N的大小,其中SN叫做信噪比.当信噪比比较大时,公式中真数中的1可以忽略不计.按照香农公式,若不改变带宽W,而将信噪比SN从1000提升至4000,则C大约增加了()附:lg2≈0.3010A.10%B.20%C.50%D.100%答案:B分析:根据题意,计算出log24000log21000的值即可;当SN =1000时,C=Wlog21000,当SN=4000时,C=Wlog24000,因为log24000log21000=lg4000lg1000=3+2lg23≈3.60203≈1.2所以将信噪比SN从1000提升至4000,则C大约增加了20%,故选:B.小提示:本题考查对数的运算,考查运算求解能力,求解时注意对数运算法则的运用.填空题11、对数型函数f(x)的值域为[0,+∞),且在(0,+∞)上单调递增,则满足题意的一个函数解析式为______.答案:f(x)=|log2(x+1)|(答案不唯一,满足f(x)=|log a(x+b)|,a>1,b≥1即可)分析:根据题意可利用对数函数的性质和图像的翻折进行构造函数.∵函数f(x)的值域为[0,+∞),且在(0,+∞)上单调递增,∴满足题意的一个函数是f(x)=|log2(x+1)|.所以答案是:f(x)=|log2(x+1)|(答案不唯一)12、已知f (x )={2−x −1,−1<x ≤0f (x −1)+1,x >0 ,则函数g (x )=f (x )−3+14(x −3)2零点的个数为___________.答案:4分析:函数g (x )=f (x )−3+14(x −3)2零点的个数可转化为函数f (x )={2−x −1,−1<x ≤0f (x −1)+1,x >0与函数y =−14(x −3)2+3的图像交点个数,画出两个函数图像观察交点个数即可.解:对于函数f (x )={2−x −1,−1<x ≤0f (x −1)+1,x >0,当−1<x ≤0时,f (x )=2−x −1,当0<x ≤1时,f (x )=f (x −1)+1=2−x+1−1+1=2−x+1 当1<x ≤2时,f (x )=f (x −1)+1=2−x+2+1, 当2<x ≤3时,f (x )=f (x −1)+1=2−x+3+2, 当3<x ≤4时,f (x )=f (x −1)+1=2−x+4+3, ⋯⋯⋯⋯,函数g (x )=f (x )−3+14(x −3)2零点的个数可转化为函数f (x )={2−x −1,−1<x ≤0f (x −1)+1,x >0与函数y =−14(x −3)2+3的图像交点个数,在同一个直角坐标系中画出两个函数图像如图:观察图像可得:两个函数有4个交点,即函数g (x )=f (x )−3+14(x −3)2零点的个数为4.所以答案是:4.小提示:关键点点睛:本题主要考察零点个数问题,我们可以把零点个数问题转化为函数图像的交点个数,这里准确的画出函数图像是关键。
高一数学(必修一)《第四章 指数函数与对数函数》练习题及答案解析-人教版班级:___________姓名:___________考号:___________一、单选题1.某超市宣传在“双十一”期间对顾客购物实行一定的优惠,超市规定:①如一次性购物不超过200元不予以折扣;②如一次性购物超过200元但不超过500元的,按标价给予九折优惠;③如一次性购物超过500元的,其中500元给予9折优惠,超过500元的部分给予八五折优惠.某人两次去该超市购物分别付款176元和441元,如果他只去一次购买同样的商品,则应付款( )A .608元B .591.1元C .582.6元D .456.8元2.德国天文学家,数学家开普勒(J. Kepier ,1571—1630)发现了八大行星的运动规律:它们公转时间的平方与离太阳平均距离的立方成正比.已知天王星离太阳平均距离是土星离太阳平均距离的2倍,土星的公转时间约为10753d .则天王星的公转时间约为( )A .4329dB .30323dC .60150dD .90670d3.函数()f x = )A .()1,0-B .(),1-∞-和()0,1C .()0,1D .(),1-∞-和()0,∞+4.将进货价为每个80元的商品按90元一个出售时,能卖出400个,每涨价1元,销售量就减少20个,为了使商家利润有所增加,则售价a (元/个)的取值范围应是( )A .90100a <<B .90110a <<C .100110a <<D .80100a <<5.某市工业生产总值2018年和2019年连续两年持续增加,其中2018年的年增长率为p ,2019年的年增长率为q ,则该市这两年工业生产总值的年平均增长率为( )A .2p q +;B .()()1112p q ++-;C ;D 1.6.某污水处理厂为使处理后的污水达到排放标准,需要加入某种药剂,加入该药剂后,药剂的浓度C (单位:3mg/m )随时间t (单位:h )的变化关系可近似的用函数()()()210010419t C t t t t +=>++刻画.由此可以判断,若使被处理的污水中该药剂的浓度达到最大值,需经过( )A .3hB .4hC .5hD .6h7.某同学参加研究性学习活动,得到如下实验数据:以下函数中最符合变量y 与x 的对应关系的是( )A .129y x =+B .245y x x =-+C .112410x y =⨯- D .3log 1y x =+ 8.某种植物生命力旺盛,生长蔓延的速度越来越快,经研究,该一定量的植物在一定环境中经过1个月,其覆盖面积为6平方米,经过3个月,其覆盖面积为13.5平方米,该植物覆盖面积y (单位:平方米)与经过时间x (x ∈N )(单位:月)的关系有三种函数模型x y pa =(0p >,1a >)、log a y m x =(0m >,1a >)和y nx α=(0n >,01α<<)可供选择,则下列说法正确的是( )A .应选x y pa =(0p >,1a >)B .应选log a y m x =(0m >,1a >)C .应选y nx α=(0n >,01α<<)D .三种函数模型都可以9.已知函数()21,1,8, 1.x x f x x x ⎧-≤=⎨>⎩若()8f x =,则x =( ) A .3-或1 B .3- C .1 D .310.函数e 1()sin 2e 1x x f x x +=⋅-的部分图象大致为( ) A . B .C .D .二、填空题11.2021年8月30日第九届未来信息通信技术国际研讨会在北京开幕.研讨会聚焦于5G 的持续创新和演进、信息通信的未来技术前瞻与发展、信息通信技术与其他前沿科技的融合创新.香农公式2log 1S C W N ⎛⎫=+ ⎪⎝⎭是被广泛公认的通信理论基础和研究依据,它表示在受噪声干扰的信道中,最大信息传递速率C 取决于信道带宽W 、信道内信号的平均功率S ,信道内部的高斯噪声功率N 的大小,其中S N 叫作信噪比.若不改变信道带宽W ,而将信噪比S N从11提升至499,则最大信息传递速率C 大约会提升到原来的______倍(结果保留1位小数).(参考数据:2log 3 1.58≈和2log 5 2.32≈)12.已测得(,)x y 的两组值为(1,2)和(2,5),现有两个拟合模型,甲21y x =+,乙31y x =-.若又测得(,)x y 的一组对应值为(3,10.2),则选用________作为拟合模型较好.13.半径为1的半圆中,作如图所示的等腰梯形ABCD ,设梯形的上底2BC x =,则梯形ABCD 的最长周长为_________.三、解答题14.如图,某中学准备在校园里利用院墙的一段,再砌三面墙,围成一个矩形花园ABCD ,已知院墙MN 长为25米,篱笆长50米(篱笆全部用完),设篱笆的一面AB 的长为x 米.(1)当AB 的长为多少米时,矩形花园的面积为300平方米?(2)若围成的矩形ABCD 的面积为 S 平方米,当 x 为何值时, S 有最大值,最大值是多少?15.以贯彻“节能减排,绿色生态”为目的,某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y (百元)与月处理量x (吨)之间的函数关系可近似地表示为212800200y x x =-+. (1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(提示:平均处理成本为y x) (2)该单位每月处理成本y 的最小值和最大值分别是多少百元? 16.如图,以棱长为1的正方体的三条棱所在直线为坐标轴,建立空间直角坐标系O xyz -,点P 在线段AB 上,点Q 在线段DC 上.(1)当2PB AP =,且点P 关于y 轴的对称点为M 时,求PM ;(2)当点P 是面对角线AB 的中点,点Q 在面对角线DC 上运动时,探究PQ 的最小值.17.经销商经销某种农产品,在一个销售季度内,每售出1 t 该产品获利润500元,未售出的产品,每1 t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130 t 该农产品.以X (单位: t ,100150)X )表示下一个销售季度内的市场需求量,T (单位:元)表示下一个销售季度内经销该农产品的利润.(1)将T 表示为X 的函数;(2)根据直方图估计利润T 不少于57000元的概率;(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量[100X ∈,110),则取105X =,且105X =的概率等于需求量落入[100,110)的频率),求T 的分布列.18.为发展空间互联网,抢占6G 技术制高点,某企业计划加大对空间卫星网络研发的投入.据了解,该企业研发部原有100人,年人均投入()0a a >万元,现把研发部人员分成两类:技术人员和研发人员,其中技术人员有x 名(*x ∈N 且4575x ≤≤),调整后研发人员的年人均投入增加4x %,技术人员的年人均投入调整为275x a m ⎛⎫- ⎪⎝⎭万元. (1)要使调整后研发人员的年总投入不低于调整前的100人的年总投入,则调整后的技术人员最多有多少人?(2)是否存在实数m 同时满足两个条件:①技术人员的年人均投入始终不减少;②调整后研发人员的年总投入始终不低于调整后技术人员的年总投入?若存在,求出m 的值;若不存在,请说明理由.19.某公司今年年初用81万元收购了一个项目,若该公司从第1年到第x (N x +∈且1x >)年花在该项目的其他费用(不包括收购费用)为()20x x +万元,该项目每年运行的总收入为50万元.(1)试问该项目运行到第几年开始盈利?(2)该项目运行若干年后,公司提出了两种方案:①当盈利总额最大时,以56万元的价格卖出;②当年平均盈利最大时,以92万元的价格卖出.假如要在这两种方案中选择一种,你会选择哪一种?请说明理由.20.某工厂产生的废气必须经过过滤后排放,规定排放时污染物的残留含量不得超过原污染物总量的0.5%.已知在过滤过程中的污染物的残留数量P (单位:毫克/升)与过滤时间t (单位:小时)之间的函数关系为0ekt P P -=⋅(k 为常数,0P 为原污染物总量).若前4个小时废气中的污染物被过滤掉了80%,那么要能够按规定排放废气,还需要过滤n 小时,求正整数n 的最小值.21.某科技企业生产一种电子设备的年固定成本为600万元,除此之外每台机器的额外生产成本与产量满足一定的关系式.设年产量为x (0200x <,N x ∈)台,若年产量不足70台,则每台设备的额外成本为11402y x =+万元;若年产量大于等于70台不超过200台,则每台设备的额外成本为2264002080101y x x =+-万元.每台设备售价为100万元,通过市场分析,该企业生产的电子设备能全部售完.(1)写出年利润W (万元)关于年产量x (台)的关系式;(2)当年产量为多少台时,年利润最大,最大值为多少?22.为进一步奏响“绿水青山就是金山银山”的主旋律,某旅游风景区以“绿水青山”为主题,特别制作了旅游纪念章,决定近期投放市场,根据市场调研情况,预计每枚该纪念章的市场价y (单位:元)与上市时间x (单位:天)的数据如下表:(1)根据上表数据,从下列函数中选取一个恰当的函数描述每枚该纪念章的市场价y 与上市时间x 的变化关系并说明理由:①(0)y ax b a =+≠,②()20y ax bx c a =++≠,③()log 0,0,1b y a x a b b =≠>≠,④(0)a y b a x=+≠; (2)利用你选取的函数,求该纪念章市场价最低时的上市天数及最低市场价;(3)利用你选取的函数,若存在()10,x ∈+∞,使得不等式()010f x k x -≤-成立,求实数k 的取值范围.四、多选题23.函数()()22x x af x a R =+∈的图象可能为( )A .B .C .D .五、双空题24.某种病毒经30分钟可繁殖为原来的2倍,且已知病毒的繁殖规律为y=e kt (其中k 为常数;t 表示时间,单位:小时;y 表示病毒个数),则k=____,经过5小时,1个病毒能繁殖为____个.25.已知长为4,宽为3的矩形,若长增加x ,宽减少2x ,则面积最大,此时x =__________,面积S =__________.参考答案与解析1.【答案】B【分析】根据题意求出付款441元时的实际标价,再求出一次性购买实际标价金额商品应付款即可.【详解】由题意得购物付款441元,实际标价为10441=4909元 如果一次购买标价176+490=666元的商品应付款5000.9+1660.85=591.1元.故选:B.2.【答案】B【分析】设天王星和土星的公转时间为分别为T 和T ',距离太阳的平均距离为r 和r ',根据2323T r T r =''2r r '= 结合已知条件即可求解.【详解】设天王星的公转时间为T ,距离太阳的平均距离为r土星的公转时间为T ',距离太阳的平均距离为r '由题意知2r r '= 10753T d '= 所以323238T r r T r r ⎛⎫=== ⎪'''⎝⎭所以1075310753 2.82830409.484T d '==≈⨯=故选:B.3.【答案】B【分析】分别讨论0x ≥和0x <,利用二次函数的性质即可求单调递减区间.【详解】当0x ≥时()f x 210x -+≥解得11x -≤≤,又21y x =-+为开口向下的抛物线,对称轴为0x =,此时在区间()0,1单调递减当0x <时()f x == ()21y x =+为开口向上的抛物线,对称轴为1x =-,此时在(),1-∞-单调递减综上所述:函数()f x =(),1-∞-和()0,1.故选:B.4.【答案】A【分析】首先设每个涨价x 元,涨价后的利润与原利润之差为y 元,结合条件列式,根据0y >,求x 的取值范围,即可得到a 的取值范围.【详解】设每个涨价x 元,涨价后的利润与原利润之差为y 元则290,(10)(40020)1040020200a x y x x x x =+=+⋅--⨯=-+.要使商家利润有所增加,则必须使0y >,即2100x x -<,得010,9090100x x <<∴<+<,所以a 的取值为90100a <<.故选:A5.【答案】D【分析】设出平均增长率,并根据题意列出方程,进行求解【详解】设该市2018、2019这两年工业生产总值的年平均增长率为x ,则由题意得:()()()2111x p q +=++解得11x =,21x =因为20x <不合题意,舍去 故选D .6.【答案】A【分析】利用基本不等式求最值可得.【详解】依题意,0t >,所以11t +>所以()()()()()()221001100110010010164191012116121t t C t t t t t t t ++===≤==++++++++++ 当且仅当1611t t +=+,即t =3时等号成立,故由此可判断,若使被处理的污水中该药剂的浓度达到最大值,需经过3h .故选:A .7.【答案】D 【分析】结合表格所给数据以及函数的增长快慢确定正确选项.【详解】根据表格所给数据可知,函数的增长速度越来越慢A 选项,函数129y x =+增长速度不变,不符合题意. BC 选项,当3x ≥时,函数245y x x =-+、112410x y =⨯-增长越来越快,不符合题意. D 选项,当3x ≥时,函数3log 1y x =+的增长速度越来越慢,符合题意.故选:D8.【答案】A【解析】根据指数函数和幂函数的增长速度结合题意即可得结果.【详解】该植物生长蔓延的速度越来越快,而x y pa =(0p >,1a >)的增长速度越来越快 log a y m x =(0m >,1a >)和y nx α=(0n >,01α<<)的增长速度越来越慢故应选择x y pa =(0p >,1a >).故选:A.9.【答案】B【分析】根据分段函数的解析式,分段求解即可.【详解】根据题意得x ≤1x2−1=8或188x x >⎧⎨=⎩ 解得3,x =-故选:B10.【答案】B【分析】结合图象,先判断奇偶性,然后根据x 趋近0时判断排除得选项.【详解】解:()e 1sin 2e 1x x f x x +=⋅-的定义域为()(),00,∞-+∞()()()e 1e 1sin 2sin 2e 1e 1x x x xf x x x f x --++-=⋅-=⋅=⎡⎤⎣⎦-- ()f x ∴是偶函数,排除A ,C . 又0x >且无限接近0时,101x x e e +>-且sin 20x >,∴此时()0f x >,排除D故选:B .11.【答案】2.5【分析】设提升前最大信息传递速率为1C ,提升后最大信息传递速率为2C ,根据题意求出21C C ,再利用指数、对数的运算性质化简计算即可【详解】设提升前最大信息传递速率为1C ,提升后最大信息传递速率为2C ,则由题意可知()122log 111log 12C W W =+= ()222log 1499log 500C W W =+= 所以()()232322222222122222log 25log 500log 2log 523log 523 2.328.96 2.5log 12log 2log 32log 32 1.58 3.58log 23C W C W ⨯+++⨯====≈=≈+++⨯所以最大信息传递速率C 会提升到原来的2.5倍.故答案为:2.512.【答案】甲【分析】将3x =分别代入甲乙两个拟合模型计算,即可判断.【详解】对于甲:3x =时23110y =+=,对于乙:3x =时8y =因此用甲作为拟合模型较好.故答案为:甲13.【答案】5【分析】计算得出AB CD ==ABCD 的周长为y,可得出22y x =++()0,1t,可得出224y t =-++,利用二次函数的相关知识可求得y 的最大值.【详解】过点B 、C 分别作BE AD ⊥、CF AD ⊥垂足分别为E 、F则//BE CF ,//BC EF 且90BEF ∠=,所以,四边形BCFE 为矩形所以2EF BC x ==AB CD =,BAE CDF ∠=∠和90AEB DFC ∠=∠= 所以,Rt ABE Rt DCF ≅所以12AD EF AE DF x -===-,则OF OD DF x =-= CF =AB CD ∴===设梯形ABCD 的周长为y ,则2222y x x =++=++其中01x <<令()0,1t =,则21x t =-所以()2222212425y t t t ⎛=+-+=-++=-+ ⎝⎭所以,当t =y 取最大值,即max 5y =. 故答案为:5.【点睛】思路点睛:解函数应用题的一般程序:第一步:审题——弄清题意,分清条件和结论,理顺数量关系;第二步:建模——将文字语言转化成数学语言,用数学知识建立相应的数学模型;第三步:求模——求解数学模型,得到数学结论;第四步:还原——将用数学方法得到的结论还原为实际问题的意义;第五步:反思回顾——对于数学模型得到的数学结果,必须验证这个数学解对实际问题的合理性.14.【答案】(1)15米;(2)当 x 为12.5米时, S 有最大值,最大值是312.5平方米.【分析】(1)设篱笆的一面AB 的长为 x 米,则(502)m BC x =-,根据“矩形花园的面积为300平方米”列一元二次方程,求解即可;(2)根据题意,可得(502)S x x =-,根据二次函数最值的求法求解即可.(1)设篱笆的一面AB 的长为 x 米,则(502)m BC x =-由题意得(502)300x x -=解得1215,10x x ==50225x -≤12.5x ∴≥15x ∴=所以,AB 的长为15米时,矩形花园的面积为300平方米;(2)由题意得()()22502250212.5312.5,12.525S x x x x x x =-=-+=--+≤<12.5x ∴=时, S 取得最大值,此时312.5S =所以,当 x 为12.5米时, S 有最大值,最大值是312.5平方米.15.【答案】(1)400吨 (2)最小值800百元,最大值1400百元【分析】(1)求出平均处理成本的函数解析式,利用基本不等式求出最值;(2)利用二次函数单调性求解最值.(1)由题意可知,二氧化碳的每吨平均处理成本为18002200y x x x =+-,显然[]400,600x ∈由基本不等式得:1800222200y x x x =+-≥= 当且仅当1800200x x =,即400x =时,等号成立 故每月处理量为400吨时,才能使每吨的平均处理成本最低;(2)212800200y x x =-+ 对称轴220012200x -=-=⨯ 函数212800200y x x =-+在[400,600]单调递增 当400x =时,则2min 14002400800800200y =⨯-⨯+= 当600x =时,则2max 160026008001400200y =⨯-⨯+= 答:该单位每月处理成本y 的最小值800百元,最大值1400百元.16.【答案】【分析】(1)根据空间直角坐标系写出各顶点的坐标,再由2PB AP =求得121,,33OP ⎛⎫= ⎪⎝⎭,得到P 与M 的坐标,再利用两点距离公式求解即可;(2)由中点坐标公式求得111,,22P ⎛⎫ ⎪⎝⎭,再根据题意设点(,1,)Q a a ,最后利用两点间的距离公式与一元二次函数配方法求PQ 的最小值.(1)所以()22211222131133333PM ⎛⎫⎛⎫=++-++= ⎪ ⎪⎝⎭⎝⎭. (2)因为点P 是面对角线AB 的中点,所以111,,22P ⎛⎫ ⎪⎝⎭,而点Q 在面对角线DC 上运动,故设点(,1,)Q a a[0,1]a ∈则(PQ a ===[0,1]a ∈所以当34a =时,PQ 取得最小值33,1,44Q ⎛⎫ ⎪⎝⎭. 17.【答案】(1)80039000,[100,130)65000,[130,150]X X T X -∈⎧=⎨∈⎩(2)0.7(3)59400 【分析】(1)由题意先分段写出,当[100x ∈,130)和[130x ∈,150)时的利润值,利用分段函数写出即可;(2)由(1)知,利润T 不少于57000元,当且仅当120150x ,再由直方图知需求量[120X ∈,150]的频率为0.7,由此估计得出结论;(3)先求出利润与X 的关系,再利用直方图中的频率计算利润分布列,最后利用公式求其数学期望.(1)解:由题意得,当[100X ∈,130)时500300(130)80039000T X X X =--=-当[130X ∈,150]时50013065000T =⨯=80039000,[100,130)65000,[130,150]X X T X -∈⎧∴=⎨∈⎩(2)解:由(1)知,利润T 不少于57000元,当且仅当120150X .由直方图知需求量[120X ∈,150]的频率为0.7所以下一个销售季度的利润T 不少于57000元的概率的估计值为0.7;(3)解:由题意及(1)可得:所以T 的分布列为:18.【答案】(1)最多有75人 (2)存在 7m =【分析】(1)根据题目要求列出方程求解即可得到结果(2)根据题目要求①先求解出m 关于x 的取值范围,再根据x 的取值范围求得m 的取值范围,之后根据题目要求②列出不等式利用基本不等式求解出m 的取值范围,综上取交集即可 (1)依题意可得调整后研发人员有()100x -人,年人均投入为()14%x a +万元则()()10014%100x x a a -+≥,解得075x ≤≤.又4575x ≤≤,*x ∈N 所以调整后的奇数人员最多有75人.(2)假设存在实数m 满足条件.由条件①,得225x a m a ⎛⎫-≥ ⎪⎝⎭,得2125x m ≥+. 又4575x ≤≤,*x ∈N 所以当75x =时,2125x +取得最大值7,所以7m ≥. 由条件②,得()()210014%25x x x a a m x ⎛⎫-+≥- ⎪⎝⎭,不等式两边同除以ax 得1002112525x x m x ⎛⎫⎛⎫-+≥- ⎪⎪⎝⎭⎝⎭,整理得100325x m x ≤++因为10033725x x ++≥=,当且仅当10025x x =,即50x =时等号成立,所以7m ≤. 综上,得7m =.故存在实数m 为7满足条件.19.【答案】(1)第4年 (2)选择方案②,理由见解析【分析】(1)设项目运行到第x 年的盈利为y 万元,可求得y 关于x 的函数关系式,解不等式0y >可得x 的取值范围,即可得出结论;(2)计算出两种方案获利,结合两种方案的用时可得出结论.(1)解:设项目运行到第x 年的盈利为y 万元则()25020813081=-+-=-+-y x x x x x由0y >,得230810x x -+<,解得327x <<所以该项目运行到第4年开始盈利.(2)解:方案①()22308115144=-+-=--+y x x x当15x =时,y 有最大值144.即项目运行到第15年,盈利最大,且此时公司的总盈利为14456200+=万元方案②818130303012y x x x x x ⎛⎫=-+-=-+≤- ⎪⎝⎭ 当且仅当81x x=,即9x =时,等号成立. 即项目运行到第9年,年平均盈利最大,且此时公司的总盈利为12992200⨯+=万元.综上,两种方案获利相等,但方案②时间更短,所以选择方案②.20.【答案】10【分析】由题可得()400180%e k P P --=,求得ln 54k =,再由000.5%e kt P P -≥可求解. 【详解】由题意,前4个小时消除了80%的污染物因为0e kt P P -=⋅,所以()400180%ek P P --= 所以40.2e k -=,即4ln0.2ln5k -==-,所以ln 54k =则由000.5%e kt P P -≥,得ln 5ln 0.0054t ≥- 所以4ln 20013.2ln 5t ≥≈ 故正整数n 的最小值为14410-=.21.【答案】(1)2**160600,070,N 264001480,70200,N x x x x W x x x x ⎧-+-<<∈⎪⎪=⎨⎛⎫⎪-+∈ ⎪⎪⎝⎭⎩;(2)当年产量为80台时,年利润最大,最大值为1320万元.【分析】(1)根据题意,分段表示出函数模型,即可求解;(2)根据题意,结合一元二次函数以及均值不等式,即可求解.(1)当070x <<,*N x ∈时 211100406006060022W x x x x x ⎛⎫=-+-=-+- ⎪⎝⎭; 当70200x ≤≤,*N x ∈时26400208064001001016001480W x x x x x x ⎛⎫⎛⎫=-+--=-+ ⎪ ⎪⎝⎭⎝⎭. ∴.2**160600,070,N 264001480,70200,N x x x x W x x x x ⎧-+-<<∈⎪⎪=⎨⎛⎫⎪-+∈ ⎪⎪⎝⎭⎩; (2)①当070x <<,*N x ∈时 221160600(60)120022W x x x =-+-=--+ ∴当60x =时,y 取得最大值,最大值为1200万元.②当70200x ≤≤,*N x ∈时6400148014801320W x x ⎛⎫=-+≤- ⎪⎝⎭ 当且仅当6400x x =,即80x =时,y 取得最大值1320∵13201200>∴当年产量为80台时,年利润最大,最大值为1320万元.22.【答案】(1)选择()20y ax bx c a =++≠,理由见解析(2)当该纪念章上市10天时,市场价最低,最低市场价为每枚70元(3)k ≥【分析】(1)由表格数据分析变量x 与变量y 的关系,由此选择对应的函数关系;(2)由已知数据求出函数解析式,再结合函数性质求其最值;(3)不等式可化为()17010210x k x -+≤-,由条件可得()min 17010210x k x ⎡⎤-+≤⎢⎥-⎣⎦,利用函数的单调性求()17010210y x x =-+-的最小值,由此可得k 的取值范围. (1)由题表知,随着时间x 的增大,y 的值随x 的增大,先减小后增大,而所给的函数(0)y ax b a =+≠ ()log 0,0,1b y a x a b b =≠>≠和(0)a y b a x =+≠在(0,)+∞上显然都是单调函数,不满足题意,故选择()20y ax bx c a =++≠.(2)得42102,36678,40020120,a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩∴当10x =时,y 有最小值,且min 70y =.故当该纪念章上市10天时,市场价最低,最低市场价为每枚70元.(3)令()()()1701010210f x g x x x x ==-+--(10,)x ∞∈+因为存在()10,x ∈+∞,使得不等式()0g x k -≤成立则()min k g x ≥.又()()17010210g x x x =-+-在(10,10+上单调递减,在()10++∞上单调递增 ∴当10x =+()g x取得最小值,且最小值为(10g +=∴k ≥23.【答案】ABD【解析】根据函数解析式的形式,以及图象的特征,合理给a 赋值,判断选项.【详解】当0a =时()2x f x =,图象A 满足; 满足;图象C 过点()0,1,此时0a =,故C 不成立.故选:ABD【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.24.【答案】2ln2 1024【详解】当t=0.5时,y=2,∴2=12e k ,∴k=2ln 2,∴y=e 2t ln 2 当t=5时,y=e 10ln 2=210=1 024.25.【答案】1 1212【详解】S =(4+x) 32x ⎛⎫- ⎪⎝⎭=-22x +x +12=-12 (x 2-2x)+12=-12 (x -1)2+252. 当x =1时,S max =252,故填1和252.。
高中数学第四章指数函数与对数函数知识点总结归纳完整版单选题1、青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L 和小数记录表的数据V 的满足L =5+lgV .已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据为( )(√1010≈1.259) A .1.5B .1.2C .0.8D .0.6 答案:C分析:根据L,V 关系,当L =4.9时,求出lgV ,再用指数表示V ,即可求解. 由L =5+lgV ,当L =4.9时,lgV =−0.1, 则V =10−0.1=10−110=√1010≈11.259≈0.8.故选:C.2、已知2a =5,log 83=b ,则4a−3b =( ) A .25B .5C .259D .53 答案:C分析:根据指数式与对数式的互化,幂的运算性质以及对数的运算性质即可解出. 因为2a=5,b =log 83=13log 23,即23b=3,所以4a−3b=4a 43b =(2a )2(23b )2=5232=259.故选:C.3、中国茶文化博大精深,某同学在茶艺选修课中了解到,茶水的口感与茶叶类型和水的温度有关,某种绿茶用80℃左右的水泡制可使茶汤清澈明亮,营养也较少破坏.为了方便控制水温,该同学联想到牛顿提出的物体在常温环境下温度变化的冷却模型:如果物体的初始温度是θ1℃,环境温度是θ0℃,则经过t 分钟后物体的温度θ℃将满足θ=θ0+(θ1−θ0)e −kt ,其中k 是一个随着物体与空气的接触状况而定的正常数.该同学通过多次测量平均值的方法得到初始温度为100℃的水在20℃的室温中,12分钟以后温度下降到50℃.则在上述条件下,100℃的水应大约冷却( )分钟冲泡该绿茶(参考数据:ln2≈0.7,ln3≈1.1) A .3B .3.6C .4D .4.8 答案:B分析:根据题意求出k的值,再将θ=80℃,θ1=100℃,θ0=20℃代入θ=θ0+(θ1−θ0)e−kt即可求得t的值.由题可知:50=20+(100−20)e−12k⇒(e−k)12=38⇒e−k=(38)112,冲泡绿茶时水温为80℃,故80=20+(100−20)⋅e−kt⇒(e−k)t=34⇒t⋅lne−k=ln34⇒t=ln 3 4ln(38)112=12(ln3−2ln2)ln3−3ln2≈12(1.1−2×0.7)1.1−3×0.7=3.6.故选:B.4、声强级L1(单位:dB)与声强I的函数关系式为:L1=10lg(I10−12).若普通列车的声强级是95dB,高速列车的声强级为45dB,则普通列车的声强是高速列车声强的()A.106倍B.105倍C.104倍D.103倍答案:B分析:设普通列车的声强为I1,高速列车的声强为I2,由声强级得95=10lg(I110−12),45=10lg(I210−12),求出I1、I2相除可得答案.设普通列车的声强为I1,高速列车的声强为I2,因为普通列车的声强级是95dB,高速列车的声强级为45dB,所以95=10lg(I110−12),45=10lg(I210−12),95=10lg(I110−12)=10(lgI1+12),解得−2.5=lgI1,所以I1=10−2.5,45=10lg(I210−12)=10(lgI2+12),解得−7.5=lgI2,所以I2=10−7.5,两式相除得I1I2=10−2.510−7.5=105,则普通列车的声强是高速列车声强的105倍.故选:B.5、中国的5G技术领先世界,5G技术的数学原理之一便是著名的香农公式:C=Wlog2(1+SN).它表示:在受噪声干扰的信道中,最大信息传递速度C取决于信道带宽W,信道内信号的平均功率S,信道内部的高斯噪声功率N 的大小,其中SN叫做信噪比.当信噪比比较大时,公式中真数中的1可以忽略不计.按照香农公式,若不改变带宽W ,而将信噪比SN从1000提升至4000,则C 大约增加了( )附:lg2≈0.3010A .10%B .20%C .50%D .100% 答案:B分析:根据题意,计算出log 24000log 21000的值即可;当SN=1000时,C =Wlog 21000,当SN=4000时,C =Wlog 24000,因为log 24000log 21000=lg4000lg1000=3+2lg23≈3.60203≈1.2所以将信噪比SN从1000提升至4000,则C 大约增加了20%,故选:B.小提示:本题考查对数的运算,考查运算求解能力,求解时注意对数运算法则的运用. 6、指数函数 y =a x 的图象经过点(3,18),则a 的值是( )A .14B .12C .2D .4 答案:B分析:将已知点的坐标代入指数函数的表达式,求得a 的值. 因为y =a x 的图象经过点(3,18),所以a 3=18,解得a =12,故选:B.7、用二分法求函数f (x )的一个正实数零点时,经计算f (0.64)<0,f (0.72)>0,f (0.68)<0,则函数的一个精确度为0.1的正实数零点的近似值为( ) A .0.9B .0.7C .0.5D .0.4 答案:B分析:利用二分法求函数零点的近似值的条件及方法分析判断即得.依题意,函数的零点在(0.68,0.72)内,四个选项中只有0.7∈(0.68,0.72),且满足|0.72-0.68|<0.1, 所以所求的符合条件的近似值为0.7.故选:B8、若ln2=a ,ln3=b ,则log 818=( ) A .a+3b a 3B .a+2b 3aC .a+2b a 3D .a+3b 3a答案:B分析:先换底,然后由对数运算性质可得. log 818=ln18ln8=ln(32×2)ln23=2ln3+ln23ln2=2b+a 3a.故选:B 多选题9、(多选)某工厂生产一种溶液,按市场要求杂质含量不得超过0.1%,而这种溶液最初的杂质含量为2%,现进行过滤,已知每过滤一次杂质含量减少13,则使产品达到市场要求的过滤次数可以为(参考数据:lg2≈0.301,lg3≈0.477) A .6B .9C .8D .7 答案:BC分析:因为每过滤一次杂质含量减少13,所以每过滤一次杂志剩余量为原来的23,由此列式可解得.设经过n 次过滤,产品达到市场要求,则 2100×(23)n⩽11000,即(23)n⩽120,由 nlg 23⩽−lg20,即 n(lg2−lg3)⩽−(1+lg2),得 n ⩾1+lg2lg3−lg2≈7.4, 故选BC .小提示:本题考查了指数不等式的解法,属于基础题. 10、已知a =log 3e,b =log 23,c =ln3,则( ) A .a <b <c B .a <c <b C .D .a +c <b 答案:BC分析:由对数函数的单调性结合换底公式比较a,b,c 的大小,计算出a +c ,利用基本不等式得a +c >2,而b <2,从而可比较大小.a cb +>由题意可知,对于选项AB ,因为b =log 23=ln3ln2>ln3lne =ln3=c ,所以b >c ,又因为a =log 3e <log 33=1,且c =ln3>lne =1,所以,则b >c >a ,所以选项A 错误,选项B 正确;对于选项CD ,a +c =log 3e +ln3=lne ln3+ln3=1ln3+ln3>2√1ln3⋅ln3=2,且b =log 23<b =log 24=2,所以,故选项C 正确,选项D 错误; 故选:BC.小提示:关键点点睛:本题考查对数函数的单调性,利用单调性比较对数的大小,对于不同底的对数,可利用换底公式化为同底,再由用函数的单调性及不等式的性质比较大小,也可结合中间值如0或1或2等比较后得出结论.11、甲乙两人同时各接受了600个零件的加工任务,甲比乙每分钟加工的数量多,两人同时开始加工,加工过程中甲因故障停止一会后又继续按原速加工,直到他们完成任务.如图表示甲比乙多加工的零件数量y (个)与加工时间x (分)之间的函数关系,A 点横坐标为12,B 点坐标为(20,0),C 点横坐标为128.则下面说法中正确的是( )A .甲每分钟加工的零件数量是5个B .在60分钟时,甲比乙多加工了120个零件C .D 点的横坐标是200D .y 的最大值是216 答案:ACD分析:甲每分钟加工的数量是600120=5,所以选项A 正确;在60分钟时,甲比乙多加工了(60-20)×2=80个零件,所以选项B 错误;设D 的坐标为(t,0),由题得△AOB ∽△CBD ,则有1220=128−20t−20,解可得t =200,所以选项C 正确;当x =128时,y =216,所以y 的最大值是216.所以选项D 正确. 根据题意,甲一共加工的时间为(12−0)+(128−20)=120分钟,c a >a c b +>一共加工了600个零件,则甲每分钟加工的数量是600120=5,所以选项A正确,设D的坐标为(t,0),在区间(128,t)和(12,20 )上,都是乙在加工,则直线AB和CD的斜率相等,则有∠ABO=∠CDB,在区间(20,128)和(0,12)上,甲乙同时加工,同理可得∠AOB=∠CBD,则△AOB∽△CBD,则有1220=128−20t−20,解可得t=200;即点D的坐标是(200,0),所以选项C正确;由题得乙每分钟加工的零件数为600200=3个,所以甲每分钟比乙多加工5-3=2个,在60分钟时,甲比乙多加工了(60-20)×2=80个零件,所以选项B错误;当x=128时,y=(128−20)×2=216,所以y的最大值是216.所以选项D正确. 故选:ACD12、已知函数f(x)=a x(a>1),g(x)=f(x)−f(−x),若x1≠x2,则()A.f(x1)f(x2)=f(x1+x2)B.f(x1)+f(x2)=f(x1x2)C.x1g(x1)+x2g(x2)>x1g(x2)+x2g(x1)D.g(x1+x22)⩽g(x1)+g(x2)2答案:AC分析:对选项A、B,利用指数幂的运算性质即可判断选项A正确,选项B错误;对选项C、利用g(x)=f(x)−f(−x)=a x−a−x(a>1)在R上单调递增即可判断,选项C正确;对选项D、根据f(x)=a x(a>1),且x1≠x2,由凹凸性有f(x1+x22)<12[f(x1)+f(x2)],又f(−x)=(1 a )x(a>1),由凹凸性有f(−x1−x22)>12[f(−x1)+f(−x2)]即可判断选项D错误;解:对选项A:因为a x1⋅a x2=a x1+x2,所以f(x1)f(x2)=f(x1+x2),故选项A正确;对选项B:因为a x1+a x2≠a x1x2,所以f(x1)+f(x2)≠f(x1x2),故选项B错误;对选项C:由题意,因为a>1,所以g(x)=f(x)−f(−x)=a x−a−x在R上单调递增,不妨设x1>x2,则g(x1)>g(x2),所以(x1−x2)g(x1)>(x1−x2)g(x2),即x1g(x1)+x2g(x2)>x1g(x2)+ x2g(x1),故选项C正确;对选项D:因为f(x)=a x(a>1),且x1≠x2,所以由凹凸性有f(x1+x22)<12[f(x1)+f(x2)],又f(−x)=(1a )x(a>1),所以由凹凸性有f(−x1−x22)>12[f(−x1)+f(−x2)],所以有f(x1+x22)+12[f(−x1)+f(−x2)]<f(−x1−x22)+12[f(x1)+f(x2)],即f(x1+x22)−f(−x1−x22)<12[f(x1)+f(x2)]−12[f(−x1)+f(−x2)],即g(x1+x22)<g(x1)+g(x2)2,故选项D错误;故选:AC.13、已知函数f(x)={lnx,x>0,−x2−4x,x≤0.关于x的方程f(x)−t=0的实数解个数,下列说法正确的是()A.当t≤0时,方程有两个实数解B.当t>4时,方程无实数解C.当0<t<4时,方程有三个实数解D.当t=4时,方程有两个实数解答案:CD分析:方程f(x)−t=0即f(x)=t,作出函数f(x)的简图,数形结合可得结果.方程f(x)−t=0即f(x)=t,作出函数f(x)的简图,由图可知:当t<0时,函数y=f(x)的图象与直线y=t有2个交点,即方程f(x)−t=0有2个实数解;当t=0时,函数y=f(x)的图象与直线y=t有3个交点,即方程f(x)−t=0有3个实数解,故A错误;当t>4时,函数y=f(x)的图象与直线y=t有1个交点,即方程f(x)−t=0有1个实数解,故B错误;当0<t<4时,函数y=f(x)的图象与直线y=t有3个交点,即方程f(x)−t=0有3个实数解,故C正确;当t=4时,函数y=f(x)的图象与直线y=t有2个交点,即方程f(x)−t=0有2个实数解,故D正确.故选:CD.填空题14、已知函数f(x)=1+log a(x−1)(a>0且a≠1)的图像恒过定点P,又点P的坐标满足方程mx+ny=1,则mn的最大值为_____.答案:18##0.125分析:根据对数型函数的过定点(2,1),代入方程中可得2m+n=1,根据基本不等式即可求解.f(x)=1+log a(x−1)(a>0且a≠1)过定点(2,1),所以P(2,1),所以2m+n=1故2m⋅n≤(2m+n2)2⇒m⋅n≤18,当且仅当m=14,n=12时等号成立.所以答案是:1815、已知f(x)是奇函数,且当x<0时,f(x)=−e ax.若f(ln2)=8,则a=__________.答案:-3分析:当x>0时−x<0,f(x)=−f(−x)=e−ax代入条件即可得解.因为f(x)是奇函数,且当x>0时−x<0,f(x)=−f(−x)=e−ax.又因为ln2∈(0,1),f(ln2)=8,所以e−aln2=8,两边取以e为底的对数得−aln2=3ln2,所以−a=3,即a=−3.小提示:本题主要考查函数奇偶性,对数的计算.渗透了数学运算、直观想象素养.使用转化思想得出答案.16、函数y=log12(3x−1)的单调递减区间为_____答案:(13,+∞)分析:根据复合函数单调性规律即可求解 函数y =log 12(3x −1)的定义域为(13,+∞)又y =log 12(3x −1)是由y =log 12u 与u =3x −1复合而成,因为外层函数y =log 12u 单调递减,所以求函数y =log 12(3x −1)的单调递减区间即是求内层函数u =3x −1的增区间,而内层函数u =3x −1在(13,+∞)上单调递增,所以函数y =log 12(3x −1)的减区间为(13,+∞)所以答案是:(13,+∞)解答题17、已知函数f (x )是定义在R 上的偶函数,且当x ≤0时,f (x )=x 2+mx ,函数f (x )在y 轴左侧的图象如图所示.(1)求函数f (x )的解析式;(2)若关于x 的方程f (x )−a =0有4个不相等的实数根,求实数a 的取值范围. 答案:(1)f (x )={x 2+2x,x ≤0x 2−2x,x >0(2)(−1,0)分析:(1)利用f (−2)=0可求x ≤0时f (x )的解析式,当x >0时,利用奇偶性f (x )=f (−x )可求得x >0时的f (x )的解析式,由此可得结果;(2)作出f (x )图象,将问题转化为f (x )与y =a 有4个交点,数形结合可得结果.(1)由图象知:f (−2)=0,即4−2m =0,解得:m =2,∴当x ≤0时,f (x )=x 2+2x ; 当x >0时,−x <0,∴f (−x )=(−x )2−2x =x 2−2x ,∵f (x )为R 上的偶函数,∴当x >0时,f (x )=f (−x )=x 2−2x ; 综上所述:f (x )={x 2+2x,x ≤0x 2−2x,x >0;(2)∵f (x )为偶函数,∴f (x )图象关于y 轴对称,可得f (x )图象如下图所示,f (x )−a =0有4个不相等的实数根,等价于f (x )与y =a 有4个不同的交点, 由图象可知:−1<a <0,即实数a 的取值范围为(−1,0).18、吉祥物“冰墩墩”在北京2022年冬奥会强势出圈,并衍生出很多不同品类的吉祥物手办.某企业承接了“冰墩墩”玩具手办的生产,已知生产此玩具手办的固定成本为200万元.每生产x 万盒,需投入成本ℎ(x )万元,当产量小于或等于50万盒时ℎ(x )=180x +100;当产量大于50万盒时ℎ(x )=x 2+60x +3500,若每盒玩具手办售价200元,通过市场分析,该企业生产的玩具手办可以全部销售完(利润=售价-成本,成本=固定成本+生产中投入成本)(1)求“冰墩墩”玩具手办销售利润y (万元)关于产量x (万盒)的函数关系式; (2)当产量为多少万盒时,该企业在生产中所获利润最大? 答案:(1)y ={20x −300,0≤x ≤50−x 2+140x −3700,x >50,x ∈N(2)70万盒分析:(1)根据题意分0≤x ≤50和x >50两种情况求解即可; (2)根据分段函数中一次与二次函数的最值求解即可.(1)当产量小于或等于50万盒时,y =200x −200−180x −100=20x −300, 当产量大于50万盒时,y =200x −200−x 2−60x −3500=−x 2+140x −3700, 故销售利润y (万元)关于产量x (万盒)的函数关系式为y={20x−300,0≤x≤50−x2+140x−3700,x>50,x∈N (2)当0≤x≤50时,y≤20×50−300=700;当x>50时,y=−x2+140x−3700,当x=1402=70时,y=−x2+140x−3700取到最大值,为1200.因为700<1200,所以当产量为70万盒时,该企业所获利润最大.。
指数函数与对数函数例题和知识点总结一、指数函数指数函数的一般形式为$y = a^x$($a > 0$且$a ≠ 1$)。
(一)指数函数的图像和性质当$a > 1$时,指数函数是单调递增的;当$0 < a < 1$时,指数函数是单调递减的。
指数函数的图像恒过点$(0, 1)$。
当$x > 0$时,若$a > 1$,则$a^x > 1$;若$0 < a < 1$,则$0 <a^x < 1$。
当$x < 0$时,若$a > 1$,则$0 < a^x < 1$;若$0 < a < 1$,则$a^x > 1$。
(二)指数运算的基本法则1、$a^m × a^n = a^{m + n}$2、$\frac{a^m}{a^n} = a^{m n}$3、$(a^m)^n = a^{mn}$4、$a^0 = 1$($a ≠ 0$)5、$a^{n} =\frac{1}{a^n}$例题 1若$2^x = 8$,求$x$的值。
解:因为$8 = 2^3$,所以$2^x = 2^3$,则$x = 3$。
例题 2计算:$3^2 × 3^4$解:根据指数运算法则,$3^2 × 3^4 = 3^{2 + 4} = 3^6 = 729$例题 3化简:$\frac{5^8}{5^5}$解:$\frac{5^8}{5^5} = 5^{8 5} = 5^3 = 125$二、对数函数对数函数的一般形式为$y =\log_a x$($a > 0$且$a ≠ 1$)。
(一)对数函数的图像和性质当$a > 1$时,对数函数在$(0, +∞)$上单调递增;当$0 < a <1$时,对数函数在$(0, +∞)$上单调递减。
对数函数的图像恒过点$(1, 0)$。
当$x > 1$时,若$a > 1$,则$\log_a x > 0$;若$0 < a < 1$,则$\log_a x < 0$。
当$0 < x < 1$时,若$a > 1$,则$\log_a x < 0$;若$0 < a <1$,则$\log_a x > 0$。
第四章 指数函数与对数函数知识点一、指数及指数幂的运算 1.根式的概念a 的n 次方根的定义:一般地,如果n x a =,那么x 叫做a 的n 次方根,其中*1,n n N >∈当n 为奇数时,正数的n 次方根为正数,负数的n 次方根是负数,当n 为偶数时,正数的n次方根有两个,这两个数互为相反数可以表示为 负数没有偶次方根,0的任何次方根都是0.n 叫做根指数,a 叫做被开方数. 2.n 次方根的性质:(1)当n a =;当n ,0,,0;a a a a a ≥⎧==⎨-<⎩(2)na =3.分数指数幂的意义:)0,,,1m na a m n N n =>∈>;()10,,,1m nm naa m n N n a-=>∈>要点诠释:0的正分数指数幂等于0,负分数指数幂没有意义. 4.有理数指数幂的运算性质:()0,0,,a b r s Q >>∈(1)r s r s a a a += (2)()r srsa a = (3)()rr rab a b =知识点二、指数函数及其性质 1.指数函数概念一般地,函数()0,1x y a a a =>≠且叫做指数函数,其中x 是自变量,函数的定义域为R . 2.指数函数函数性质:1.对数的定义(1)若(0,1)xa N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.(2)负数和零没有对数.(3)对数式与指数式的互化:log (0,1,0)xa x N a N a a N =⇔=>≠>.2.几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.3.常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). 4.对数的运算性质如果0,1,0,0a a M N >≠>>,那么 ①加法:log log log ()a a a M N MN += ②减法:log log log a a aM M N N-= ③数乘:log log ()na a n M M n R =∈④log a NaN =⑤log log (0,)b n a a nM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b NN b b a=>≠且知识点四:对数函数及其性质 1.对数函数定义一般地,函数()log 0,1a y x a a =>≠且叫做对数函数,其中x 是自变量,函数的定义域()0,+∞. 2.对数函数性质:1.函数零点的判定(1)利用函数零点存在性的判定定理如果函数()y f x =在一个区间[]a b ,上的图象不间断,并且在它的两个端点处的函数值异号,即()()0f a f b <,则这个函数在这个区间上,至少有一个零点,即存在一点()0x a b ∈,,使()00f x =,这个0x 也就是方程()0f x =的根.要点诠释:①满足上述条件,我们只能判定区间内有零点,但不能确定有几个.若函数在区间内单调,则只有一个;若不单调,则个数不确定.②若函数()f x 在区间[],a b 上有()()0f a f b ⋅>,()f x 在(,)a b 内也可能有零点,例如2()f x x =在[]1,1-上,2()23f x x x =--在区间[]2,4-上就是这样的.故()f x 在(),a b 内有零点,不一定有()()0f a f b ⋅<.③若函数()f x 在区间[],a b 上的图象不是连续不断的曲线,()f x 在(),a b 内也可能是有零点,例如函数1()1f x x=+在[]2,2-上就是这样的. (2)利用方程求解法求函数的零点时,先考虑解方程()0f x =,方程()0f x =无实根则函数无零点,方程()0f x =有实根则函数有零点.(3)利用数形结合法函数()()()F x f x g x =-的零点就是方程()()f x g x =的实数根,也就是函数()y f x =的图象与()y g x =的图象交点的横坐标.2.用二分法求函数零点的一般步骤: 已知函数()y f x =定义在区间D 上,求它在D 上的一个零点x 0的近似值x ,使它满足给定的精确度. 第一步:在D 内取一个闭区间[]00,a b D ⊆,使()0f a 与()0f b 异号,即()()000f a f b ⋅<,零点位于区间[]00,a b 中.第二步:取区间[]00,a b 的中点,则此中点对应的坐标为()()0000001122x a b a a b =+-=+. 计算()0f x 和()0f a ,并判断:①如果()00f x =,则0x 就是()f x 的零点,计算终止;②如果()()000f a f x ⋅<,则零点位于区间[]00,a x 中,令1010,a a b x ==;③如果()()000f a f x ⋅>,则零点位于区间[]00,x b 中,令1010,a x b b == 第三步:取区间[]11,a b 的中点,则此中点对应的坐标为()()1111111122x a b a a b =+-=+. 计算()1f x 和()1f a ,并判断:①如果()10f x =,则1x 就是()f x 的零点,计算终止;②如果()()110f a f x ⋅<,则零点位于区间[]11,a x 中,令2121,a a b x ==;③如果()()110f a f x ⋅>,则零点位于区间[]11,x b 中,令2121,a x b b ==;……继续实施上述步骤,直到区间[],n n a b ,函数的零点总位于区间[],n n a b 上,当n a 和n b 按照给定的精确度所取的近似值相同时,这个相同的近似值就是函数()y f x =的近似零点,计算终止.这时函数()y f x =的近似零点满足给定的精确度.要点诠释:(1)第一步中要使:①区间长度尽量小;②()f a 、()f b 的值比较容易计算且()() <0f a f b .(2)根据函数的零点与相应方程的根的关系,求函数的零点和求相应方程的根式等价的.对于求方程()()f x g x =的根,可以构造函数()()()F x f x g x =-,函数()F x 的零点即为方程()()f x g x =的根. 知识点六:函数的实际应用求解函数应用题时一般按以下几步进行: 第一步:审题弄清题意,分清条件和结论,理顺数量关系,初步选择模型. 第二步:建模在细心阅读与深入理解题意的基础上,引进数学符号,将问题的非数学语言合理转化为数学语言,然后根据题意,列出数量关系,建立函数模型.这时,要注意函数的定义域应符合实际问题的要求.第三步:求模运用数学方法及函数知识进行推理、运算,求解数学模型,得出结果. 第四步:还原把数学结果转译成实际问题作出解答,对于解出的结果要代入原问题中进行检验、评判,使其符合实际背景.上述四步可概括为以下流程:实际问题(文字语言)⇒数学问题(数量关系与函数模型)⇒建模(数学语言)⇒求模(求解数学问题)⇒反馈(还原成实际问题的解答).类型一:指数、对数运算 例1.计算(1) 2221log log 12log 422-; (2)33lg 2lg 53lg 2lg5++; (3)222lg5lg8lg5lg 20lg 23+++;(4)lg0.7lg20172⎛⎫⋅ ⎪⎝⎭【思路点拨】运算时尽量把根式转化为分数指数幂,而小数也要化为分数为好. 【答案】(1)12-;(2)1;(3)3;(4)14。
高中数学必修一第四章指数函数与对数函数知识点总结归纳完整版单选题1、已知函数y=a x、y=b x、y=c x、y=d x的大致图象如下图所示,则下列不等式一定成立的是()A.b+d>a+c B.b+d<a+c C.a+d>b+c D.a+d<b+c答案:B分析:如图,作出直线x=1,得到c>d>1>a>b,即得解.如图,作出直线x=1,得到c>d>1>a>b,所以b+d<a+c.故选:B2、如图所示,函数y=|2x−2|的图像是()A .B .C .D .答案:B分析:将原函数变形为分段函数,根据x =1及x ≠1时的函数值即可得解. ∵y =|2x−2|={2x −2,x ≥12−2x ,x <1,∴x =1时,y =0,x ≠1时,y >0. 故选:B.3、在同一平面直角坐标系中,一次函数y =x +a 与对数函数y =log a x (a >0且a ≠1)的图象关系可能是( )A .B .C .D .答案:C分析:根据对数函数的图象以及直线方程与图象关系分别进行讨论即可. A .由对数图象知0<a <1,此时直线的纵截距a >1,矛盾, B .由对数图象知a >1,此时直线的纵截距0<a <1,矛盾, C .由对数图象知0<a <1,此时直线的纵截距0<a <1,保持一致, D .由对数图象知a >1,此时直线的纵截距a <0,矛盾, 故选:C .4、函数f(x)=2x −1x 的零点所在的区间可能是( )A .(1,+∞)B .(12,1)C .(13,12)D .(14,13)答案:B分析:结合函数的单调性,利用零点存在定理求解.因为f(1)=2−11=1>0,f(12)=√2−2<0,f(13)=√23−3<0f(14)=√24−4<0,所以f(12)⋅f(1)<0,又函数f(x)图象连续且在(0,+∞)单调递增,所以函数f(x)的零点所在的区间是(12,1),故选:B .小提示:本题主要考查函数的零点即零点存在定理的应用,属于基础题. 5、已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( ) A .a <b <c B .b <a <c C .b <c <a D .c <a <b 答案:A分析:由题意可得a 、b 、c ∈(0,1),利用作商法以及基本不等式可得出a 、b 的大小关系,由b =log 85,得8b =5,结合55<84可得出b <45,由c =log 138,得13c =8,结合134<85,可得出c >45,综合可得出a 、b 、c 的大小关系.由题意可知a 、b 、c ∈(0,1),a b =log 53log 85=lg3lg5⋅lg8lg5<1(lg5)2⋅(lg3+lg82)2=(lg3+lg82lg5)2=(lg24lg25)2<1,∴a <b ;由b =log 85,得8b =5,由55<84,得85b <84,∴5b <4,可得b <45; 由c =log 138,得13c =8,由134<85,得134<135c ,∴5c >4,可得c >45.综上所述,a <b <c . 故选:A.小提示:本题考查对数式的大小比较,涉及基本不等式、对数式与指数式的互化以及指数函数单调性的应用,考查推理能力,属于中等题.6、若y =log 3a 2−1x 在(0,+∞)内为增函数,且y =a −x 也为增函数,则a 的取值范围是( ) A .(√33,1)B .(0,12)C .(√33,√63)D .(√63,1) 答案:D分析:根据函数单调性,列出不等式组{3a 2−1>10<a <1求解,即可得出结果.若y =log 3a 2−1x 在(0,+∞)内为增函数,则3a 2−1>1,由y =a −x 为增函数得0<a <1.解不等式组{3a 2−1>10<a <1,得a 的取值范围是(√63,1).故选:D.小提示:本题主要考查由对数函数与指数函数的单调性求参数,涉及不等式的解法,属于基础题型. 7、已知a =lg2,10b =3,则log 56=( ) A .a+b 1+a B .a+b 1−a C .a−b 1+a D .a−b1−a 答案:B分析:指数式化为对数式求b ,再利用换底公式及对数运算性质变形. ∵a =lg2, 10b =3, ∴b =lg3, ∴log 56=lg6lg5=lg2×3lg 102=lg2+lg31−lg2=a+b1−a .故选:B .8、定义在R 上的奇函数f(x)在(−∞,0]上单调递增,且f(−2)=−2,则不等式f(lgx)−f (lg 1x )>4的解集为( )A .(0,1100)B .(1100,+∞)C .(0,100)D .(100,+∞) 答案:D分析:利用函数为奇函数,将不等式转化为f(lgx)>f (2),再利用函数的单调性求解. 因为函数f(x)为奇函数,所以f(−x)=−f (x ),又f(−2)=−2,f(2)=2,所以不等式f(lgx)−f (lg 1x )>4,可化为2f(lgx)>4=2f (2),即f(lgx)>f (2),又因为f(x)在(−∞,0]上单调递增, 所以f(x)在R 上单调递增, 所以lgx >2, 解得x >100. 故选:D. 多选题9、下列化简结果中正确的有(m 、n 均为正数)( ) A .(1a m)n=a −mn B .√a n n=a C .a m n=a m a nD .(π−3.14)0=1答案:AD分析:A.由指数幂的运算判断; B.由根式的性质判断;C.由分数指数幂和根式的转化判断;D.由规定判断. A. (1a m )n=(a −m )n =a −mn ,故正确; B. √a n n={a,n 为奇数|a |,n 为偶数 ,故错误;C. a m n=√a m n,故错误; D. (π−3.14)0=1,故正确. 故选:AD10、设函数f (x )={|x 2+3x |,x ≤1log 2x,x >1,若函数f (x )+m =0有五个零点,则实数m 可取( )A .−3B .1C .−12D .−2答案:CD分析:函数f (x )+m =0有五个零点等价于y =f(x)与y =−m 有五个不同的交点,作出f(x)图像,利用图像求解即可函数f (x )+m =0有五个零点等价于y =f(x)与y =−m 有五个不同的交点,作出f(x)图像可知,当x =−32时,f (−32)=|(−32)2+3×(−32)|=94若y =f(x)与y =−m 有五个不同的交点, 则−m ∈(0,94), ∴m ∈(−94,0), 故选:CD .11、下列运算(化简)中正确的有( ). A .(a 16)−1⋅(a −2)−13=a 12B .(x a −1y)a⋅(4y −a )=4x C .[(1−√2)2]12−(1+√2)−1+(1+√2)0=3−2√2D .2a 3b 23⋅(−5a 23b 13)÷(4√a 4b 53)=−52a 73b −23答案:ABD分析:根据指数幂的运算法则逐一验证即可 对于A :(a 16)−1⋅(a−2)−13=a−16+23=a12,故A 正确;对于B :(xa −1y)a⋅(4y−a )=4x1a×a y a−a =4xy 0=4x ,故B 正确; 对于C :[(1−√2)2]12−(1+√2)−1+(1+√2)0=[(√2−1)2]12−1+√2+1=√2−1−(√2−1)+1=1,故C 错误;对于D :2a 3b 23⋅(−5a 23b 13)÷(4√a 4b 53)=[2×(−5)÷4]a3+23−43b23+13−53=−52a 73b −23,故D 正确;故选:ABD 填空题12、不等式2022x ≤1的解集为______. 答案:(−∞,0]分析:根据给定不等式利用指数函数单调性求解即可作答.依题意,不等式2022x ≤1化为:2022x ≤20220,而函数y =2022x 在R 上单调递增,解得x ≤0, 所以不等式2022x ≤1的解集为(−∞,0]. 所以答案是:(−∞,0]13、√a ⋅√a ⋅√a 3的分数指数幂表示为____________答案:a 34分析:本题可通过根式与分数指数幂的互化得出结果.√a ⋅√a ⋅√a 3=√a ⋅√a ⋅a 123=√a ⋅√a 323=√a ⋅a 12=√a 32=a 34, 所以答案是:a 34.14、函数f(x)=lg(kx)−2lg(x +1)仅有一个零点,则k 的取值范围为________. 答案:(−∞,0)∪{4}分析:由题意f(x)仅有一个零点,令y 1=kx 、y 2=(x +1)2,即y 1、y 2在f(x)定义域内只有一个交点,讨论k >0、k <0并结合函数图象,求k 的范围.由题意,f(x)=lg(kx)−2lg(x +1)=0,即lg(kx)=lg(x +1)2, ∴在f(x)定义域内,y 1=kx 、y 2=(x +1)2只有一个交点,当k>0时,即(0,+∞)上y1、y2只有一个交点;∴仅当y1、y2相切,即x2+(2−k)x+1=0中Δ=(2−k)2−4=0,得k=4或k=0(舍),∴当k=4时,(0,+∞)上y1、y2只有一个交点;当k<0时,即(−1,0)上y1、y2只有一个交点,显然恒成立.∴k∈(−∞,0)∪{4}.所以答案是:(−∞,0)∪{4}解答题(a>0,a≠1).15、已知函数f(x)=1−2a|x|+1(1)判断f(x)的奇偶性并证明;,求a的值.(2)若f(x)在[−1,1]上的最大值为13答案:(1)偶函数;证明见解析;(2)a=2.解析:(1)利用奇偶函数的定义证明;(2)讨论去绝对值,并分a>1和0<a<1两种情况讨论函数的单调性,求函数的最大值,建立方程,求a的值. 解:(1)f(x)的定义域为R,又f(−x)=1−2a|−x|+1=1−2a|x|+1=f(x)⇒f(−x)=f(x),所以f(x)为偶函数;(2)因为f(x)为偶函数,当0≤x≤1时,f(x)=1−2a|x|+1=1−2a x+1,若a∈(0,1),f(x)=1−2a x+1,函数单调递减,f(x)max=f(0)=0,若a∈(1,+∞),f(x)=1−2a x+1,函数单调递增,f(x)max=f(1)=1−2a+1=13⇒a=2,当−1≤x<0,f(x)=1−2a|x|+1=1−2a−x+1,若a∈(0,1),f(x)=1−2a−x+1,函数单调递增,f(x)max=f(0)=0,若a∈(1,+∞),f(x)=1−2a−x+1,函数单调递减,f(x)max=f(−1)=1−2a+1=13⇒a=2,综上,a=2.小提示:关键点点睛:本题考查指数型复合函数证明奇偶性以及根据函数的最值,求参数的取值范围,本题的关键是求函数的单调性,关键是利用函数是偶函数,先去绝对值,再利用复合函数的单调性求函数的单调性,从而确定函数的最值.。
(每日一练)高中数学第四章指数函数与对数函数基础知识题库高中数学第四章指数函数与对数函数基础知识题库单选题1、设函数f(x)=ln|2x +1|−ln|2x −1|,则f (x )( )A .是偶函数,且在(12,+∞)单调递增B .是奇函数,且在(−12,12)单调递减C .是偶函数,且在(−∞,−12)单调递增D .是奇函数,且在(−∞,−12)单调递减 答案:D分析:根据奇偶性的定义可判断出f (x )为奇函数,排除AC ;当x ∈(−12,12)时,利用函数单调性的性质可判断出f (x )单调递增,排除B ;当x ∈(−∞,−12)时,利用复合函数单调性可判断出f (x )单调递减,从而得到结果. 由f (x )=ln |2x +1|−ln |2x −1|得f (x )定义域为{x |x ≠±12},关于坐标原点对称, 又f (−x )=ln |1−2x |−ln |−2x −1|=ln |2x −1|−ln |2x +1|=−f (x ), ∴f (x )为定义域上的奇函数,可排除AC ;当x ∈(−12,12)时,f (x )=ln (2x +1)−ln (1−2x ),∵y =ln (2x +1)在(−12,12)上单调递增,y =ln (1−2x )在(−12,12)上单调递减, ∴f (x )在(−12,12)上单调递增,排除B ;当x ∈(−∞,−12)时,f (x )=ln (−2x −1)−ln (1−2x )=ln 2x+12x−1=ln (1+22x−1), ∵μ=1+22x−1在(−∞,−12)上单调递减,f (μ)=lnμ在定义域内单调递增,根据复合函数单调性可知:f(x)在(−∞,−12)上单调递减,D正确.故选:D.小提示:本题考查函数奇偶性和单调性的判断;判断奇偶性的方法是在定义域关于原点对称的前提下,根据f(−x)与f(x)的关系得到结论;判断单调性的关键是能够根据自变量的范围化简函数,根据单调性的性质和复合函数“同增异减”性得到结论.2、下列说法正确的个数是()(1)49的平方根为7;(2)√a nn=a(a≥0);(3)(ab )5=a5b15;(4)√(−3)26=(−3)13.A.1B.2C.3D.4答案:A分析:(1)结合指数运算法则判断,49平方根应有两个;(2)正确;(3)应为a5b−5;(4)符号错误49的平方根是±7,(1)错;(2)显然正确;(ab )5=a5b−5,(3)错;√(−3)26=313,(4)错,正确个数为1个,故选:A3、已知对数式log(a+1)24−a(a∈Z)有意义,则a的取值范围为()A.(−1,4)B.(−1,0)∪(0,4)C.{1,2,3}D.{0,1,2,3}答案:C分析:由对数的真数大于0,底数大于0且不等于1列出不等式组,然后求解即可.由题意可知:{a +1>0a +1≠124−a >0 ⇔{a >−1a ≠0a <4 ,解之得:−1<a <4且a ≠0.∵a ∈Z ,∴a 的取值范围为{1,2,3}. 故选:C.4、已知f (x )=a −x (a >0,且a ≠1),且f (-2)>f (-3),则a 的取值范围是( ) A .a >0B .a >1 C .a <1D .0<a <1 答案:D分析:把f (-2),f (-3)代入解不等式,即可求得.因为f (-2)=a 2, f (-3)=a 3,f (-2)>f (-3),即a 2>a 3,解得:0<a <1. 故选:D5、已知函f (x )=log 2(√1+4x 2+2x)+3,且f (m )=−5,则f (−m )=( ) A .−1B .−5C .11D .13 答案:C分析:令g (x )=log 2(√1+4x 2+2x),则f (x )=g (x )+3,则先判断函数g (−x )+g (x )=0,进而可得f (−x )+f (x )=6,即f (m )+f (−m )=6,结合已知条件即可求f (−m )的值. 令g (x )=log 2(√1+4x 2+2x),则f (x )=g (x )+3,因为g (x )+g (−x )=log 2(√1+4x 2+2x)+log 2(√1+4x 2−2x) =log 2(1+4x 2−4x 2)=0,所以f (−x )+f (x )=g (−x )+3+g (x )+3=6,则f (m )+f (−m )=6,又因为f (m )=−5,则f (−m )=11,故选:C.6、在同一平面直角坐标系中,一次函数y=x+a与对数函数y=log a x(a>0且a≠1)的图象关系可能是()A.B.C.D.答案:C分析:根据对数函数的图象以及直线方程与图象关系分别进行讨论即可.A.由对数图象知0<a<1,此时直线的纵截距a>1,矛盾,B.由对数图象知a>1,此时直线的纵截距0<a<1,矛盾,C.由对数图象知0<a<1,此时直线的纵截距0<a<1,保持一致,D.由对数图象知a>1,此时直线的纵截距a<0,矛盾,故选:C.7、若y=log3a2−1x在(0,+∞)内为增函数,且y=a−x也为增函数,则a的取值范围是()A.(√33,1)B.(0,12)C.(√33,√63)D.(√63,1)答案:D分析:根据函数单调性,列出不等式组{3a 2−1>10<a <1求解,即可得出结果.若y =log 3a 2−1x 在(0,+∞)内为增函数,则3a 2−1>1,由y =a −x 为增函数得0<a <1.解不等式组{3a 2−1>10<a <1,得a 的取值范围是(√63,1).故选:D.小提示:本题主要考查由对数函数与指数函数的单调性求参数,涉及不等式的解法,属于基础题型. 8、指数函数y =a x 的图象经过点(3,18),则a 的值是( ) A .14B .12C .2D .4 答案:B分析:将已知点的坐标代入指数函数的表达式,求得a 的值. 因为y =a x 的图象经过点(3,18),所以a 3=18,解得a =12, 故选:B.9、已知y 1=(13)x ,y 2=3x ,y 3=10−x ,y 4=10x ,则在同一平面直角坐标系内,它们的图象大致为( )A .B .C .D .答案:A分析:根据指数函数的单调性及图像特征进行比较,即可判断.y 2=3x 与y 4=10x 是增函数,y 1=(13)x与y 3=10−x=(110)x是减函数,在第一象限内作直线x =1,该直线与四条曲线交点的纵坐标的大小对应各底数的大小,易知:选A . 故选:A10、函数①y =a x ;②y =b x ;③y =c x ;④y =d x 的图象如图所示,a ,b ,c ,d 分别是下列四个数:54,√3,13,12中的一个,则a ,b ,c ,d 的值分别是( )A .54,√3,13,12B .√3,54,13,12C .12,13,√3,54,D .13,12,54,√3, 答案:C分析:根据指数函数的性质,结合函数图象判断底数的大小关系.由题图,直线x =1与函数图象的交点的纵坐标从上到下依次为c ,d ,a ,b ,而√3>54>12>13. 故选:C . 多选题11、下列函数中,有零点且能用二分法求零点的近似值的是( ) A .y =2x −3B .y ={−x +1,x ≥0x +1,x <0C .y =x 2−3x +3D .y =|x −2| 答案:AB分析:根据二分法定义,只有零点两侧函数值异号才可用二分法求近似值. 对于选项A ,当x =1时,y =21−3=−1<0,当x =12时,y =212−3=1>0,所以能用二分法求零点的近似值.对于选项B ,当x =2时,y =−2+1=−1<0,当x =12时,y =−12+1=12>0,能用二分法求零点的近似值.对于选项C ,y =x 2−3x +3=(x −32)2+34>0,故不能用二分法求零点的近似值. 对于选项D ,y =|x −2|≥0,故不能用二分法求零点的近似值. 故选:AB .12、下列命题正确的是( )A .若a >0,且a ≠1,则∀x >0,y >0,log a (x +y )=log a x +log a yB .若a >0,且a ≠1,则∃x >0,y >0,log a x ⋅log a y =log a (xy )C .∀a >0,b >0,ln (ab )=lna +lnbD .∀a >1,b >0,a log a b =b 答案:BCD分析:根据对数的运算法则即可判断.解:对于选项AC ,由对数的运算性质知∀x >0,y >0有log a (xy )=log a x +log a y ,而log a (x +y )≠log a x +log a y ,选项A 错误,C 正确;对于选项B ,当x =y =1时,log a x ⋅log a y =log a (xy )成立,选项B 正确; 对于选项D ,由对数的概念可知选项D 正确. 故选:BCD .13、已知函数f(x)=log 2(2x +8x )−2x ,以下判断正确的是( ) A .f (x )是增函数B .f (x )有最小值 C .f (x )是奇函数D .f (x )是偶函数 答案:BD分析:由题设可得f(x)=log 2(12x +2x ),根据复合函数的单调性判断f(x)的单调情况并确定是否存在最小值,应用奇偶性定义判断奇偶性.由f(x)=log 2(2x +23x )−log 222x =log 2(12x+2x ),令μ=2x >0为增函数;而t =1μ+μ在(0,1)上递减,在(1,+∞)上递增; 所以t 在x ∈(−∞,0)上递减,在x ∈(0,+∞)上递增;又y =log 2t 在定义域上递增,则y 在x ∈(−∞,0)上递减,在x ∈(0,+∞)上递增; 所以f(x)在(−∞,0)上递减,在(0,+∞)上递增,故最小值为f(0)=1, f(−x)=log 2(12−x +2−x)=log 2(2x +12x)=f(x),故为偶函数.故选:BD14、定义运算a ⊕b ={a(a ≥b)b(a <b),设函数f(x)=1⊕2−x ,则下列命题正确的有( )A .f(x)的值域为 [1,+∞)B .f(x)的值域为 (0,1]C .不等式f(x +1)<f(2x)成立的范围是(−∞,0)D .不等式f(x +1)<f(2x)成立的范围是(0,+∞) 答案:AC分析:求得f (x )的解析式,画出f (x )的图象,由此判断f (x )的值域,并求得不等式f(x +1)<f(2x)的解. 由函数f(x)=1⊕2−x ,有f(x)={1(1≥2−x )2−x(1<2−x ),即f(x)={2−x(x <0)1(x ≥0),作出函数f(x)的图像如下,根据函数图像有f(x)的值域为[1,+∞),所以A 选项正确,B 选项错误. 若不等式f(x +1)<f(2x)成立,由函数图像有 当2x <x +1≤0即x ≤−1时成立, 当{2x <0x +1>0即−1<x <0时也成立. 所以不等式f(x +1)<f(2x)成立时,x <0.所以C 选项正确,D 选项错误. 故选:AC.小提示:本小题主要考查分段函数图象与性质,属于中档题.15、若f (x )满足对定义域内任意的x 1,x 2,都有f (x 1)+f (x 2)=f (x 1⋅x 2),则称f (x )为“好函数”,则下列函数是“好函数”的是( )A .f (x )=2xB .f (x )=(12)xC .f (x )=log 12x D .f (x )=log 3x答案:CD分析:利用“好函数”的定义,举例说明判断A ,B ;计算判断C ,D 作答.对于A ,函数f (x )定义域为R ,取x 1=1,x 2=2,则f (x 1)+f (x 2)=6,f (x 1⋅x 2)=4, 则存在x 1,x 2,使得f (x 1)+f (x 2)≠f (x 1⋅x 2),A 不是;对于B ,函数f (x )定义域为R ,取x 1=1,x 2=2,则f (x 1)+f (x 2)=34,f (x 1⋅x 2)=14, 则存在x 1,x 2,使得f (x 1)+f (x 2)≠f (x 1⋅x 2),B 不是;对于C,函数f(x)定义域{x|x>0}内任意的x1,x2,f(x1)+f(x2)=log12x1+log12x2=log12(x1x2)=f(x1⋅x2),C是;对于D,函数f(x)定义域{x|x>0}内任意的x1,x2,f(x1)+f(x2)=log3x1+log3x2=log3(x1x2)=f(x1⋅x2),D是.故选:CD填空题16、函数f(x)=lg(kx)−2lg(x+1)仅有一个零点,则k的取值范围为________.答案:(−∞,0)∪{4}分析:由题意f(x)仅有一个零点,令y1=kx、y2=(x+1)2,即y1、y2在f(x)定义域内只有一个交点,讨论k>0、k<0并结合函数图象,求k的范围.由题意,f(x)=lg(kx)−2lg(x+1)=0,即lg(kx)=lg(x+1)2,∴在f(x)定义域内,y1=kx、y2=(x+1)2只有一个交点,当k>0时,即(0,+∞)上y1、y2只有一个交点;∴仅当y1、y2相切,即x2+(2−k)x+1=0中Δ=(2−k)2−4=0,得k=4或k=0(舍),∴当k=4时,(0,+∞)上y1、y2只有一个交点;当k<0时,即(−1,0)上y1、y2只有一个交点,显然恒成立.∴k∈(−∞,0)∪{4}.所以答案是:(−∞,0)∪{4}17、计算:1634−8×(6449)−12−8×(87)−1= ________.答案:−6分析:结合指数幂的运算性质,计算即可.由题意,1634−8×(6449)−12−8×(87)−1=(24)34−8×[(87)2]−12−8×78=23−8×(87)−1−7=8−8×78−7=8−7−7=−6.所以答案是:−6.18、函数y=log12(3x−1)的单调递减区间为_____答案:(13,+∞)分析:根据复合函数单调性规律即可求解函数y=log12(3x−1)的定义域为(13,+∞)又y=log12(3x−1)是由y=log12u与u=3x−1复合而成,因为外层函数y=log12u单调递减,所以求函数y=log12(3x−1)的单调递减区间即是求内层函数u=3x−1的增区间,而内层函数u=3x−1在(13,+∞)上单调递增,所以函数y=log12(3x−1)的减区间为(13,+∞)所以答案是:(13,+∞)解答题19、计算:(1)lg14−2lg73+lg7−lg18;(2)log535+2log5√2−log515−log514;(3)12lg3249−43lg√8+lg√245.答案:(1)0(2)2(3)12分析:直接利用对数的运算性质进行运算即可.(1)原式=lg(2×7)−2(lg7−lg3)+lg7−lg(32×2) =lg2+lg7−2lg7+2lg3+lg7−2lg3−lg2=0.(2)原式=log535+log52−log515−log514=log535×215×14=log535014=log525=2.(3)原式=12(5lg2−2lg7)−43×32lg2+12(2lg7+lg5)=52lg2−lg7−2lg2+lg7+12lg5=12lg2+12lg5=12(lg2+lg5)=12lg10=12.20、当0<x<1时,若关于x的二次方程x2+2mx+1=−2m有两个不相等的实根,求实数m的取值范围.答案:{m|−12<m<1−√2}.分析:根据二次函数在区间上的零点问题,数形结合列式求解即可.令y=x2+2mx+2m+1(0<x<1),则由题意知其图象与x轴有2个交点,故当x=0,1时y>0,判别式大于0且对称轴在0到1之间,则{2m+1>0 4m+2>04m2−4(2m+1)>0 0<−m<1,即{m>−12(m−1)2>20<−m<1,得−12<m<1−√2.故实数m的取值范围是{m|−12<m<1−√2}.。
人教版高一数学必修一第4单元指数函数与对数函数(讲解和习题)基础知识讲解一.指数函数的定义、解析式、定义域和值域【基础知识】1、指数函数的定义:一般地,函数y=a x(a>0,且a≠1)叫做指数函数,其中x是自变量,函数的定义域是R,值域是(0,+∞).2、指数函数的解析式:y=a x(a>0,且a≠1)【技巧方法】①因为a>0,x是任意一个实数时,a x是一个确定的实数,所以函数的定义域为实数集R.①规定底数a大于零且不等于1的理由:如果a=0,当x>0时,a x恒等于0;当x≤0时,a x无意义;如果a<0,比如y=(﹣4)x,这时对于x=,x=在实数范围内函数值不存在.如果a=1,y=1x=1是一个常量,对它就没有研究的必要,为了避免上述各种情况,所以规定a>0且a≠1.二.指数函数的图象与性质【基础知识】1、指数函数y=a x(a>0,且a≠1)的图象和性质:y =a x a >1 0<a <1图象定义域 R 值域 (0,+∞) 性质过定点(0,1)当x >0时,y >1; x <0时,0<y <1当x >0时,0<y <1;x <0时,y >1在R 上是增函数在R 上是减函数2、底数与指数函数关系①在同一坐标系内分别作函数的图象,易看出:当a >l 时,底数越大,函数图象在第一象限越靠近y 轴;同样地,当0<a <l 时,底数越小,函数图象在第一象限越靠近x 轴. ①底数对函数值的影响如图.①当a >0,且a ≠l 时,函数y =a x 与函数y =的图象关于y 轴对称.3、利用指数函数的性质比较大小:若底数相同而指数不同,用指数函数的单调性比较: 若底数不同而指数相同,用作商法比较;若底数、指数均不同,借助中间量,同时要注意结合图象及特殊值.三.二次函数的性质与图象【二次函数】二次函数相对于一次函数而言,顾名思义就知道它的次数为二次,且仅有一个自变量,因变量随着自变量的变化而变化.它的一般表达式为:y=ax2+bx+c(a≠0)【二次函数的性质】二次函数是一个很重要的知识点,不管在前面的选择题填空题还是解析几何里面,或是代数综合体都有可能出题,其性质主要有初中学的开口方向、对称性、最值、几个根的判定、韦达定理以及高中学的抛物线的焦点、准线和曲线的平移.这里面略谈一下他的一些性质.①开口、对称轴、最值与x轴交点个数,当a>0(<0)时,图象开口向上(向下);对称轴x=﹣;最值为:f(﹣);判别式①=b2﹣4ac,当①=0时,函数与x轴只有一个交点;①>0时,与x轴有两个交点;当①<0时无交点.①根与系数的关系.若①≥0,且x1、x2为方程y=ax2+bx+c的两根,则有x1+x2=﹣,x1•x2=;①二次函数其实也就是抛物线,所以x2=2py的焦点为(0,),准线方程为y=﹣,含义为抛物线上的点到到焦点的距离等于到准线的距离.①平移:当y=a(x+b)2+c向右平移一个单位时,函数变成y=a(x﹣1+b)2+c;四.指数型复合函数的性质及应用【基础知识】指数型复合函数性质及应用:指数型复合函数的两个基本类型:y=f(a x)与y=a f(x)复合函数的单调性,根据“同增异减”的原则处理U=g(x)y=a u y=a g(x)增增增减减增增减减减增减.五.指数函数的单调性与特殊点【基础知识】1、指数函数单调性的讨论,一般会以复合函数的形式出现,所以要分开讨论,首先讨论a 的取值范围即a>1,0<a<1的情况.再讨论g(x)的增减,然后遵循同增、同减即为增,一减一增即为减的原则进行判断.2、同增同减的规律:(1)y=a x如果a>1,则函数单调递增;(2)如果0<a<1,则函数单调递减.3、复合函数的单调性:(1)复合函数为两个增函数复合:那么随着自变量X的增大,Y值也在不断的增大;(2)复合函数为两个减函数的复合:那么随着内层函数自变量X的增大,内层函数的Y值就在不断的减小,而内层函数的Y值就是整个复合函数的自变量X.因此,即当内层函数自变量X的增大时,内层函数的Y值就在不断的减小,即整个复合函数的自变量X不断减小,又因为外层函数也为减函数,所以整个复合函数的Y值就在增大.因此可得“同增”若复合函数为一增一减两个函数复合:内层函数为增函数,则若随着内层函数自变量X的增大,内层函数的Y值也在不断的增大,即整个复合函数的自变量X不断增大,又因为外层函数为减函数,所以整个复合函数的Y值就在减小.反之亦然,因此可得“异减”.六.函数零点的判定定理【基础知识】1、函数零点存在性定理:一般地,如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)•f(b)<0,那么函数y=f(x)在区间(a,b)内有零点,即存在c①(a,b),使得f(c)=O,这个c也就是f(x)=0的根.特别提醒:(1)根据该定理,能确定f(x)在(a,b)内有零点,但零点不一定唯一.(2)并不是所有的零点都可以用该定理来确定,也可以说不满足该定理的条件,并不能说明函数在(a,b)上没有零点,例如,函数f(x)=x2﹣3x+2有f(0)•f(3)>0,但函数f(x)在区间(0,3)上有两个零点.(3)若f(x)在[a,b]上的图象是连续不断的,且是单调函数,f(a).f(b)<0,则f(x)在(a,b)上有唯一的零点.2、函数零点个数的判断方法:(1)几何法:对于不能用求根公式的方程,可以将它与函数y=f(x)的图象联系起来,并利用函数的性质找出零点.特别提醒:①“方程的根”与“函数的零点”尽管有密切联系,但不能混为一谈,如方程x2﹣2x+1=0在[0,2]上有两个等根,而函数f(x)=x2﹣2x+1在[0,2]上只有一个零点;①函数的零点是实数而不是数轴上的点.(2)代数法:求方程f(x)=0的实数根.七.指数式与对数式的互化【基础知识】a b=N①log aN=b;指数方程和对数方程主要有以下几种类型:(1)a f(x)=b①f(x)=log a b;log a f(x)=b①f(x)=a b(定义法)(2)a f(x)=a g(x)①f(x)=g(x);log a f(x)=log a g(x)①f(x)=g(x)>0(同底法)(3)a f(x)=b g(x)①f(x)log m a=g(x)log m b;(两边取对数法)(4)log a f(x)=log b g(x)①log a f(x)=;(换底法)(5)A log x+B log a x+C=0(A(a x)2+Ba x+C=0)(设t=log a x或t=a x)(换元法)八.对数的运算性质【基础知识】对数的性质:①=N;①log a a N=N(a>0且a≠1).log a(MN)=log a M+log a N;log a=log a M﹣log a N;log a M n=n log a M;log a=log a M.九.换底公式的应用【基础知识】换底公式及换底性质:(1)log a N=(a>0,a≠1,m>0,m≠1,N>0).(2)log a b=,(3)log a b•log b c=log a c,十.对数函数的定义域【基础知识】一般地,我们把函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞),值域是R.十一.对数函数的值域与最值【基础知识】一般地,我们把函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞),值域是R.定点:函数图象恒过定点(1,0)十二.对数值大小的比较【基础知识】1、若两对数的底数相同,真数不同,则利用对数函数的单调性来比较.2、若两对数的底数和真数均不相同,通常引入中间变量(1,﹣1,0)进行比较3、若两对数的底数不同,真数也不同,则利用函数图象或利用换底公式化为同底的再进行比较.(画图的方法:在第一象限内,函数图象的底数由左到右逐渐增大)十三.对数函数的单调性与特殊点【基础知识】对数函数的单调性和特殊点:1、对数函数的单调性当a>1时,y=log a x在(0,+∞)上为增函数当0<a <1时,y =log a x 在(0,+∞)上为减函数 2、特殊点对数函数恒过点(1,0)十四.对数函数图象与性质的综合应用 【基础知识】1、对数函数的图象与性质:a >10<a <1图象定义域 (0,+∞)值域 R 定点 过点(1,0)单调性在(0,+∞)上是增函数在(0,+∞)上是减函数函数值正负当x >1时,y >0;当0<x <1,y <0当x >1时,y <0;当0<x <1时,y >02、由对数函数的图象确定参数的方法已知对数型函数的图象研究其解析式及解析式中所含参数的取值范围问题,通常是观察图象,获得函数的单调性、对称性、奇偶性、经过的特殊点等,由此确定函数解析式以及其中所含参数的取值范围.【技巧方法】1、4种方法﹣﹣解决对数运算问题的方法(1)将真数化为底数(或已知对数的数)的幂的积,再展开;(2)将同底对数的和、差、倍合并;(3)利用换底公式将不同底的对数式转化成同底的对数式,要注意换底公式的正用、逆用及变形应用;(4)利用常用对数中的lg 2+lg 5=1.2、3个基本点﹣﹣对数函数图象的三个基本点(1)当a>1时,对数函数的图象“上升”;当0<a<1时,对数函数的图象“下降”.(2)对数函数y=log a x(a>0,且a≠1)的图象过定点(1,0),且过点(a,1),(,﹣1)函数图象只在第一、四象限.(3)底数的大小与对数函数的图象位置之间的关系.3、2个应用﹣﹣对数函数单调性的应用(1)比较对数式的大小:①若底数为同一常数,则可由对数函数的单调性直接进行判断;若底数为同一字母,需对底数进行分类讨论.①若底数不同,真数相同,则可以先用换底公式化为同底后,再进行比较.①若底数与真数都不同,则常借助1,0等中间量进行比较.(2)解对数不等式:形如log a x>log a b的不等式,借助y=log a x的单调性求解,如果a的取值不确定,需分a>1与0<a<1两种情况讨论.形如log a x>b的不等式,需先将b化为以a为底的对数式的形式.十五.指数函数与对数函数的关系【基础知识】指数函数和对数函数的关系:(1)对数函数与指数函数互为反函数,它们的定义域、值域互换,图象关于直线y=x对称.(2)它们都是单调函数,都不具有奇偶性.当a>l时,它们是增函数;当O<a<l时,它们是减函数.(3)指数函数与对数函数的联系与区别:十六.反函数【基础知识】【定义】一般地,设函数y=f(x)(x①A)的值域是C,根据这个函数中x,y的关系,用y把x表示出,得到x=g(y).若对于y在中的任何一个值,通过x=g(y),x在A中都有唯一的值和它对应,那么,x=g(y)就表示y是自变量,x是因变量是y的函数,这样的函数y=g(x)(y①C)叫做函数y=f(x)(x①A)的反函数,记作y=f(﹣1)(x)反函数y=f (﹣1)(x)的定义域、值域分别是函数y=f(x)的值域、定义域.【性质】反函数其实就是y=f(x)中,x和y互换了角色(1)函数f(x)与他的反函数f﹣1(x)图象关于直线y=x对称;函数及其反函数的图形关于直线y=x对称(2)函数存在反函数的重要条件是,函数的定义域与值域是一一映射;(3)一个函数与它的反函数在相应区间上单调性一致;(4)大部分偶函数不存在反函数(当函数y=f(x),定义域是{0} 且f(x)=C(其中C 是常数),则函数f(x)是偶函数且有反函数,其反函数的定义域是{C},值域为{0} ).奇函数不一定存在反函数,被与y轴垂直的直线截时能过2个及以上点即没有反函数.若一个奇函数存在反函数,则它的反函数也是奇函数.(5)一切隐函数具有反函数;(6)一段连续的函数的单调性在对应区间内具有一致性;(7)严格增(减)的函数一定有严格增(减)的反函数【反函数存在定理】;(8)反函数是相互的且具有唯一性;(9)定义域、值域相反对应法则互逆(三反);(10)原函数一旦确定,反函数即确定(三定)(在有反函数的情况下,即满足(2)).十七.对数函数图象与性质的综合应用【基础知识】1、对数函数的图象与性质:a>10<a<1图象定义域(0,+∞)值域R定点过点(1,0)单调性在(0,+∞)上是增函数在(0,+∞)上是减函数函数值正负当x>1时,y>0;当0<x<1,y<0当x>1时,y<0;当0<x<1时,y>02、由对数函数的图象确定参数的方法已知对数型函数的图象研究其解析式及解析式中所含参数的取值范围问题,通常是观察图象,获得函数的单调性、对称性、奇偶性、经过的特殊点等,由此确定函数解析式以及其中所含参数的取值范围.【解题方法点拨】1、4种方法﹣﹣解决对数运算问题的方法(1)将真数化为底数(或已知对数的数)的幂的积,再展开;(2)将同底对数的和、差、倍合并;(3)利用换底公式将不同底的对数式转化成同底的对数式,要注意换底公式的正用、逆用及变形应用;(4)利用常用对数中的lg 2+lg 5=1.2、3个基本点﹣﹣对数函数图象的三个基本点(1)当a>1时,对数函数的图象“上升”;当0<a<1时,对数函数的图象“下降”.(2)对数函数y=log a x(a>0,且a≠1)的图象过定点(1,0),且过点(a,1),(,﹣1)函数图象只在第一、四象限.(3)底数的大小与对数函数的图象位置之间的关系.3、2个应用﹣﹣对数函数单调性的应用(1)比较对数式的大小:①若底数为同一常数,则可由对数函数的单调性直接进行判断;若底数为同一字母,需对底数进行分类讨论.①若底数不同,真数相同,则可以先用换底公式化为同底后,再进行比较.①若底数与真数都不同,则常借助1,0等中间量进行比较.(2)解对数不等式:形如log a x>log a b的不等式,借助y=log a x的单调性求解,如果a的取值不确定,需分a>1与0<a<1两种情况讨论.形如log a x>b的不等式,需先将b化为以a为底的对数式的形式.十八.函数的零点【基础知识】一般地,对于函数y=f(x)(x①R),我们把方程f(x)=0的实数根x叫作函数y=f (x)(x①D)的零点.即函数的零点就是使函数值为0的自变量的值.函数的零点不是一个点,而是一个实数.十九.函数零点的判定定理【基础知识】1、函数零点存在性定理:一般地,如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)•f(b)<0,那么函数y=f(x)在区间(a,b)内有零点,即存在c①(a,b),使得f(c)=O,这个c也就是f(x)=0的根.【技巧方法】(1)根据该定理,能确定f(x)在(a,b)内有零点,但零点不一定唯一.(2)并不是所有的零点都可以用该定理来确定,也可以说不满足该定理的条件,并不能说明函数在(a,b)上没有零点,例如,函数f(x)=x2﹣3x+2有f(0)•f(3)>0,但函数f(x)在区间(0,3)上有两个零点.(3)若f(x)在[a,b]上的图象是连续不断的,且是单调函数,f(a).f(b)<0,则f(x)在(a,b)上有唯一的零点.2、函数零点个数的判断方法:(1)几何法:对于不能用求根公式的方程,可以将它与函数y=f(x)的图象联系起来,并利用函数的性质找出零点.特别提醒:①“方程的根”与“函数的零点”尽管有密切联系,但不能混为一谈,如方程x2﹣2x+1=0在[0,2]上有两个等根,而函数f(x)=x2﹣2x+1在[0,2]上只有一个零点;①函数的零点是实数而不是数轴上的点.(2)代数法:求方程f(x)=0的实数根.二十.函数的零点与方程根的关系【基础知识】函数的零点表示的是函数与x轴的交点,方程的根表示的是方程的解,他们的含义是不一样的.但是,他们的解法其实质是一样的.二十一. 二分法【基础知识】二分法即一分为二的方法.设函数f(x)在[a,b]上连续,且满足f(a)•f(b)<0,我们假设f(a)<0,f(b)>0,那么当x1=时,若f(x1)=0,这说x1为零点;若不为0,假设大于0,那么继续在[x1,b]区间取中点验证它的函数值为0,一直重复下去,直到找到满足要求的点为止.这就是二分法的基本概念.习题演练一.选择题(共12小题)1.已知函数()21x f x x =--,则不等式()0f x >的解集是( ) A .()1,1- B .()(),11,-∞-+∞C .()0,1D .()(),01,-∞⋃+∞2.下列式子计算正确的是( ) A .m 3•m 2=m 6 B .(﹣m )2=21m - C .m 2+m 2=2m 2D .(m +n )2=m 2+n 23.在同一直角坐标系中,函数11,log (02a x y y x a a ⎛⎫==+> ⎪⎝⎭且1)a ≠的图象可能是( ) A . B .C .D .4.设2,8()(8),8x x f x f x x ⎧≤=⎨->⎩,则(17)f =( )A .2B .4C .8D .165.函数13x y a +=-(0a >,且1a ≠)的图象一定经过的点是( ) A .()0,2-B .()1,3--C .()0,3-D .()1,2--6.设0.3log 0.6m =,21log 0.62n =,则( ) A .m n m n mn ->+> B .m n mn m n ->>+ C .m n m n mn +>->D .mn m n m n >->+7.已知函数1()ln 1f x x x =--,则()y f x =的图象大致为( ).A .B .C .D .8.已知2log a e =,ln 2b =,121log 3c =,则a ,b ,c 的大小关系为 A .a b c >> B .b a c >>C .c b a >>D .c a b >>9.函数()2xf 的定义域为[1,1]-,则()2log y f x =的定义域为( )A .[1,1]-B.C .1,22⎡⎤⎢⎥⎣⎦D .[1,4]10.设函数()ln |21|ln |21|f x x x =+--,则f (x )( ) A .是偶函数,且在1(,)2+∞单调递增B .是奇函数,且在11(,)22-单调递减C .是偶函数,且在1(,)2-∞-单调递增D .是奇函数,且在1(,)2-∞-单调递减11.已知函数()ln 1,01,0xx x f x e x ⎧+>=⎨+≤⎩,()22g x x x =--,若方程()()0f g x a -=有4个不相等的实根,则实数a 的取值范围是( ) A .(),1-∞B .(]0,1C .(]1,2D .[)2,+∞12.在下列区间中,函数()43xf x e x =+-的零点所在的区间为( )A .1,04⎛⎫-⎪⎝⎭B .10,4⎛⎫ ⎪⎝⎭C .11,42⎛⎫⎪⎝⎭D .13,24⎛⎫⎪⎝⎭二.填空题(共6小题)13.计算:13021lg8lg 25327e -⎛⎫-++= ⎪⎝⎭__________.14.不等式2log 5x a -<对任意[]4,16x ∈恒成立,则实数a 的取值范围为____________. 15.已知当(]1,2x ∈时,不等式()21log a x x -≤恒成立,则实数a 的取值范围为________.16.若关于x 的方程11224a x x =-++-的解集为空集,求实数a 的取值范围______. 17.已知函数223,3()818,3x x f x x x x -⎧<=⎨-+≥⎩,则函数()()2g x f x =-的零点个数为_________.18.已知定义在R 上的函数()f x 满1(2)()f x f x +=,当[0,2)x ∈时,()x f x x e =+,则(2019)f =_______.三.解析题(共6小题)19.已知函数()log (1)log (3)(01)a a f x x x a =-++<<.(1)求函数()f x 的定义域; (2)求函数()f x 的零点;(3)若函数()f x 的最小值为-4,求a 的值.20.已知定义域为R 的函数,12()2x x bf x a+-+=+是奇函数.(1)求a ,b 的值;(2)若对任意的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求实数k 的取值范围.21.设()log (1)log (3)(0,1)a a f x x x a a =++->≠,且(1)=2f . (1)求a 的值;(2)求()f x 在区间30,2⎡⎤⎢⎥⎣⎦上的最大值.22.已知实数0a >,定义域为R 的函数()x x e af x a e=+是偶函数,其中e 为自然对数的底数.(①)求实数a 值;(①)判断该函数()f x 在(0,)+∞上的单调性并用定义证明;(①)是否存在实数m ,使得对任意的t R ∈,不等式(2)(2)f t f t m -<-恒成立.若存在,求出实数m 的取值范围;若不存在,请说明理由.23.函数()f x 对任意的实数m ,n ,有()()()f m n f m f n +=+,当0x >时,有()0f x >. (1)求证:()00=f .(2)求证:()f x 在(),-∞+∞上为增函数.(3)若()11f =,解不等式()422x xf -<.24.甲商店某种商品4月份(30天,4月1日为第一天)的销售价格P (元)与时间t (天)的函数关系如图所示(1),该商品日销售量Q (件)与时间t (天)的函数关系如图(2)所示.(1)(2)(1)写出图(1)表示的销售价格与时间的函数关系式()P f t =,写出图(2)表示的日销售量与时间的函数关系式()Q g t =及日销售金额M (元)与时间的函数关系式()M h t =. (2)乙商店销售同一种商品,在4月份采用另一种销售策略,日销售金额N (元)与时间t (天)之间的函数关系式为22102750N t t =--+,试比较4月份每天两商店销售金额的大小关系。
(每日一练)高中数学第四章指数函数与对数函数知识点汇总高中数学第四章指数函数与对数函数知识点汇总单选题1、中国的5G 技术领先世界,5G 技术的数学原理之一便是著名的香农公式:C =Wlog 2(1+SN ),它表示:在受噪声干扰的信道中,最大信息传递速率C 取决于信道带宽W 、信道内信号的平均功率S 、信道内部的高斯噪声功率N 的大小,其中SN 叫做信噪比.当信噪比比较大时,公式中真数中的1可以忽略不计,按照香农公式,若不改变带宽W ,而将信噪比SN从1000提升至5000,则C 大约增加了( )(附:lg2≈0.3010)A .20%B .23%C .28%D .50% 答案:B分析:根据题意写出算式,再利用对数的换底公式及题中的数据可求解.将信噪比SN从1000提升至5000时,C 大约增加了Wlog 2(1+5000)−Wlog 2(1+1000)Wlog 2(1+1000)=log 25001−log 21001log 21001≈lg5000lg2−lg1000lg2lg1000lg2=lg53=1−lg23≈0.23=23%.故选:B.2、已知幂函数y =x a 与y =x b 的部分图象如图所示,直线x =14,x =12与y =x a ,y =x b 的图象分别交于A 、B 、C 、D 四点,且|AB|=|CD|,则12a +12b =( )A .12B .1C .√2D .2答案:B分析:把|AB |=|CD |用函数值表示后变形可得.由|AB |=|CD |得(14)a−(14)b=(12)a−(12)b,即[(12)a−(12)b][(12)a+(12)b]=(12)a−(12)b≠0,所以(12)a+(12)b=1, 故选:B .3、用二分法求函数f (x )的一个正实数零点时,经计算f (0.64)<0,f (0.72)>0,f (0.68)<0,则函数的一个精确度为0.1的正实数零点的近似值为( ) A .0.9B .0.7C .0.5D .0.4 答案:B分析:利用二分法求函数零点的近似值的条件及方法分析判断即得.依题意,函数的零点在(0.68,0.72)内,四个选项中只有0.7∈(0.68,0.72),且满足|0.72-0.68|<0.1, 所以所求的符合条件的近似值为0.7. 故选:B4、我国在2020年9月22日在联合国大会提出,二氧化碳排放力争于2030年前实现碳达峰,争取在2060年前实现碳中和.为了响应党和国家的号召,某企业在国家科研部门的支持下,进行技术攻关:把二氧化碳转化为一种可利用的化工产品,经测算,该技术处理总成本y (单位:万元)与处理量x (单位:吨)(x ∈[120,500])之间的函数关系可近似表示为y ={13x 3−80x 2+5040x,x ∈[120,144)12x 2−200x +80000,x ∈[144,500],当处理量x 等于多少吨时,每吨的平均处理成本最少( ) A .120B .200C .240D .400 答案:D分析:先根据题意求出每吨的平均处理成本与处理量之间的函数关系,然后分x ∈[120,144)和x ∈[144,500]分析讨论求出其最小值即可由题意得二氧化碳每吨的平均处理成本为S ={13x 2−80x +5040,x[120,144)12x −200+80000x,x ∈[144,500],当x ∈[120,144)时,S =13x 2−80x +5040=13(x −120)2+240,当x =120时,S 取得最小值240,当x ∈[144,500] 时,S =12x +80000x−200≥2√12x ⋅80000x−200=200,当且仅当12x =80000x,即x =400时取等号,此时S 取得最小值200,综上,当每月得理量为400吨时,每吨的平均处理成本最低为200元, 故选:D5、若2x −2y <3−x −3−y ,则( )A .ln(y −x +1)>0B .ln(y −x +1)<0C .ln|x −y|>0D .ln|x −y|<0 答案:A分析:将不等式变为2x −3−x <2y −3−y ,根据f (t )=2t −3−t 的单调性知x <y ,以此去判断各个选项中真数与1的大小关系,进而得到结果.由2x−2y<3−x−3−y得:2x−3−x<2y−3−y,令f(t)=2t−3−t,∵y=2x为R上的增函数,y=3−x为R上的减函数,∴f(t)为R上的增函数,∴x<y,∵y−x>0,∴y−x+1>1,∴ln(y−x+1)>0,则A正确,B错误;∵|x−y|与1的大小不确定,故CD无法确定.故选:A.小提示:本题考查对数式的大小的判断问题,解题关键是能够通过构造函数的方式,利用函数的单调性得到x,y的大小关系,考查了转化与化归的数学思想.6、已知函数f(x)=2x−x−1,则不等式f(x)>0的解集是().A.(−1,1)B.(−∞,−1)∪(1,+∞)C.(0,1)D.(−∞,0)∪(1,+∞)答案:D分析:作出函数y=2x和y=x+1的图象,观察图象可得结果.因为f(x)=2x−x−1,所以f(x)>0等价于2x>x+1,在同一直角坐标系中作出y=2x和y=x+1的图象如图:两函数图象的交点坐标为(0,1),(1,2),不等式2x>x+1的解为x<0或x>1.所以不等式f(x)>0的解集为:(−∞,0)∪(1,+∞). 故选:D.小提示:本题考查了图象法解不等式,属于基础题.7、已知f(x)={2x−x2,x≥5f(x+3),x<5,则f(4)+f(-4)=()A.63B.83C.86D.91答案:C分析:由给定条件求得f(-4)=f(5),f(4)=f(7),进而计算f(5)、f(7)的值,相加即可得解. 依题意,当x<5时,f(x)=f(x+3),于是得f(-4)=f(-1)=f(2)=f(5),f(4)=f(7),当x≥5时,f(x)=2x-x2,则f(5)=25-52=7,f(7)=27-72=79,所以f(4)+f(-4)=86.故选:C8、已知函数f(x)=11+2x,则对任意实数x,有()A.f(−x)+f(x)=0B.f(−x)−f(x)=0C.f(−x)+f(x)=1D.f(−x)−f(x)=13答案:C分析:直接代入计算,注意通分不要计算错误.f(−x)+f(x)=11+2−x +11+2x=2x1+2x+11+2x=1,故A错误,C正确;f(−x)−f(x)=11+2−x −11+2x=2x1+2x−11+2x=2x−12x+1=1−22x+1,不是常数,故BD错误;故选:C.9、函数y=|lg(x+1)|的图像是()A.B.C.D.答案:A分析:由函数y=lgx的图象与x轴的交点是(1,0)结合函数的平移变换得函数y=|lg(x+1)|的图象与x轴的公共点是(0,0),即可求解.由于函数y=lg(x+1)的图象可由函数y=lgx的图象左移一个单位而得到,函数y=lgx的图象与x轴的交点是(1,0),故函数y=lg(x+1)的图象与x轴的交点是(0,0),即函数y=|lg(x+1)|的图象与x轴的公共点是(0,0),显然四个选项只有A选项满足.故选:A.10、设a=log2π,b=log6π,则()A.a−b<0<ab B.ab<0<a−bC.0<ab<a−b D.0<a−b<ab答案:D分析:根据对数函数的性质可得a−b>0,ab>0,1b −1a<1,由此可判断得选项.解:因为a=log2π>log22=1,0=log61<b=log6π<log66=1,所以a>1,0<b<1,所以a−b>0,ab>0,故排除A、B选项;又1b −1a=a−bab=logπ6−logπ2=logπ3<logππ<1,且ab>0,所以0<a−b<ab,故选:D.多选题11、已知a+a−1=3,则下列选项中正确的有()A.a2+a−2=7B.a3+a−3=16C.a 12+a−12=±√5D.a32+a−32=2√5答案:AD分析:由a+1a =3(a>0),可得:a2+a−2=(a+1a)2−2;a3+a−3=(a+a−1)(a2+a−2−1);(a12+a−12)2=a+a−1+2;a√aa√a=(a+a−1)(a12+a−12)−(a12+a−12),即可判断出正误.解:∵a+1a=3,∴a2+a−2=(a+1a)2−2=32−2=7,因此A正确;a3+a−3=(a+a−1)(a2+a−2−1)=3×(7−1)=18,因此B不正确;∵(a12+a−12)2=a+a−1+2=3+2=5,a>0,解得a12+a−12=√5,因此C不正确;∵a√aa√a=(a+a−1)(a12+a−12)−(a12+a−12)=3√5−√5=2√5,因此D正确.故选:AD.12、下列说法正确的是()A.函数f(x)=1x在定义域上是减函数B.函数f(x)=2x−x2有且只有两个零点C.函数y=2|x|的最小值是1D.在同一坐标系中函数y=2x与y=2−x的图象关于y轴对称答案:CD分析:利用熟知函数的图象与性质逐一判断即可.对于A,f(x)=1x在定义域上不具有单调性,故命题错误;对于B,函数f(x)=2x−x2有三个零点,一个负值,两个正值,故命题错误;对于C,∵|x|≥0,∴2|x|≥20=1,∴函数y=2|x|的最小值是1,故命题正确;对于D,在同一坐标系中,函数y=2x与y=2﹣x的图象关于y轴对称,命题正确.故选CD小提示:本题考查函数的性质,涉及到单调性、最值、对称性、零点等知识点,考查数形结合能力,属于中档题.13、高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设x∈R,用[x]表示不超过x的最大整数,则y=[x]称为高斯函数,例如:[−3.5]=−4,[2.1]=2.已知函数f(x)=e x1+e x −12,则关于函数g(x)=[f(x)]的叙述中正确的是()A.g(x)是偶函数B.f(x)是奇函数C.f(x)在R上是增函数D.g(x)的值域是{−1,0,1}答案:BC解析:计算g(−1),g(1)得出g(1)≠g(−1),g(1)≠−g(−1)判断选项A不正确;用函数的奇偶性定义,可证f(x)是奇函数,选项B正确;通过分离常数结合复合函数的单调性,可得出f(x)在R上是增函数,判断选项C正确;由y=e x的范围,利用不等式的关系,可求出−12<f(x)<12,选项D不正确,即可求得结果.根据题意知,f(x)=e x1+e x −12=12−11+e x.∵g(1)=[f(1)]=[e1+e −12]=0,g(−1)=[f(−1)]=[1e+1−12]=−1,∴g(1)≠g(−1),g(1)≠−g(−1),∴函数g(x)既不是奇函数也不是偶函数,A错误;∵f(−x)=e−x1+e−x −12=11+e x−12=−f(x),∴f(x)是奇函数,B正确;∵y=e x在R上是增函数,由复合函数的单调性知f(x)=12−11+e x在R上是增函数,C正确;∵e x>0,∴1+e x>1,0<11+e x <1,−1<−11+e x<0,∴−12<f(x)<12,∴g(x)=[f(x)]={−1,0},D错误.故选:BC.小提示:关键点睛:本题是一道以数学文化为背景,判断函数性质的习题,属于中档题型,本题的关键是理解函数g(x)=[f(x)],然后才会对函数f(x)变形,并作出判断.14、已知函数f(x)=(log2x)2−log2x2−3,则下列说法正确的是()A.f(4)=−3B.函数y=f(x)的图象与x轴有两个交点C.函数y=f(x)的最小值为−4D.函数y=f(x)的最大值为4E.函数y=f(x)的图象关于直线x=2对称答案:ABC分析:A,利用函数直接求解;B令f(x)=0求解即可;C,转化为二次函数求解;D,转化为二次函数求解;E,取特殊值验证即可.A正确,f(4)=(log24)2−log242−3=−3;B正确,令f(x)=0,得(log2x+1)(log2x−3)=0,解得x=1或x=8,即f(x)的图象与x有两个交点;2C正确,因为f(x)=(log2x−1)2−4(x>0),所以当log2x=1,即x=2时,f(x)取最小值−4;D错误,f(x)没有最大值;E错误,取x=1,则f(1)=−3≠f(3).故选:ABC.小提示:本题主要考查对数型函数的图象和性质,还考查了转化求解问题的能力,属于中档题.15、已知a>0,b>0且a≠1,b≠1,若log a b>1,则下列不等式可能正确的是().A.(b−1)(b−a)>0B.(a−1)(a−b)>0C.(a−1)(b−1)<0D.(a−1)(b−a)>0答案:AD分析:由于log a b>1=log a a,然后分情况利用对数函数的单调性比较大小即可.解:∵log a b>1=log a a,∴若a>1,则b>a,即b>a>1.∴(b−1)(b−a)>0,故A正确.(a −1)(b −a)>0,故D 正确.若0<a <1,则0<b <a <1,∴(a −1)(a −b)<0,(a −1)(b −1)>0,故BC 错误,故选:AD小提示:此题考查了对数函数的性质,属于基础题.填空题16、若x +x−1=3,则x 12+x −12x 2+x −2=__________. 答案:√57分析:将目标式分子、分母转化为含已知条件x +x −1的代数式,进而求值x +x −1=3,易知x >0而(x 12+x −12)2=x +x −1+2=5∴x 12+x −12=√5又由x 2+x −2=(x +x −1)2−2=7综上,有:x 12+x −12x 2+x −2=√57所以答案是:√57 小提示:本题考查了利用指数幂运算化简求值,应用指数幂运算化简含x a +x −a 形式的代数式并求值17、已知函数f(x)={x +1,x ≤0,log 2x,x >0则函数y =f [f (x )]的所有零点之和为___________. 答案:12分析:利用分段函数,分类讨论,即可求出函数y =f [f (x )]的所有零点,从而得解.解:x ⩽0时,x +1=0,x =−1,由f(x)=−1,可得x +1=−1或log 2x =−1,∴x =−2或x =12; x >0时,log 2x =0,x =1,由f(x)=1,可得x +1=1或log 2x =1,∴x =0或x =2; ∴函数y =f [f (x )]的所有零点为−2,12,0,2,所以所有零点的和为−2+12+0+2=12所以答案是:12.18、计算:27−13−(−17)−2+25634−3−1+(√2−1)0=_______. 答案:16 分析:根据指数幂的运算性质直接求解即可.27−13−(−17)−2+25634−3−1+(√2−1)0=(33)−13−(−7)2+(44)34−13+1 =13−49+64−13+1=16. 所以答案是:16.解答题19、计算:(1)lg 25+lg 2lg 50+(lg 2)2;(2)e ln 3+log √525+(0.125)−23.答案:(1)2;(2)11.分析:(1)根据对数的运算法则,逐步计算,即可得出结果;(2)根据指数幂的运算法则,以及对数的运算法则,直接计算,即可得出结果.(1)原式=2lg5+lg2×(lg100−lg2)+(lg2)2=2lg5+lg2×(2−lg2)+(lg2)2=2×(lg5+lg2)=2lg10=2.(2)原式=3+log 51252+[(0.5)3]−23 =3+212log 55+(0.5)−2 =3+4+(2−1)−2=3+4+22=11.20、已知集合A ={log 52 ,log 425,2},集合B ={log 25,log 319}.记集合A 中最小元素为a ,集合B 中最大元素为b . (1)求A ∩B 及a ,b 的值;(2)证明:函数f (x )=x +1x 在[2,+∞)上单调递增;并用上述结论比较a +b 与52的大小. 答案:(1)A ∩B ={log 25},a =log 52,b =log 25;(2)证明见解析,a +b >52 分析:(1)根据对数的运算性质以及对数函数的单调性即可解出;(2)根据单调性的定义即可证明函数f (x )=x +1x 在[2,+∞)上单调递增,再根据单调性以及对数的性质log a b =1log b a 即可比较出大小.(1)因为log 425=log 25,所以A ={log 52 ,log 25,2},B ={log 25,−2},即A ∩B ={log 25}.因为log 52<log 525=2=log 24<log 25,所以a =log 52,b =log 25.(2)设x 1,x 2为[2,+∞)上任意两个实数,且2≤x 1<x 2,则x 1−x 2<0,x 1x 2>1, f (x 1)−f (x 2)=(x 1+1x 1)−(x 2+1x 2)=x 1−x 2+1x 1−1x 2=(x 1−x 2)×x 1x 2−1x 1x 2<0,即f (x 1)<f (x 2),所以f (x )在[2,+∞)上单调递增.所以f (x )>f (2)=52,所以log 52+log 25=1log 25+log 25=f (log 25)>52.。
人教版高中数学第四章指数函数与对数函数考点精题训练单选题1、已知9m =10,a =10m −11,b =8m −9,则( ) A .a >0>b B .a >b >0C .b >a >0D .b >0>a 答案:A分析:法一:根据指对互化以及对数函数的单调性即可知m =log 910>1,再利用基本不等式,换底公式可得m >lg11,log 89>m ,然后由指数函数的单调性即可解出. [方法一]:(指对数函数性质)由9m =10可得m =log 910=lg10lg9>1,而lg9lg11<(lg9+lg112)2=(lg992)2<1=(lg10)2,所以lg10lg9>lg11lg10,即m >lg11,所以a =10m −11>10lg11−11=0.又lg8lg10<(lg8+lg102)2=(lg802)2<(lg9)2,所以lg9lg8>lg10lg9,即log 89>m ,所以b =8m −9<8log 89−9=0.综上,a >0>b . [方法二]:【最优解】(构造函数) 由9m =10,可得m =log 910∈(1,1.5).根据a,b 的形式构造函数f(x)=x m −x −1(x >1) ,则f ′(x)=mx m−1−1, 令f ′(x)=0,解得x 0=m 11−m ,由m =log 910∈(1,1.5) 知x 0∈(0,1) . f(x) 在 (1,+∞) 上单调递增,所以f(10)>f(8) ,即 a >b , 又因为f(9)=9log 910−10=0 ,所以a >0>b .故选:A.【整体点评】法一:通过基本不等式和换底公式以及对数函数的单调性比较,方法直接常用,属于通性通法; 法二:利用a,b 的形式构造函数f(x)=x m −x −1(x >1),根据函数的单调性得出大小关系,简单明了,是该题的最优解.2、设a =30.7, b =(13)−0.8, c =log 0.70.8,则a,b,c 的大小关系为( )A .a <b <cB .b <a <cC .b <c <aD .c <a <b 答案:D分析:利用指数函数与对数函数的性质,即可得出a,b,c 的大小关系. 因为a =30.7>1,b =(13)−0.8=30.8>30.7=a ,c =log 0.70.8<log 0.70.7=1, 所以c <1<a <b . 故选:D.小提示:本题考查的是有关指数幂和对数值的比较大小问题,在解题的过程中,注意应用指数函数和对数函数的单调性,确定其对应值的范围.比较指对幂形式的数的大小关系,常用方法:(1)利用指数函数的单调性:y =a x ,当a >1时,函数递增;当0<a <1时,函数递减; (2)利用对数函数的单调性:y =log a x ,当a >1时,函数递增;当0<a <1时,函数递减; (3)借助于中间值,例如:0或1等.3、中国的5G 技术领先世界,5G 技术的数学原理之一便是著名的香农公式:C =Wlog 2(1+SN ).它表示:在受噪声干扰的信道中,最大信息传递速度C 取决于信道带宽W ,信道内信号的平均功率S ,信道内部的高斯噪声功率N的大小,其中SN叫做信噪比.当信噪比比较大时,公式中真数中的1可以忽略不计.按照香农公式,若不改变带宽W,而将信噪比SN从1000提升至4000,则C大约增加了()附:lg2≈0.3010A.10%B.20%C.50%D.100%答案:B分析:根据题意,计算出log24000log21000的值即可;当SN =1000时,C=Wlog21000,当SN=4000时,C=Wlog24000,因为log24000log21000=lg4000lg1000=3+2lg23≈3.60203≈1.2所以将信噪比SN从1000提升至4000,则C大约增加了20%,故选:B.小提示:本题考查对数的运算,考查运算求解能力,求解时注意对数运算法则的运用.4、果农采摘水果,采摘下来的水果会慢慢失去新鲜度.已知某种水果失去新鲜度h与其采摘后时间t(天)满足的函数关系式为ℎ=m⋅a t.若采摘后10天,这种水果失去的新鲜度为10%,采摘后20天,这种水果失去的新鲜度为20%.那么采摘下来的这种水果多长时间后失去40%新鲜度()A.25天B.30天C.35天D.40天答案:B分析:根据给定条件求出m及a10的值,再利用给定公式计算失去40%新鲜度对应的时间作答.依题意,{10%=m⋅a1020%=m⋅a20,解得m=120,a10=2,当ℎ=40%时,40%=120⋅a t,即40%=120⋅a10⋅a t−10,解得a t−10=4=(a10)2=a20,于是得t−10=20,解得t=30,所以采摘下来的这种水果30天后失去40%新鲜度.故选:B5、已知函数f (x )是奇函数,当x >0时,f (x )=2x +x 2,则f (2)+f (−1)=( ) A .11B .5C .−8D .−5 答案:B分析:利用奇函数的定义直接计算作答. 奇函数f (x ),当x >0时,f (x )=2x +x 2,所以f (2)+f (−1)=f(2)−f(1)=22+22−(21+12)=5. 故选:B6、设函数f (x )=ln |2x +1|﹣ln |2x ﹣1|,则f (x )( ) A .是偶函数,且在 (12,+∞)单调递增B .是奇函数,且在 (−12,12)单调递增 C .是偶函数,且在(−∞,−12)单调递增 D .是奇函数,且在 (−∞,−12)单调递增 答案:B分析:先求出f (x )的定义域结合奇偶函数的定义判断f (x )的奇偶性,设t =|2x+12x−1|,则y =ln t ,由复合函数的单调性判断f (x )的单调性,即可求出答案.解:由{2x +1≠02x −1≠0,得x ≠±12.又f (﹣x )=ln |﹣2x +1|﹣ln |﹣2x ﹣1|=﹣(ln |2x +1|﹣ln |2x ﹣1|)=﹣f (x ), ∴f (x )为奇函数,由f (x )=ln |2x +1|﹣ln |2x ﹣1|=ln |2x+12x−1|, ∵2x+12x−1=1+22x−1=1+1x−12.可得内层函数t =|2x+12x−1|的图象如图,在(﹣∞,−12),(12,+∞)上单调递减,在(−12,12)上单调递增,又对数式y =lnt 是定义域内的增函数,由复合函数的单调性可得,f (x )在(−12,12)上单调递增, 在(﹣∞,−12),(12,+∞)上单调递减. 故选:B .7、设f(x)={e x−1,x <3log 3(x −2),x ≥3,则f(f (11))的值是( )A .1B .eC .e 2D .e −1 答案:B分析:根据自变量的取值,代入分段函数解析式,运算即可得解. 由题意得f(11)=log 3(11−2)=log 39=2, 则f(f (11))=f (2)=e 2−1=e . 故选:B.小提示:本题考查了分段函数求值,考查了对数函数及指数函数求值,属于基础题. 8、设m ,n 都是正整数,且n >1,若a >0,则不正确的是( )A.a mn=√a mn B.(a12+a−12)2=a+a−1C.a−mn=√a mn D.a0=1答案:B解析:由指数运算公式直接计算并判断. 由m,n都是正整数,且n>1,a>0,、得(a 12+a−12)2=(a12)2+2a12⋅a−12+(a−12)2=a+a−1+2,故B选项错误,故选:B.9、已知f(x)={2x−x2,x≥5f(x+3),x<5,则f(4)+f(-4)=()A.63B.83C.86D.91答案:C分析:由给定条件求得f(-4)=f(5),f(4)=f(7),进而计算f(5)、f(7)的值,相加即可得解.依题意,当x<5时,f(x)=f(x+3),于是得f(-4)=f(-1)=f(2)=f(5),f(4)=f(7),当x≥5时,f(x)=2x-x2,则f(5)=25-52=7,f(7)=27-72=79,所以f(4)+f(-4)=86.故选:C10、中国茶文化博大精深,某同学在茶艺选修课中了解到,茶水的口感与茶叶类型和水的温度有关,某种绿茶用80℃左右的水泡制可使茶汤清澈明亮,营养也较少破坏.为了方便控制水温,该同学联想到牛顿提出的物体在常温环境下温度变化的冷却模型:如果物体的初始温度是θ1℃,环境温度是θ0℃,则经过t分钟后物体的温度θ℃将满足θ=θ0+(θ1−θ0)e−kt,其中k是一个随着物体与空气的接触状况而定的正常数.该同学通过多次测量平均值的方法得到初始温度为100℃的水在20℃的室温中,12分钟以后温度下降到50℃.则在上述条件下,100℃的水应大约冷却( )分钟冲泡该绿茶(参考数据:ln2≈0.7,ln3≈1.1)A.3B.3.6C.4D.4.8答案:B分析:根据题意求出k的值,再将θ=80℃,θ1=100℃,θ0=20℃代入θ=θ0+(θ1−θ0)e−kt即可求得t的值.由题可知:50=20+(100−20)e−12k⇒(e−k)12=38⇒e−k=(38)112,冲泡绿茶时水温为80℃,故80=20+(100−20)⋅e−kt⇒(e−k)t=34⇒t⋅ln e−k=ln34⇒t=ln 3 4ln(38)112=12(ln3−2ln2)ln3−3ln2≈12(1.1−2×0.7)1.1−3×0.7=3.6.故选:B.多选题11、高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的美誉,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设x∈R,用[x]表示不超过x的最大整数,则y=[x]称为高斯函数,也称取整函数,例如:[−3.7]=−4,[2.3]=2,已知f(x)=e xe x+1−12,则函数y=2[f(x)]+[f(−x)]的函数值可能为()A.−2B.−1C.0D.1答案:ABC分析:利用定义可知函数f(x)为奇函数,根据解析式可得f(x)∈(−12,12),分三种情况讨论f(x)可求得结果.因为f(x)=e xe x+1−12,所以f(−x)=e−xe−x+1−12=11+e x−12,所以f(x)+f(−x)=e xe x+1−12+1e x+1−12=0,即f(−x)=−f(x),因为f(x)=e xe x+1−12=e x+1−1e x+1−12=12+−1e x+1,因为e x>0,e x+1>1,所以0<1e x+1<1,所以−1<−1e x+1<0,所以−12<12+−1e x +1<12即f(x)∈(−12,12)当f(x)∈(−12,0)时,f(−x)∈(0,12),所以[f(x)]=−1,[f(−x)]=0,此时y =−2,当f(x)=0时,f(−x)=0,所以[f(x)]=0,[f(−x)]=0,此时y =0,当f(x)∈(0,12)时,f(−x)∈(−12,0),此时[f(x)]=0,[f(−x)]=−1,此时y =−1, 所以函数y =2[f(x)]+[f(−x)]的值域为{−2,−1,0}. 故选:ABC12、若函数f(x)的图像在R 上连续不断,且满足f(0)<0,f(1)>0,f(2)>0,则下列说法错误的是( ) A .f(x)在区间(0,1)上一定有零点,在区间(1,2)上一定没有零点 B .f(x)在区间(0,1)上一定没有零点,在区间(1,2)上一定有零点 C .f(x)在区间(0,1)上一定有零点,在区间(1,2)上可能有零点 D .f(x)在区间(0,1)上可能有零点,在区间(1,2)上一定有零点 答案:ABD解析:根据f (x )的图像在R 上连续不断,f (0)<0,f (1)>0,f (2)>0,结合零点存在定理,判断出在区间(0,1)和(1,2)上零点存在的情况,得到答案.由题知f (0)⋅f (1)<0,所以根据函数零点存在定理可得f (x )在区间(0,1)上一定有零点, 又f (1)⋅f (2)>0,无法判断f (x )在区间(1,2)上是否有零点,在区间(1,2)上可能有零点. 故选:ABD .13、下列各选项中,值为1的是( ) A .log 26·log 62B .log 62+log 64C .(2+√3)12⋅(2−√3)12D .(2+√3)12−(2−√3)12答案:AC解析:对选项逐一化简,由此确定符合题意的选项. 对于A 选项,根据log a b ⋅log b a =1可知,A 选项符合题意. 对于B 选项,原式=log 6(2×4)=log 68≠1,B 选项不符合题意.对于C 选项,原式=[(2+√3)⋅(2−√3)]12=112=1,C 选项符合题意.对于D 选项,由于[(2+√3)12−(2−√3)12]2=2+√3+2−√3−2(2+√3)12⋅(2−√3)12=4−2=2≠1,D 选项不符合题意. 故选:AC小提示:本小题主要考查对数、根式运算,属于基础题.14、已知函数f(x)=2x2x +1+m(m ∈R)则下列说法正确的是( ) A .f (x )的定义域为R .B .若f(x)为奇函数,则m =−12 C .f(x)在R 上单调递减D .若m =0,则f(x)的值域为(0,1) 答案:ABD分析:根据函数的定义域的求法,可判定A 正确;根据函数的奇偶性列出方程,求得m 的值,可判定B 正确,化简f(x)=−12x +1+m +1,结合指数函数的单调性,可判定C 错误;化简函数f(x)=1−12x +1,结合指数函数的值域,可判定D 正确.由题意,函数f(x)=2x2x +1+m(m ∈R),对于A 中,由2x +1≠0,所以函数f (x )的定义域为R ,所以A 正确;对于B 中,由函数f (x )为奇函数,则满足f (−x )=−f (x ),即2−x 2−x +1+m =−2x2x +1−m ,所以2m =−2x2x +1−2−x2−x +1=−2x2x +1−12x 12x+1=−2x2x +1−12x +1=−1,即m =−12,所以B 不正确;对于C 中,由f(x)=2x 2x +1+m =2x +1−12x +1+m =−12x +1+m +1,因为函数y =2x +1为单调递增函数,则y =−12x +1递增函数, 所以f (x )函数在R 上单调递减,所以C 不正确;对于D 中,当m =0时,可得f(x)=2x 2x +1=1−12x +1,因为2x +1>1,可得−1<−12x +1<0,所以1−12x +1∈(0,1), 即函数f (x )的值域为(0,1),所以D 正确. 故选:ABD.15、某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为y =12x 2-200x +80000,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.以下判断正确的是( )A .该单位每月处理量为400吨时,才能使每吨的平均处理成本最低B .该单位每月最低可获利20000元C .该单位每月不获利,也不亏损D .每月需要国家至少补贴40000元才能使该单位不亏损 答案:AD分析:根据题意,列出平均处理成本表达式,结合基本不等式,可得最低成本;列出利润的表达式,根据二次函数图像与性质,即可得答案.由题意可知,二氧化碳每吨的平均处理成本为y x =12x +80000x−200≥2√12x ⋅80000x−200=200,当且仅当12x =80000x,即x =400时等号成立,故该单位每月处理量为400吨时,才能使每吨的平均处理成本最低,最低成本为200元,故A正确;设该单位每月获利为S元,则S=100x−y=100x−(12x2+80000−200x)=−12x2+300x−80000=−12(x−300)2−35000,因为x∈[400,600],所以S∈[−80000,−40000].故该单位每月不获利,需要国家每月至少补贴40000元才能不亏损,故D正确,BC错误,故选:AD小提示:本题考查基本不等式、二次函数的实际应用,难点在于根据题意,列出表达式,并结合已有知识进行求解,考查阅读理解,分析求值的能力,属中档题.双空题16、已知函数f(x)=ln(ax2+2x+1),若f(x)的定义域为R,则实数a的取值范围为______;若f(x)的值域为R,则实数a的取值范围为______.答案:(1,+∞)[0,1]分析:由f(x)的定义域为R知u=ax2+2x+1的图象恒在x轴的上方,由二次函数性质可构造不等式组求得结果;由f(x)的值域为R知u=ax2+2x+1要取遍所有的正数,由二次函数值域可构造不等式组求得结果.若f(x)的定义域为R,则u=ax2+2x+1的图象恒在x轴的上方,∴{a>0Δ=4−4a<0,解得:a>1,即实数a的取值范围是(1,+∞);若f(x)的值域为R,则u=ax2+2x+1要取遍所有的正数,∴a=0或{a>0Δ=4−4a≥0,解得:0≤a≤1,即实数a的取值范围是[0,1].所以答案是:(1,+∞);[0,1].17、若函数f(x)=ln(ax+11−x)+b是奇函数,则a=___________,b=___________.答案: 1 0分析:根据奇函数在x =0处有定义则f (0)=0可得b ,再根据奇函数的满足f (x )+f (−x )=0求解a 即可 因为函数f (x )=ln (ax+11−x )+b 是奇函数,故f (0)=0,即ln 1+b =0,即b =0.又f (x )+f (−x )=0,故ln (ax+11−x )+ln (−ax+11+x )=0,即(ax+11−x )⋅(−ax+11+x )=1,1−a 2x 21−x 2=1恒成立,故a 2=1,所以a =1或a =−1,当a =−1时f (x )=ln (−x+11−x)=ln (−1)无意义.当a =1时f (x )=ln (x+11−x )满足奇函数.故a =1 综上,a =1,b =0所以答案是:1;018、某公司租地建仓库,每月土地占用费y 1与仓库到车站的距离成反比,而每月库存货物的运费y 2与到车站的距离成正比,如果在距离车站10 km 处建仓库,这两项费用y 1和y 2分别为2万元和8万元,要使这两项费用之和最小,仓库应建立在距离车站______km 处,最少费用为______万元.答案: 5 8解析:根据题意设出y 1和y 2的函数表达式,利用“在距离车站10 km 处建仓库,这两项费用y 1和y 2分别为2万元和8万元”列方程,由此求得y 1和y 2的解析式.利用基本不等式求得费用的最小值和建站位置.设仓库与车站距离为x ,依题意y 1=k 1x ,y 2=k 2x .由于“在距离车站10 km 处建仓库,这两项费用y 1和y 2分别为2万元和8万元”,所以2=k 110,8=k 2⋅10,解得k 1=20,k 2=45.所以y 1=20x ,y 2=45x ,所以总费用20x +45x ≥2√20x ⋅45x =8,当且仅当20x =45x ,即x =5时,取得最小值.所以答案是:(1)5;(2)8.小提示:本小题主要考查函数模型在实际生活中的运用,考查利用基本不等式求最值,属于基础题. 解答题19、(1)已知函数g (x )=(a +1)x−2+1(a >0)的图像恒过定点A ,且点A 又在函数f (x )=log √3(x +a )的图像上,求不等式g (x )>3的解集;(2)已知−1≤log 12x ≤1,求函数y =(14)x−1−4(12)x +2的最大值和最小值.答案:(1)(3,+∞);(2)y min =1,y max =54.分析:(1)结合指数函数性质首先求a 的值,再解指数不等式;(2)通过换元,设t =(12)x ,并且求变量的取值范围,转化为二次函数在定义域内的最大值和最小值.(1)由题意知定点A 的坐标为(2,2),∴2=log √3(2+a )解得a =1.∴g (x )=2x−2+1.∴由g (x )>3得,2x−2+1>3.∴2x−2>2.∴x −2>1.∴x >3.∴不等式g (x )>3的解集为(3,+∞).(2)由−1≤log 12x ≤1得12≤x ≤2令t =(12)x ,则14≤t ≤√22, y =4t 2−4t +2=4(t −12)2+1. ∴当t =12,即(12)x =12,x =1时,y min =1,当t =14,即(12)x =14,x =2时,y max =54. 小提示:本题考查指数函数与对数函数的图象与性质,考查求对数型函数的值域,求值域的方法是用换元法把函数转化为二次函数,然后求解.20、已知函数f(x)=2x −12x .(1)判断f(x)在其定义域上的单调性,并用单调性的定义证明你的结论;(2)解关于x的不等式f(log2x)<f(1).答案:(1)f(x)在R上是增函数,证明见解析;(2)(0,2).分析:(1)由题可判断函数为奇函数且为增函数,利用定义法的步骤证明即可;(2)利用函数f(x)的单调性及对数函数的单调性即解.(1)∵f(−x)=2−x−2x=−(2x−12x)=−f(x),则函数f(x)是奇函数,则当x⩾0时,设0⩽x1<x2,则f(x1)−f(x2)=2x1−12x1−2x2+12x2=2x1−2x2+2x2−2x12x12x2=(2x1−2x2)2x12x2−12x12x2,∵0⩽x1<x2,∴1⩽2x1<2x2,即2x1−2x2<0,2x12x2>1,则f(x1)−f(x2)<0,即f(x1)<f(x2),则f(x)在[0,+∞)上是增函数,∵f(x)是R上的奇函数,∴f(x)在R上是增函数.(2)∵f(x)在R上是增函数,∴不等式f(log2x)<f(1)等价为不等式log2x<1,即0<x<2.即不等式的解集为(0,2).。
第四章 对数函数与指数函数第1节 实数指数幂一、n 次根式n 为偶数时,正数的n 次方根有两个,n a 和n a -,负数的n 次方根无意义。
n 为奇数时,任何数的n 次方根只有一个n a 。
0的n 次方根为0.【习题】1.求81的4次方根。
2.求-32的5次方根。
3.0的7次方根。
二、分数指数幂:n ma=nm a ,nma1anm -=【习题】1.课本72页1,2题2.将n 次根式转化成分数指数幂:(1)33 (2)4521(3)a a三、实数指数幂:同底数幂的乘法 n m n m a a a +=• 幂的乘方 ()mnnm a a = 积的乘方 ()n n nb a ab =【习题】1.计算与化简: (1)31-8 (2)23-925⎪⎭⎫ ⎝⎛ (3)⎪⎪⎭⎫ ⎝⎛-•22321b a b a2.计算:(1)()41-0.0081 (2)310.02710⨯ (3)20853-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛⨯ (4)21-31-0.25-83381⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+四、幂函数:形如()R x y ∈∂=∂的函数叫幂函数。
幂函数图像的特点:(1)当0>∂时,图像过点()00,与()11,(2)当0<∂时,图像不过点()00,但过点()11,第2节 指数函数一、定义:形如()10≠>=a a a y x 且的函数叫指数函数。
二、图像与性质【习题】一、求函数值:1.已知指数函数()x x f 5=,求()0f ,()2f ,()2-f ,⎪⎭⎫⎝⎛21f 的值。
二、比较大小:1.比较大小:(1) 2.51.8与31.8 (2)-0.20.9与-0.30.92.(1)33.2与23.2 (2)π⎪⎭⎫ ⎝⎛31与 3.1431⎪⎭⎫⎝⎛ (3)-23与-231⎪⎭⎫⎝⎛ (4) 1.22.5与 1.52.5三、求定义域:1.求下列函数的定义域:(1)x y 8=(2)1-31xy =(3)1-2xy = 四、待定系数法:求下列函数的解析式1.已知指数函数()()10≠>=a a a x f x 且的图像过点()273,,求()0f ,()1f ,()3-f 的值。
指数函数和对数函数复习(有详细知识点和习题详解)一、指数的性质一)整数指数幂整数指数幂的概念是指:a的n次方等于a乘以a的n-1次方,其中a不等于0,n为正整数。
另外,a的-n次方等于1除以a的n次方,其中a不等于0,n为正整数。
整数指数幂的运算性质包括:(1)a的m次方乘以a的n次方等于a的m+n次方;(2)a的n次方的m次方等于a的mn次方;(3)a乘以b的n次方等于a的n次方乘以b的n次方。
其中,a除以a的n次方等于a的n-1次方,a的m-n次方等于a的m除以a的n次方,an次方根的概念是指,如果一个数的n次方等于a,那么这个数叫做a的n次方根,记作x=√a。
例如,27的3次方根等于3,-27的3次方根等于-3,32的5次方根等于2,-32的5次方根等于-2.a的n次方根的性质包括:如果n是奇数,则a的n次方根等于a;如果n是偶数且a大于等于0,则a的正的n次方根等于a,a的负的n次方根等于负的a;如果n是偶数且a小于0,则a的n次方根没有意义,即负数没有偶次方根。
二)例题分析例1:求下列各式的值:(1)3的-8次方;(2)(-10)的2次方;(3)4的(3-π)次方;(4)(a-b)的2次方,其中a大于b。
例2:已知a小于b且n大于1,n为正整数,化简n[(a-b)/(a+b)]。
例3:计算:7+40+7-40.例4:求值:(59/24)+(59-45)/24 + 25×(5-2)/24.解:略。
二)分数指数幂1.分数指数幂当根式的被开方数能被根指数整除时,根式可以写成分数指数幂的形式,例如:$5\sqrt[10]{a^5}=a^{\frac{1}{2}}$,$3\sqrt[12]{a^3}=a^{\frac{1}{4}}$。
当根式的被开方数不能被根指数整除时,根式也可以写成分数指数幂的形式,例如:$\sqrt[4]{a^5}=a^{\frac{5}{4}}$。
规定:1)正数的正分数指数幂的意义是$a^{\frac{p}{q}}=\sqrt[q]{a^p}$。
指数函数和对数函数的知识点及典型例题一、指数的性质 (一)整数指数幂1.整数指数幂概念:an n a a a a 个⋅⋅⋅=)(*∈N n ()010a a =≠ ()10,n na a n N a-*=≠∈ 2.整数指数幂的运算性质:(1)(),m n m n a a a m n Z +⋅=∈ (2)()(),nm mn a a m n Z =∈(3)()()nn n ab a b n Z =⋅∈其中mnmnm na a a aa--÷=⋅=, ()1nn n n nn a a a b a b b b --⎛⎫=⋅=⋅= ⎪⎝⎭.3.a 的n 次方根的概念一般地,如果一个数的n 次方等于a ()*∈>N n n ,1,那么这个数叫做a 的n 次方根, 即: 若a x n =,则x 叫做a 的n 次方根,()*∈>N n n ,1例如:27的3次方根3273=, 27-的3次方根3273-=-, 32的5次方根2325=, 32-的5次方根2325-=-.说明:①若n 是奇数,则a 的n 次方根记作n a ; 若0>a 则0>n a ,若o a <则0<n a ; ②若n 是偶数,且0>a 则a 的正的n 次方根记作n a ,a 的负的n 次方根,记作:n a -;(例如:8的平方根228±=± 16的4次方根2164±=±) ③若n 是偶数,且0a <则n a 没意义,即负数没有偶次方根;④()*∈>=N n n n ,100 ∴0=;⑤式子na 叫根式,n 叫根指数,a 叫被开方数。
∴na =.4.a 的n 次方根的性质一般地,若n 是奇数,则a a n n =;若n 是偶数,则⎩⎨⎧<-≥==00a a a aa a n n .5.例题分析:例.计算:407407-++解:407407-++52)25()25(22=-++= (二)分数指数幂1()10250a aa ==>()12430a aa ==>即当根式的被开方数能被根指数整除时,根式可以写成分数指数幂的形式; 幂的运算性质()nm mn a a =对分数指数幂也适用,例如:若0a >,则3223233a a a ⨯⎛⎫== ⎪⎝⎭,4554544a a a ⨯⎛⎫== ⎪⎝⎭, 23a =45a =.规定:(1)正数的正分数指数幂的意义是)0,,,1m na a m n N n *=>∈>; (2)正数的负分数指数幂的意义是)10,,,1mnm naa m n N n a-*==>∈>.2.分数指数幂的运算性质:整数指数幂的运算性质对于分数指数幂也同样适用,即:()()10,,r s r s a a a a r s Q +=>∈()()()20,,sr rs a a a r s Q =>∈()()()30,0,rr r ab a b a b r Q =>>∈说明:(1)有理数指数幂的运算性质对无理数指数幂同样适用; (2)0的正分数指数幂等于0,0的负分数指数幂没意义。
指数函数与对数函数
1、指数及其运算性质:(1)、如果一个数的n 次方根等于a (*
,1N n n ∈>),那么这个数叫a 的n 次方根;
n
a 叫根式,当n 为奇数时,a a n
n
=;当n 为偶数时,⎩
⎨⎧<-≥==)0()0(||a a a a a a n
n
(2)、分数指数幂:正分数指数幂:n m
n
m
a a =;负分数指数幂:n
m n
m
a
a
1=
-
0的正分数指数幂等于1,0的负分数指数幂没有意义(0的负数指数幂没有意义); (3)、运算性质:当Q s r b a ∈>>,,0,0时:r r r rs s r s
r s
r
b a ab a a a
a a ===⋅+)(,)(,,
r
r
a a 1
=;
2、对数及其运算性质:(1)、定义:如果)1,0(≠>=a a N a b
,数b 叫以a 为底N 的对数,记作b N a =log ,其中a 叫底数,N 叫真数,以10为底叫常用对数:记为lgN ,以e=2.7182828…为底叫自然对数:记为lnN
(2)、性质:①:负数和零没有对数,②、1的对数等于0:01log =a ,③、底的对数等于1:1log =a a ,④、积的对数:N M MN a a a log log )(log +=, 商的对数:
N M N
M
a a a
log log log -=, 幂的对数:M n M a n
a log log =, 方根的对数:M n
M a n
a
log 1
log =
,
指数函数与对数函数练习题
1、 函数y =)1lg(2-x 的定义域是__________________.
2、已知函数f (x )=log 3(8x +7),那么f (
2
1
)等于_______________. 3、 与函数y = x 有相同图象的一个函数是( ).
A .y =x 2
B. y =x 2x
C. y =a log a x (a >0, a ≠1)
D. y = log a a x (a>0, a≠1)
4、在同一坐标系中,函数y =x 5.0log 与y =x 2log 的图象之间的关系是( ). A.关于原点对称 B.关于x 轴对称
C.关于直线y =1对称.
D.关于y 轴对称
5、下列函数中,在区间(0,+∞)上是增函数的是( ).
A.y =-x 2
B.y = x 2-x +2
C.y =(21
)x D.y =x 1log 3.0
6、函数y =)(log 2x -是( ).
A. 在区间(-∞,0)上的增函数
B. 在区间(-∞,0)上的减函数
C. 在区间(0,+∞)上的增函数
D. 在区间(0,+∞)上的减函数 7、已知函数f (x )=||2x ,那么函数f (x )( ). A. 是奇函数,且在(-∞,0)上是增函数 B. 是偶函数,且在(-∞,0)上是减函数 C. 是奇函数,且在(0,+∞)上是增函数 D. 是偶函数,且在(0,+∞)上是减函数 8、函数y =||log 3x (x ∈R 且x ≠0)( ) .
A. 为奇函数且在(-∞,0)上是减函数
B. 为奇函数且在(-∞,0)上是增函数
C. 是偶函数且在(0,+∞)上是减函数
D. 是偶函数且在(0,+∞)上是增函数
9、如果函数y =x a log 的图象过点(9
1
,2),则a =___________.
10、 实数2732–3log 22·log 21
8 +lg4+2lg5的值为_____________.
11、若1log 2
1>x ,则x 的取值范围是( ).
A. 21<
x B.2
10<<x C.21
>x D.0<x 12、某厂从1998年起年产值平均每年比上一年增长12.4%,设该厂1998年的产值为a , 则该厂的年产值y 与经过年数x 的函数关系式为________.。