高等数学空间向量与空间解析几何
- 格式:pdf
- 大小:8.11 MB
- 文档页数:62
向量与空间解析几何向量与空间解析几何是高等数学中的重要分支,它们是研究空间中点、直线、平面等几何对象的数学工具。
向量是空间中的一个重要概念,它可以用来表示空间中的位移、速度、加速度等物理量,同时也可以用来描述空间中的几何对象。
空间解析几何则是利用向量的概念,通过坐标系和代数方法来研究空间中的几何问题。
本文将从向量的定义、运算、坐标表示以及空间解析几何的基本概念和应用等方面进行详细介绍。
一、向量的定义和运算向量是空间中的一个重要概念,它可以用来表示空间中的位移、速度、加速度等物理量,同时也可以用来描述空间中的几何对象。
向量的定义如下:定义1:向量是具有大小和方向的量,用一个有向线段来表示。
向量的大小称为向量的模,用符号 a 表示,方向则由有向线段的方向确定。
向量的起点和终点分别称为向量的始点和终点,用符号a和b表示。
向量的表示方法有多种,如箭头表示法、坐标表示法、分量表示法等。
向量的运算包括加法、减法、数乘和点乘等。
其中,向量的加法和减法定义如下:定义2:向量的加法:设向量a和b的始点相同,则向量a+b的终点为向量a的终点和向量b的终点的连线的终点。
定义3:向量的减法:设向量a和b的始点相同,则向量a-b的终点为向量a 的终点和向量-b的终点的连线的终点。
向量的数乘定义如下:定义4:向量的数乘:设k为实数,则向量ka的模为k · a ,方向与向量a 的方向相同(当k>0时)或相反(当k<0时)。
向量的点乘定义如下:定义5:向量的点乘:设向量a=(a1,a2,a3)和向量b=(b1,b2,b3),则向量a·b=a1b1+a2b2+a3b3。
向量的点乘有很多重要的性质,如交换律、分配律、结合律等,这些性质在空间解析几何中有着重要的应用。
二、向量的坐标表示向量的坐标表示是空间解析几何中的重要概念,它将向量与坐标系联系起来,使得向量的运算可以通过代数方法来进行。
在三维空间中,我们通常采用右手坐标系来表示向量,其中x轴、y轴和z轴分别垂直于彼此,并且满足右手定则。
空间向量与空间解析几何的联系知识点总结空间向量和空间解析几何是高中数学中的重要内容,两者之间存在紧密的联系。
本文将对空间向量和空间解析几何的联系进行总结和阐述。
一、空间向量的概念和性质空间向量是空间中带有方向和大小的物理量,通常用箭头表示。
空间向量具有以下性质:1. 平分定理:设空间向量$\overrightarrow{AB}$平分角$\angle AOC$,则有$\overrightarrow{AB}=\overrightarrow{AO}+\overrightarrow{OC}$。
2. 共线定理:若空间向量$\overrightarrow{AB}$和$\overrightarrow{AC}$共线,则存在实数$k$,使得$\overrightarrow{AB}=k\overrightarrow{AC}$。
3. 相反向量:对于任意空间向量$\overrightarrow{a}$,存在唯一一个向量$-\overrightarrow{a}$,使得$\overrightarrow{a}+(-\overrightarrow{a})=\overrightarrow{0}$。
二、空间解析几何的基本概念空间解析几何是利用坐标系统和代数方法研究空间中点、直线、平面等几何对象的学科。
其基本概念有:1. 空间直角坐标系:由三个相互垂直的坐标轴形成的坐标系。
通常用$(x, y, z)$表示空间中的点。
2. 空间直线的方程:空间直线可以用参数方程、对称方程或一般方程表示,如参数方程为:$$\begin{cases}x=x_0+mt\\y=y_0+nt\\z=z_0+pt\end{cases}$$其中$(x_0, y_0, z_0)$为直线上一点,$(m, n, p)$为方向向量。
3. 空间平面的方程:空间平面可以用点法式方程、一般方程或截距式方程表示,如点法式方程为:$$\overrightarrow{r}\cdot\overrightarrow{n}=d$$其中$\overrightarrow{r}=(x, y, z)$为平面上一点,$\overrightarrow{n}=(A, B, C)$为法向量,$d$为常数。
空间向量与解析几何空间向量和解析几何是高等数学中的两个重要概念。
本文将介绍空间向量和解析几何的基本概念和相关性质,并探讨它们在几何问题中的应用。
一、空间向量的定义和性质空间向量是指具有大小和方向的有向线段,通常用箭头表示。
空间中的向量通常用字母加箭头标记,如A B⃗,其中A和B表示向量的起点和终点。
1.1 向量的表示空间向量可以用坐标表示,也可以用点和方向向量表示。
设A(x1, y1, z1)和B(x2, y2, z2)是空间中两点,则向量AB的坐标表示为A B⃗=(x2 - x1) i⃗ +(y2 - y1) j⃗ +(z2 - z1) k⃗,其中i⃗、j⃗和k⃗分别是x、y、z轴的单位向量。
1.2 向量的运算空间向量可以进行加法、减法和数乘运算。
1.2.1 向量加法若有向量A B⃗和向量C D⃗,则它们的和为A B⃗ + C D⃗ = A C⃗。
1.2.2 向量减法向量减法与向量加法类似,即A B⃗ - C D⃗ = A B⃗ + (- C D⃗)。
1.2.3 数乘运算若有向量A B⃗,实数k,则kA B⃗ = A B⃗ + A B⃗ + ... + A B⃗ (k个A B⃗)。
1.3 向量的数量积和向量积空间向量的数量积和向量积是两个重要的向量运算。
1.3.1 向量的数量积设有两个向量A B⃗和C D⃗,它们的数量积定义为A B⃗・ C D⃗ = |A B⃗| |C D⃗ | cosθ,其中θ为A B⃗和C D⃗的夹角,|A B⃗|和|C D⃗|分别为向量的模。
1.3.2 向量的向量积设有两个向量A B⃗和C D⃗,它们的向量积定义为A B⃗ × C D⃗ = |A B⃗| |C D⃗ | sinθ n⃗,其中θ为A B⃗和C D⃗的夹角,n⃗为与A B⃗和C D⃗都垂直且符合右手定则的单位向量。
二、解析几何的基本概念和性质解析几何是将几何问题转化为代数问题进行研究的数学分支,它主要运用代数方法研究空间中的几何问题。
第八章空间解析几何与向量代数 公共数学教研室空间解析几何主要研究空间几何图形, 把数学研究的两个基本对象“数”和“形”统一起来, 达到用代数方法解决几何问题, 用几何方法解决代数问题.本章引进向量及其代数运算, 讨论向量的各种运算规律, 介绍空间曲面和空间曲线, 以向量为工具来研究平面和空间直线, 最后介绍二次曲面.8.1 向量及其线性运算 8.2 向量的数量积8.3 向量的向量积混合积 8.4 平面及其方程8.5 空间直线及其方程 8.6 直线平面之间的关系 8.7 曲面及其方程8.8 空间曲线和向量函数8.1 向量及其线性运算vector and linear operation8.1.1 空间直角坐标系在空间中任取一点O, 作互相垂直的数轴Ox, Oy, Oz, 分别叫做x 轴 (横轴), y 轴 (纵轴), z 轴 (竖轴), 统称坐标轴, 三个坐标轴符合右手法则. 这样的三条坐标轴组成一个空间直角坐标系, 点O 叫做坐标原点 (或原点).三条坐标轴中的任意两条确定一个平面, 分别称为xOy 面, yOz 面及zOx 面. 三个坐标面把空间分成八个部分, 每一部分叫做一个卦限.x 轴, y 轴, z 轴上点的坐标分别表示为 (0, 0, z ), (0, y , 0), (0, 0, z ); xOy 面, yOz 面, zOx 面上点的坐标分别表示为 (x , y , 0), (0, y , z ), (x , 0, z ).22212212121||()()().M M x x y y z z =-+-+- 设有序数 (x , y , z ) 与空间点 M 一一对应, 依次称 x , y 和 z 为点M 的横坐标, 纵坐标和竖坐标. 点 M 通常记为 M (x , y , z ).空间中两点M 1 (x 1, y 1, z 1), M 2 (x 2, y 2, z 2) 间的距离公式为设 M 为空间中一点, 过 M 作三个平面分别垂直于 x 轴, y 轴, z 轴, 与 x 轴, y 轴, z 轴的交点依次为 P , Q , R , 这三个点在 x 轴, y 轴, z 轴的坐标依次为 x , y , z . 于是 M 唯一地确定了一个有序数组 (x , y , z ); 反之, 一有序数组 (x , y , z ) 唯一确定空间一点 M . 这样, 就建立了空间的点 M 和有序数组 (x , y , z ) 之间的一一对应关系. x z y ⑻O⑷⑶⑵⑴⑺⑹⑸R P QO x z y8.1.2 向量的概念及其坐标表示只有大小的量称为数量 (或标量), 如时间, 温度, 长度等. 既有大小又有方向的量称为向量 (或矢量), 例如位移 , 速度 , 加速度 , 力 等.s v a F 向量包含两个要素 — 大小和方向. 有向线段也具有这两个要素, 因此可用有向线段 表示向量, 其大小是有向线段的长度, 其方向是从 A 到 B 的方向, A 是向量的起点, B 是向量的终点. 若记 则称 为的一个几何表示 . AB ,v AB AB v 向量 的大小, 叫做向量的模或长度, 记为v ||.v向量仅由其大小和方向确定, 与其位置无关, 故向量被称为自由向量. 因此, 若两个向量大小相等, 方向相同, 称这两个向量相等.将两个向量移到同一始点, 如果它们位于一条直线上, 且两个终点分布在始点的同一侧, 则称这两个向量方向相同; 如果它们位于一条直线上, 且两个终点分布在始点的两侧, 则称这两个向量方向相反. 长度是零的向量称为零向量, 记为 , 零向量的方向可以认为是任意的.如图, 向量 位置不同, 但它们的长度相同, 且它们所在的线段有相同的斜率,即它们的方向相同, 所以,,OP AB CD P (2, 1)O C (1, 3)D (3, 4)A (- 3, - 3)B (- 2, - 2)x y .OP AB CD == 向量具有平移不变性, 若将向量 平移, 使其起点与原点 O 重合, 终点位于 P , 则 故 可由 P 的座標確定.AB ,AB OP = AB 定义 8-1 一个二元有序实数组 {a , b } 称为一个二维向量, 二维向量的全体记作 V 2. 一个三元有序实数组 {a , b , c } 称为一个三维向量. 三维向量的全体记作 V 3, 其中实数 a , b , c 称为向量的分量, 也称为向量的坐标.2121{,}v x x y y =-- 定义 8-2 若 M 1 (x 1, y 1), M 2 (x 2, y 2) 为平面上两点, 则二维向量 表示由有向线段 所表示的向量. 12M M 212121{,,}v x x y y z z =--- 若 M 1 (x 1, y 1, z 1), M 2 (x 2, y 2, z 2) 为空间中两点, 则三维向量表示由有向线段 所表示的向量. 12M M 22212212121||||()()()v M M x x y y z z ==-+-+-给定向量任意取定 A (x 0, y 0, z 0), 记 B = (x + x 0, y + y 0, z + z 0), P = P (x , y , z ),则{,,},r x y z = .r AB OP == 称为点 P (x , y , z ) 的位置向量,{,,}r x y z = 222|||{,,}|r x y z x y z ==++ 222||02(1) 5.AB =++-= 例 1 已知 A (1, 0, 2), B (1, 2, 1) 是空间两点, 求向量 和它的模.AB 解{11,20,12}{0,2,1},AB =---=-对三维向量 8.1.3 向量的线性运算 定义 8-3 设 是两个二维向量, 称向量 {a x + b x , a y + b y }为向量 和的和, 记作 即{,},{,}x y x y a a a b b b == a b ,a b + {,}{,}{,}.x y x y x x y y a b a a b b a b a b +=+=++ {,,},{,,},x y z x y z a a a a b b b b == 类似有{,,}{,,}{,,}.x y z x y z x x y y z z a b a a a b b b a b a b a b +=+=+++几何上, 向量加法服从三角形法则及平行四边形法则.A yx O B a x b x a y b y a b a b + A y O a x a y b y C xB b x a b a b +定义 8-4 设向量 c 为实数, 称向量 { c a x , c a y } 为向量 与数量 c 的乘积. 记作 即其模{,},x y a a a = a ,c a {,}{,},x y x y c a c a a c a c a == ||||||.c a c a = 对于三维向量, 类似有c {a x , a y , a z } = {c a x , c a y , c a z }. c > 0 时, c 与平行, 且方向相同; c < 0 时 c 与 平行, 且方向相反.a a a a 称 为 的负向量.(1)a a -=- a 与 的和称为 与的差, 记为 b a b - a .a b -证 仅需证明必要性. 设则存在 λ, 使得 ,a b .b a λ= 若又有则 故 所以 λ = μ .,b a μ= ()0,a λμ-= |||||0|0,a λμ-== 定理 1 设 是两个向量, 且 则 的充分必要条件是存在唯一常数 λ 使得 ,a b a b .b a λ= 0≠a向量的加法运算和数乘运算统称为向量的线性运算. 向量的线性运算满足下列法则 :(1) (交换律) .a b b a +=+ (2) (结合律) ()().a b c a b c ++=++ (4) ()0.a a +-= (6) ().a a a λμλμ+=+ (7) ()().a a λμλμ= (8) 1.a a ⋅= (5) ().ab a b λλλ+=+ (3) a a =+0由于向量的加法符合交换律和结合律, 故 n 个向量相加可写成,||.||a a a e a a e a == 12.n a a a +++ n 个向量相加复合多边形法则 : 使前一向量的终点与后一向量的起点重合, 相继作向量 再以第一向量的起点为起点, 最后一向量的终点为终点作一向量, 这个向量即和向量.12,,,,n a a a 模为 1 的向量称为单位向量. 记非零向量 的单位化向量为则a ,a eV 3 中, 与 x 轴, y 轴, z 轴的正向同向的单位向量记为{1,0,0},{0,1,0},{0,0,1}.i j k === 称 为 V 3 中的一组标准基.,,i j k a 设 则 可由 线性表示, 即{,,},x y z a a a a = ,,i j k {1,0,0}{0,1,0}{0,0,1}.x y z x y z a a a a a i a j a k =++=++ {1,0},{0,1}i j == 二维的情形,是 V 2 的一组标准基.例 2 设 求{1,1,3},{2,1,2},a b =-=- (1) 32;c a b =- (2) 用标准基 表示向量,,i j k ;c (3) 求与同方向的单位向量.c 解 (1)323{1,1,3}2{2,1,2}{34,32,94}{1,1,5}.c a b =-=---=--+-=-- (2)5.c i j k =--+ 所以 222(3)||(1)(1)533,c =-+-+= {1,1,5}.||33c c e c ==--解 作 12(),OP OP OP OP λ-=- 例 3 设两点 P 1 (x 1, y 1, z 1), P 2 (x 2, y 2, z 2). 在线段 P 1 P 2 上求一点 P (x , y , z ), 使由 P 分成的两个有向线段 的的比为定数 λ ( ≠ - 1), 即 12,P P PP 12.P P PP λ= O P 1P 2P 11112222{,,},{,,},{,,},OP x y z OP x y z OP x y z === 由于 及12,P P PP λ= 1122,,P P OP OP PP OP OP =-=-121212,,.111x x y y z z x y z λλλλλλ+++===+++所以 12(1),OP OP OP λλ+=+ 这就是定比分点公式.得到 121OP OP OP λλ+=+ ,得点 P 的坐标例 4 证明平行四边形的对角线互相平分.11(),22AE AC AB BC ==+ 解 设 ABCD 为平行四边形, AC , BD 的中点分别 为 E 及 F , 则D A FE B C 由定比分点公式 (λ = 1) 得1(),2AF AB AD =+ 即 E 与 F 重合, 即 AC 与 BD 互相平分.11()().22AF AB AD AB BC AE =+=+= 所以。
第七章向量代数与空间解析几何空间解析几何是多元函数微积分学必备的基础知识.本章首先建立空间直角坐标系,然后引进有广泛应用的向量代数,以它为工具,讨论空间的平面和直线,最后介绍空间曲面和空间曲线的部分内容.第一节空间直角坐标系平面解析几何是我们已经熟悉的,所谓解析几何就是用解析的,或者说是代数的方法来研究几何问题.坐标法把代数与几何结合起来.代数运算的基本对象是数,几何图形的基本元素是点.正如我们在平面解析几何中所见到的那样,通过建立平面直角坐标系使几何中的点与代数的有序数之间建立一一对应关系.在此基础上,引入运动的观点,使平面曲线和方程对应,从而使我们能够运用代数方法去研究几何问题.同样,要运用代数的方法去研究空间的图形——曲面和空间曲线,就必须建立空间内点与数组之间的对应关系.一、空间直角坐标系空间直角坐标系是平面直角坐标系的推广.过空间一定点O,作三条两两互相垂直的数轴,它们都以O为原点.这三条数轴分别叫做x轴(横轴)、y轴(纵轴)、z轴(竖轴),统称坐标轴.它们的正方向按右手法则确定,即以右手握住z轴,右手的四个手指指向x轴的正向以π2角度转向y轴的正向时,大拇指的指向就是z轴的正向(图7-1),这样的三条坐标轴就组成了一空间直角坐标系Oxyz,点O叫做坐标原点.图7-1三条坐标轴两两分别确定一个平面,这样定出的三个相互垂直的平面:xOy,yOz,zOx,统称为坐标面.三个坐标面把空间分成八个部分,称为八个卦限,上半空间(z>0)中,从含有x 轴、y轴、z轴正半轴的那个卦限数起,按逆时针方向分别叫做Ⅰ,Ⅱ,Ⅲ,Ⅳ卦限,下半空间(z<0)中,与Ⅰ,Ⅱ,Ⅲ,Ⅳ四个卦限依次对应地叫做Ⅴ,Ⅵ,Ⅶ,Ⅷ卦限(图7-2).图7-2确定了空间直角坐标系后,就可以建立起空间点与数组之间的对应关系.设M为空间的一点,过点M作三个平面分别垂直于三条坐标轴,它们与x轴、y轴、z 轴的交点依次为P、Q、R(图7-3).这三点在x轴、y轴、z轴上的坐标依次为x,y,z.这样,空间的一点M就惟一地确定了一个有序数组(x,y,z),它称为点M的直角坐标,并依次把x,y和z叫做点M的横坐标,纵坐标和竖坐标.坐标为(x,y,z)的点M通常记为M(x,y,z).图7-3反过来,给定了一有序数组(x,y,z),我们可以在x轴上取坐标为x的点P,在y轴上取坐标为y的点Q,在z轴上取坐标为z的点R,然后通过P、Q与R分别作x轴,y轴与z 轴的垂直平面,这三个平面的交点M就是具有坐标(x,y,z)的点(图7-3).从而对应于一有序数组(x,y,z),必有空间的一个确定的点M.这样,就建立了空间的点M和有序数组(x,y,z)之间的一一对应关系.如图7-3所示x轴,y轴和z轴上的点的坐标分别为P(x,0,0),Q(0,y,0),R(0,0,z);xOy面,yOz面和zOx面上的点的坐标分别为A(x,y,0),B(0,y,z),C(x,0,z);坐标原点O的坐标为O(0,0,0).它们各具有一定的特征,应注意区分.二、空间两点间的距离设M1(x1,y1,z1)、M2(x2,y2,z2)为空间两点,为了用两点的坐标来表达它们间的距离d,我们过M1,M2各作三个分别垂直于三条坐标轴的平面.这六个平面围成一个以M1,M2为对角线的长方体(图7-4).根据勾股定理,有图7-4|M 1M 2|2=|M 1N |2+|NM 2|2=|M 1P |2+|M 1Q |2+|M 1R |2.由于|M 1P |=|P 1P 2|=|x 2-x 1|,|M 1Q |=|Q 1Q 2|=|y 2-y 1|,|M 1R |=|R 1R 2|=|z 2-z 1|,所以d =|M 1M 2|=212212212)()()(z z y y x x -+-+-,这就是两点间的距离公式.特别地,点M (x,y,z )与坐标原点O (0,0,0)的距离为d =|OM |=222z y x ++。
-。
b与a的差b a.向量加法的性质〔运算律〕②结合律+的模一般地不等于a的模加b的模,而有a b a ba b+≤+,即三角形两边之和大于等于第三向量与数的乘法Array、向量的定义:向量a与数m的乘积是一个向量,它的模等于m a,方向与a相同〔假设反〔假设m<0〕。
、向量与数量乘法的性质(运算律)②分配律≠,则向量b平行于a得充分必要条件是:存在唯一实数λ,使b=λa。
a0在实际问题中,有些向量与其起点有关,有些向量与其起点无关。
由于一切向量的共性是它们都有大小和方向,所以在数学上我们研究与起点无关的向量,并称这种向量为自由向量〔以后简称向量〕,即只考虑向量的大小和方向,而不管它的起点在什么地方。
当遇到与起点有关的向量时〔例如,谈到某一质点的运动速度时,这速度就是与所考虑的那一质点的位置有关的向量〕,可在一般原则下作特别处理。
上的射影。
投影向量的定义:AB 的始点A B ''就定义AB 在轴u 上的投影向量。
向量在轴上的投影:向量A B ''在轴AB 在轴u 上的投影,记为投影AB 。
向量在轴上的投影性质:性质1〔投影定理〕AB =cos AB ϕ与向量AB 的夹角。
推论:相等矢量在同一轴上的射影相等。
性质2:Prj(12a a +)=Prj 1a +Prj 2a 。
性质2可推广到有限个向量的情形。
性质3:Prj u λa =λPrj u a 。
向量在坐标轴上的分向量与向量的坐标:向量a 在坐标轴上的投影向量,,y z i a j a k 称为向量在坐标轴上的分向量。
向量a 在三条坐标轴上的投影,y z a a 叫做向量的坐标,记为:a ={,,x y a a 由向量在轴上的投影定义,a 在直角坐标系Oxyz 中的坐标{,,x y z a a a a ,由此可知,向量的投影具有与坐标相同的性质。
利用向量的坐标,可得向量的加法、减法以及向量与数的乘法的运算如下:a ={,x y a a ,{,,}x y zb b b b =利用向量加法的交换律与结合律,以及向量与数乘法的结合律与分配律,有{,x y z z a b a b b a b +=+++{x a b a b -=-{,}x y a a a λλλ=由此可见,对向量进行加、减及与数相乘,只须对向量的各个坐标分别进行相应的数量运算就行了。
第一节 空间解析几何与向量代数一、空间直角坐标 (一)空间直角坐标系在空间取定一点O ,和以O 为原点的两辆垂直的三个数轴,依次记作x 轴(横轴)、y 轴(纵轴)、z 轴(竖轴),构成一个空间直角坐标系(图1-1-1)。
通常符合右手规则,即右手握住z 轴,当右手的四个手指从正向x 轴以2π角度转向正向y 轴时,大拇指的指向就是z 轴的正向。
并设i、j 、k 为x轴、y 轴、z 轴上的单位向量,又称为O xyz 坐标系,或[i,j,k]坐标系。
(二)两点间的距离在空间直角坐标系中,M 1(x 1,y 1,z 1)与M 2(x 2,y 2,z 2)之间的距离为()()()221221221z z y y x x d -+-+-=(1-1-1)(三)空间有向直线方向的确定设有一条有向直线L ,它在三个坐标系正向的夹角分别为α、β、γ(πγβα≤≤,,0),称为直线L 的方向角;{γβαcos ,cos ,cos }称为直线L 的方向余弦,三个方向余弦有以下关系1cos cos cos 222=++γβα (1-1-2)二、向量代数 (一)向量的概念空间具有一定长度和方向的线段称为向量。
以A 为起点,B 为终点的向量,记作AB ,或简记作a 。
向量a 的长记作a ,又称为向量a 的模,两向量a和b 若满足:①b a =,②b a //,③b a ,指向同一侧,则称b a=。
与a方向一致的=单位向量记作0a ,则0a =aa。
若0a={γβαcos ,cos ,cos },也即为a的方向余弦。
(二)向量的运算 1.两向量的和以b a,为边的平行四边形的对角线(图1-1-2)所表示的向量c ,称为向量a和b 的和,记作b a c+= (1-1-3)一般说,n 个向量1a ,2a,…,n a 的和可定义如下:先作向量1a ,再以1a 的终点为起点作向量2a,…,最后以向量1-n a 的终点为起点作向量n a,则以向量1a的起点为起点、以向量n a 的终点为终点的向量b 称为1a ,2a,…,n a 的和,即 n a a a b+++=21(1-1-4) 2.两向量的差设a 为一向量,与a 的模相同,而方向相反的向量叫做a 的负向量,记作a -,规定两个向量a和b 的差为()ba b a-+=- (1-1-5)3.向量与数的乘法设λ是一个数,向量a 和λ的乘积a λ规定为:当λ>0时,a λ表示一个向量,它的方向与a 的方向相同,它的模等于a 的λ倍,即a a λλ=;当λ=0时,aλ是零向量,即0=aλ; 当λ<0时,a λ表示一个向量,它的方向与a的方向相反,它的模等于a 的λ倍,即a a λλ=。
高等数学向量代数与空间解析几何总结高等数学是大学数学学科的一门重要基础课程,其中向量代数与空间解析几何是其重要的内容之一、本文将对向量代数与空间解析几何的主要内容进行总结,让我们一起来了解一下吧!向量代数是研究向量的代数性质和运算法则的数学分支,旨在通过研究向量的各种运算进行分析与求解问题。
空间解析几何则是研究点、线、面等几何对象在三维空间中的位置关系和几何性质的学科。
首先,我们先来了解一下向量代数的基本概念和运算法则。
在向量代数中,向量是具有大小和方向的量,通常用一个有向线段表示。
向量的加法是指两个向量相加,得到一个新的向量,其结果是由两个向量的平行四边形法则确定的。
向量的乘法有数量乘法和点乘法两种形式。
数量乘法是指数与向量相乘,得到一个新的向量,其长度与原向量的长度相乘,方向与原向量相同或相反。
点乘法是指两个向量进行点乘,得到一个实数结果,其大小等于两个向量的长度相乘再乘以它们的夹角的余弦值,方向与夹角为锐角的原向量相同,为钝角时与原向量相反。
向量代数的运算法则包括交换律、结合律和分配律。
接下来,我们来了解一下空间解析几何的基本内容。
空间解析几何主要研究三维空间中的点、直线和平面的位置关系和几何性质。
其中,点是空间中没有大小、没有方向的对象,用坐标表示。
直线是由无数个点组成的无限延伸的几何对象,可以通过两点确定一条直线,也可以通过点和方向向量确定一条直线。
平面是由无数个点组成的无限延伸的几何对象,可以通过三个点确定一个平面,也可以通过点和法向量确定一个平面。
空间解析几何要求我们掌握点与点之间的距离、点与直线之间的关系、直线与直线之间的关系、点与平面之间的关系、直线与平面之间的关系等内容。
对于这些关系,我们可以通过向量的性质和运算进行解决。
在向量代数与空间解析几何中,还有一些重要的概念与定理需要了解。
例如,向量的模长是指向量的长度,可以通过向量的坐标和勾股定理求得。
向量的单位向量是指长度为1的向量,可以通过将向量的坐标除以其模长得到。