数学建模与数学实验:第4讲 综合讲座1
- 格式:ppt
- 大小:392.50 KB
- 文档页数:35
比例建模比例是最基本也是最常用的数学建模方法之一. 在实际应用领域和理论推导过程中, 比例关系往往发挥着至关重要的作用. 例如牛顿第二定律ma F =, 微分公式dx x f x df )()('=等等.一、比例的定义变量y 与x 成比例(x y ∝):)0(>=k kx y . 显然, 比例关系具有反身性, 对称性, 传递性:x x ∝,y x x y ∝⇔∝, z x z y y x ∝⇒∝∝,.比例关系还可推广, 如x e y x y x y ∝∝∝,ln ,α.一般地,)(x f y ∝.实际应用举例:导数: 函数的增量与自变量的增量之比的极限x x f x f ∆∆/)()(=', 当导数大于零时, 在自变量很小时可近似地认为函数的增量与自变量的增量成比例.间谍照片经翻拍, 成为胶片上芝麻大的一点, 剪下后便于隐藏. 其中图形的大小关系显然要利用比例来计算. (华盛顿特区间谍博物馆)生产队的分配比例: 拿1万斤粮食分配给社员家庭, 其中30%按人口比例分配, 70%按工分比例分配, 每家应得的粮食斤数.二、比例的几何表示y 与x 成比例, 即0,>=k kx y , y 的图形为xy 坐标系中过原点的直线. 若)(x f y ∝, 在坐标系中横轴表示f (x ), 纵轴表示y , 这时y 的图形也为直线. 下图为25.0x y =的图形: 注: 比例的图形为直线, 但图形为直线的量未必成比例. 例如42+=x y , y 与x 并不成比例. 但是, 4-y 与x 成比例.著名公式中的比例关系Hooke's law: F = kS (虎克定律: 弹力与形变成正比) Newton's law: F = ma Ohm's law: V = iRBoyle's law: V = k /p (玻尔定律: 常温下一定量的气体体积与压强成反比, 即与压强的倒数成正比)Einstein's theory of relativity: E = c 2MKepler's third law: T = cR 3/2, 开普勒第三定律:T 为行星绕太阳运行的周期, R 为行星到太阳的平均距离.例1 以著名的开普勒第三定律(Kepler's third law)为例进行讨论. 1601年, 德国天文学家Johannes Kepler 成为Prague 天文台的主任. Kepler 曾帮助Tycho Brahe 收集了13年的火星相对运动的资料. 到了1609年, Kepler 建立了他的前两个定律:1. 每个行星沿一个椭圆运动, 太阳位于此椭圆的一个焦点上.2. 对于每个行星, 太阳到此行星的直线在相同的时间里扫过相同的面积.Kepler 花费了许多年推导了这两个定律, 并进而得到了上述的第三定律, 此定律把行星的轨道运行周期和到太阳的平均距离联系了起来. 以下是1993年世界年鉴(World Almanac)给出的资料:表1 行星的轨道周期和到太阳的平均距离行星周期T (天) 平均距离R (百万哩) Mercury 水星 88.0 36 V enus 金星 224.7 67.25 Earth 地球 365.3 93 Mars 火星 687.0 141.75 Jupiter 木星 4331.8 483.80 Saturn 土星 10760.0 887.97 Uranus 天王星 30684.0 1764.50 Neptune 海王星 60188.3 2791.05 Pluto 冥王星90466.83653.90以2/3R 为横坐标, T 为纵坐标, 用Matlab 画出其图形(编制程序为period1.m)如下:可见各点基本上是在过原点的直线2/3cR T =上, 由于各点相对距离相差较大, 前四个点重叠在一起. 把上述方程两边同取对数, 改写为等价的形式R c T ln 23ln ln +=,其图形相当于上述图形中坐标刻度向原点压缩, 在画出上述图形的程序中把画图命令plot(R.^(3/2), T)改为loglog(R.^(3/2), T)即可. 图形如下. 各点仍基本在一条直线上, 体现了ln T 和ln R 间的线性关系, 但直线不过原点, 因为直线在ln P 轴上有截距ln c . c 可用最小二乘法求出为0.4095.若假设αcR T =, 对表1中给出的T 和R 的数据, 用最小二乘法可求出c = 0.4043, α = 1.5016. 这也验证了Kepler 第三定律的正确性.对给定的两组数据{x i }和{y i }, 如何建立它们间的比例关系呢?进行数学实验, 在坐标系中画出点{x i , y i }, 如不是直线或不过原点, 可通过试验, 寻找y 0和函数f (x ), 使{y i - y 0, f (x i )}基本在过原点的直线上, 则有)(0x f y y ∝-. 可供选择的函数类型有)ln(,,ax e x ax a等等.三、比例的应用之一: 几何相似定义: 两个物体称为是几何相似的, 如果在这两个物体的各点之间有一个一一对应, 使得两个物体上所有对应点对距离之比恒为常数.这个常数称为这两个几何相似物体间的比例因子. 若两个物体相似, 其比例因子为k , 则这两个物体的表面积之比为k 2, 体积之比为k 3. 对相似的几何体, 可选取一个所谓特征量纲, 例如, 对圆柱体, 可用其高h , 或底半径r , 直径d , 或底面积S d , 侧面积S c , 表面积S , 或体积V 作为特征量纲. 两个相似几何体的比例因子k 确定后, 不但它们的表面积之比, 体积之比也可得到, 而且所有(不限于两个, 甚至可以是无穷多个)相似几何体的表面积或体积与特征量纲的某次幂的比也为常数. 例如, 若取某个长度l 为特征量纲, 则222'','l l k S S k l l ===, 故有22''l S l S =.由传递性, 对所有相似的几何体, 有常数≡2lS, 2l S ∝.同理有常数≡3lV, 3l V ∝.于是, 如果要考查一个依赖于物体长度, 表面积和体积的函数, 比如),,(V S l f y =,则可通过选择特征量纲, 例如l , 把此函数表为),,(32l l l g y =.例2 从静止的云上落下的雨滴. 假设雨滴从具有足够高度的静止的云上落下, 雨滴在下落过程中受到两个力的作用: 竖直向下的重力F g 和竪直向上的空气阻力F d . 由流体力学的原理知, 可设空气阻力F d 与雨滴的表面积S 和下落速度v 的平方的乘积成正比; 而重力F g 与雨滴的质量m 成正比(假设在涉及的高度内重力加速度为常数), 因此也与其体积V 成正比. 雨滴下落过程中, 随着下落速度v 的增加, 阻力F d 也在增加, 但重力F g 保持不变. 因此下落一段时间后, 阻力F d 与重力F g 达到平衡, 雨滴受到的合力为零, 保持匀速下落. 这时,d g F F =. 再假设所有的雨滴都是几何相似的, 有23,l S l V ∝∝, 从而3/23/2m V S ∝∝. 由于m F ∝g ,23/22v m Sv F ∝∝d , 且d g F F =, 得23/2v m m ∝,化简得6/1m v ∝, 或6/1km v =,即雨滴最终保持匀速下落的速度与其质量的六次方根成正比. 又一解法:0,023/2=-=-==t d g v v km mg F F dtdv, .)2(,0)1(23/2v kmmg k ≥>其中分离变量解得vk m g v k m g m kg t -+=6/16/16/5ln 21, 上式左端趋于无穷大, 并由条件(1), (2)有)(06/1∞→+→-t v k m g ,即在极限状态下,6/1m v ∝.。
数学建模专题材料1 数学建模是什么简而言之,数学建模就是用数学的方法解决实际问题。
当我们遇到一个实际问题时,首先对其进行分析,把其中的各种关系用数学的语言描述出来。
这种用数学的语言表达出来的问题形式就是数学模型。
一旦得到了数学模型,我们就将解决实际问题转化成了解决数学问题。
然后,就是选择合适的数学方法解决各个问题,最后将数学问题的结果作为实际问题的答案。
当然,这一结果与实际情况可能会有一些差距,所以我们就要根据实际情况对模型进行修改完善,重新求解,直至得到满意的结果。
实际上,数学建模对于同学们来讲并不是全新的事物,在中小学阶段做的数学应用题就是数学建模的简单形式。
现在,同学们学习了许多高等数学知识,所面临就是要用高等数学的知识和方法,并借助计算机来解决更接近实际的规模较大的问题。
所以参加数学建模活动是一个很有意义的科研实践机会,同时会让你认识到高等数学在实际生活中的巨大作用,提高学习数学的积极性。
2 数学建模的应用今天,在国民经济和社会活动的以下诸多方面,数学建模都有着非常具体的应用。
分析与设计例如描述药物浓度在人体内的变化规律以分析药物的疗效;建立跨音速空气流和激波的数学模型,用数值模拟设计新的飞机翼型。
预报与决策生产过程中产品质量指标的预报、气象预报、人口预报、经济增长预报等等,都要有预报模型。
使经济效益最大的价格策略、使费用最少的设备维修方案,是决策模型的例子。
控制与优化电力、化工生产过程的最优控制、零件设计中的参数优化,要以数学模型为前提。
建立大系统控制与优化的数学模型,是迫切需要和十分棘手的课题。
规划与管理生产计划、资源配置、运输网络规划、水库优化调度,以及排队策略、物资管理等,都可以用运筹学模型解决。
3 数学建模的意义数学,作为一门研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和人们生活的实际需要密切相关的。
作为用数学方法解决实际问题的第一步,数学建模自然有着与数学同样悠久的历史。
P594•学校共1002名学生,237人住在A 宿舍,333人住在B 宿舍,432 人住在C 宿舍。
学生要组织一个10人的委员会,使用Q 值法分配各 宿舍的委员数。
解:设P 表示人数,N 表示要分配的总席位数。
i 表示各个宿舍(分别取 A,B,C ), p i 表 示i 宿舍现有住宿人数, n i 表示i 宿舍分配到的委员席位。
首先,我们先按比例分配委员席位。
23710 A 宿舍为:n A ==2.365 1002 333"0 B 宿舍为:n B =3.323 1002 432X0 C 宿舍为:n C =4.3111002现已分完9人,剩1人用Q 值法分配。
经比较可得,最后一席位应分给 A 宿舍。
所以,总的席位分配应为: A 宿舍3个席位,B 宿舍3个席位,C 宿舍4个席位。
QA23722 3= 9361.5 Q B33323 4 = 9240.7 Q C4322 4 5=9331.2商人们怎样安全过河傻麴删舫紬削< I 11山名畝臥蹄峨颂禮训鋤嫌邂 韻靖甘讹岸讎鞍輯毗匍趾曲展 縣確牡GH 錚俩軸飙奸比臥鋪謎 smm 彌鯉械即第紘麵觎岸締熾 x^M 曲颁M 删牘HX …佛讪卜过樹蘇 卜允棘髒合 岡仇卅毘冋如;冋冋1卯;砰=口 於广歎煙船上觸人敦% V O J U;xMmm朗“…他1曲策D 咿川| thPl,2卜允隸策集合 刼為和啊母紳轉 多步贱 就匚叫=1入“山使曲并按 腿翻律由汩3』和騒側),模型求解 -穷举法〜编程上机 ■图解法S={(x ?jOI x=o, j-0,1,2,3;X =3? J =0,1,2,3; X =»*=1,2}J规格化方法,易于推广考虑4名商人各带一随从的情况状态$=(xy¥)~ 16个格点 允许状态〜U )个。
点 , 允许决策〜移动1或2格; k 奇)左下移;&偶,右上移. 右,…,必I 给出安全渡河方案评注和思考[廿rfn片,rfl12 3xmm賤縣臓由上题可求:4个商人,4个随从安全过河的方案。
《数学建模与数学探究》试卷(答案在后面)一、单选题(本大题有8小题,每小题5分,共40分)1、数学建模的一般步骤是以下哪一个顺序?A、模型假设、模型准备、模型求解、模型应用B、模型准备、模型假设、模型求解、模型应用C、模型准备、模型求解、模型假设、模型应用D、模型求解、模型假设、模型准备、模型应用2、下列函数中属于偶函数的是:A.(f(x)=x2+1)B.(f(x)=x3+2))C.(f(x)=1xD.(f(x)=√x2)3、在解决实际问题时,以下哪个选项不属于数学建模的基本步骤?A、建立数学模型B、求解数学模型C、分析结果并验证模型的有效性D、收集数据,进行实验研究4、在建立数学模型时,如果模型的结果与实际情况存在较大的偏差,首先应该()A、直接放弃该模型B、检查数据的准确性和完整性C、重新设定模型参数D、改变模型的数学方法5、已知某地区某种疾病的发病率是0.001,该疾病检测的准确率为99%,即若一个人患病,则检测呈阳性的概率为99%;若未患病,检测结果呈阴性的概率也是99%。
现有一人检测结果为阳性,求此人确实患有该病的概率是多少?A. 99%B. 50%C. 9.9%D. 0.99%6、某学校为了加强学生的环保意识,计划在每个教室种植5株不同种类的植物。
如果学校共有32个教室,且学校已经有200株植物备用,那么还需要从市场上采购多少株植物才能满足需求?A. 30株B. 40株C. 50株D. 60株7、假设一个电子工厂生产一种新型手机,已知每生产一部手机的直接成本为300元,固定成本(包括管理费用、折旧等)为每月5000元。
如果每月生产制品500部,那么每部手机的利润是多少元?A. 200元B. 250元C. 300元D. 350元8、已知某商品的成本函数为(C(x)=0.05x2+3x+200),其中(x)代表生产数量(单位:件)。
如果每件商品的售价为(P=100−0.1x)元,那么为了获得最大利润,应该生产多少件商品?A. 100B. 150C. 200D. 250二、多选题(本大题有3小题,每小题6分,共18分)1、以下哪些是数学建模的基本步骤?A、提出问题B、建立模型C、分析模型D、求解模型E、检验与改进2、在数学建模过程中,选择合适的参数至关重要。