2022-2021学年高二数学人教A必修5学案:3.3.2 简单的线性规划问题 (一)
- 格式:docx
- 大小:807.64 KB
- 文档页数:7
3.3.2简单的线性规划问题(2)一、设计问题,创设情境练习1:(1)作出不等式组表示的平面区域(如图阴影部分),即可行域.将z1=x+y变形为y=-x+z1,这是斜率为-1、随z1变化的一簇平行直线. z1是直线在y轴上的截距.当然直线要与可行域相交,即在满足约束条件时目标函数z1=x+y取得最值.由图可见,当直线z1=x+y经过可行域上的点B时,截距z1最小.解方程组得B点的坐标为x=,y=.所以z1的最小值为.同理,当直线z1=x+y与可行域的边界x+y=6重合时,z1最大为6.(2)同理将z2=3x+y化为y=-3x+z2,这是斜率为-3的一簇平行直线.如图所示,当它过可行域上的点A(0,6)时,z2最小为6.(3)同理将z3=x+4y化为y=-x+,它是斜率为-的一簇直线.如图所示,当直线经过可行域上的点C时,最大,即z3最大.解方程组得点C的坐标为x=,y=.所以z3的最小值为.问题1:是目标函数对应的直线的斜率与可行域中边界对应的直线的斜率的大小关系不同导致的.练习2:解:z=ax+y可化为y=-ax+z,因为z=ax+y在可行域中的点B处取得最小值,所以,直线z=ax+y与可行域只有一个公共点B或与边界AB重合,或与边界BC重合.因此-2≤-a≤-.所以实数a的取值范围是.练习3:学生探究一:可以把可行域中的所有“整点”都求出来.求这些最优解时,可根据可行域对x的限制条件,先令x去整数,然后代入到可行域,求出y的范围,并进一步求出y 的整数值.学生探究二:由于x,y∈N,则必有x+y∈N.又因为当x=,y=时,z1的最小值为,且直线z1=x+y应该向上方(或右方,或右上方)移动,所以相应的z1的值大于.所以令z1=x+y=5,即y=-x+5,代入得即1≤x≤3,所以当或时,z1取得最小值5.问题2:结合等量关系,将“二元”问题转化为“一元”问题求解.当可行域范围较小,包含的整点个数很少时,方法一比较简洁;反之,方法二较为简洁.二、运用规律,解决问题【例题】解:设需截第一种钢板x张,第二种钢板y张,则用图形表示以上限制条件,得到如图所示的平面区域(阴影部分).由题意,得目标函数为z=x+y.可行域如图所示.把z=x+y变形为y=-x+z,得到斜率为-1、在y轴上截距为z的一族平行直线.由图可以看出,当直线z=x+y经过可行域上的点M时,截距z最小.解方程组得点M.而此问题中的x,y必须是整数,所以M不是最优解.经过可行域内整点且使截距z 最小的直线是y=-x+12,经过的整点是B(3,9)和C(4,8),它们是最优解.z min=12.答:要解得所需三种规格的钢板,且使所截两种钢板张数最小的方法有两种,第一种截法是第一种钢板3张,第二种钢板9张;第二种截法是第一种钢板4张,第二种钢板8张.两种截法都最少要两种钢板12张.问题3:规律:(1)找出实际问题中的数量关系,根据数量关系设出合理的两个变量x,y;(2)用x,y表示实际问题中的数量关系,得到线性约束条件和目标函数;(3)用图解法解答线性规划问题的最优解,必要时要探求“整点”;(4)用最优解作答实际问题.四、变式训练,深化提高变式训练1:解:设每天食用x kg食物A,y kg食物B,总成本为z,那么可化为目标函数为z=28x+21y.作出不等式组表示的平面区域,即可行域.平移直线z=28x+21y知,当直线经过表示的点时,z min=28×+21×=16.答:每天食用食物A约143g,食物B约571g,能够满足日常饮食要求,又使花费最低,最低成本为16元.问题4:条件中的不等式组对应平面区域;图形;数形结合;也和图形结合起来;表示可行域内的点(x,y)与原点(0,0)连线的斜率;表示可行域内的点(x,y)与点(0,3)的距离.变式训练2:解析:如图所示,可行域内的点(x,y)与原点(0,0)连线是介于直线OC和y轴之间,根据斜率的变化规律,直线OC的斜率最小为,所以的最小值为表示可行域内的点(x,y)与点P(0,3)的距离,所以结合图形可以知道点P到直线AB的距离就是的最小值为.答案:五、反思小结,观点提炼问题5:数形结合;平移直线时,要根据目标函数对应直线的斜率确定该直线与可行域边界直线的相对位置关系;在图形变化的过程中,寻求对应的斜率的变化范围,等等.当堂检测:1. 完成一项装修工程,请木工需付工资每人50元,请瓦工需付工资每人40元,现有工人工资预算2000元,设木工x人,瓦工y人,请工人的约束条件是(). A.50402000x y+=B.50402000x y+≤C.50402000x y+≥D.40502000x y+≤2. 已知,x y满足约束条件0403280,0xyx yx y≤≤⎧⎪≤≤⎪⎨+≤⎪⎪≥≥⎩,则25z x y=+的最大值为().A.19 B.18 C.17 D.163. 变量,x y满足约束条件232421229360,0x yx yx yx y+≥⎧⎪+≥⎪⎨+≥⎪⎪≥≥⎩则使得32z x y=+的值的最小的(,)x y是().A.(4,5)B.(3,6)C.(9,2)D.(6,4)4.已知实数,x y满足约束条件240220330x yx yx y-+≥⎧⎪+-≥⎨⎪--≤⎩则目标函数2z x y=+的最大值为______________5.设变量,x y满足约束条件3023x yx yx-+≥⎧⎪+≥⎨⎪-≤≤⎩则目标函数2x y+的最小值为______________。
3.3.2 简单的线性规划问题-----学案一、学习目标1.了解线性规划的意义,以及约束条件、目标函数、可行解、可行域,最优解等基本概念.(重点)2.理解并初步运用线性规划的图解法解决一些实际问题.(重点、难点) 3.理解目标函数的最大、小值与其对应直线的截距的关系.(易混点) 二、自主学习教材整理1 线性规划中的基本概念阅读教材P 87~P 88探究,完成下列问题.1.(1)可行域是一个封闭的区域.( )(2)在线性约束条件下,最优解是唯一的.( )(3)最优解一定是可行解,但可行解不一定是最优解.( ) (4)线性规划问题一定存在最优解.( )【解析】 (1)错误.可行域是约束条件表示的平面区域,不一定是封闭的.(2)错误.在线性约束条件下,最优解可能有一个或多个,也可能有无数个,也可能无最优解,故该说法错误.(3)正确.满足线性约束条件的解称为可行解,但不一定是最优解,只有使目标函数取得最大值或最小值的可行解,才是最优解,所以最优解一定是可行解.(4)错误.线性规划问题不一定存在可行解,存在可行解也不一定存在最优解,故该说法是错误的.【答案】 (1)× (2)× (3)√ (4)×教材整理2 简单的线性规划阅读教材P 88例5~P 90例7,完成下列问题. 线性目标函数的最值线性目标函数z =ax +by (b ≠0)对应的斜截式直线方程是y =-a b x +z b ,它表示斜率为-ab,在y 轴上的截距是zb的一条直线,当z 变化时,方程表示一组互相平行的直线.当b >0,截距最大时,z 取得最大值,截距最小时,z 取得最小值; 当b <0,截距最大时,z 取得最小值,截距最小时,z 取得最大值.1.若⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤1,则z =x -y 的最大值为________.【解析】 根据题意作出不等式组所表示的可行域如图阴影部分所示.令z =0,作直线l :y -x =0.当直线l 向下平移时,所对应的z =x -y 的函数值随之增大,当直线l 经过可行域的顶点M 时,z =x -y 取得最大值.顶点M 是直线x +y =1与直线y =0的交点,解方程组⎩⎪⎨⎪⎧x +y =1,y =0,得顶点M 的坐标为(1,0),代入z =x -y ,得z max =1.【答案】 1 三、合作探究探究1:求线性目标函数的最值问题例1 (1)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥1,y -x ≤1,x ≤1,则z =2x -y 的最小值为( )A .-1B .0C .1D .2(2)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≤2,x +y ≥0,x ≤4,则z =2x +3y 的最大值为( )A .2B .5C .8D .10(3)变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥0,x -2y +2≥0,mx -y ≤0,若z =2x -y 的最大值为2,则实数m 等于( )A .-2B .-1C .1D .2【精彩点拨】 按照线性规划的求解步骤进行求解. 【自主解答】 (1)画出可行域如图中阴影部分所示.由z =2x -y 得y =2x -z ,平移直线2x -y =0,当直线过A 点时,z 取得最小值. 由⎩⎪⎨⎪⎧ x +y =1,y -x =1,得⎩⎪⎨⎪⎧x =0,y =1, ∴A (0,1).∴当x =0,y =1时,z min =2×0-1=-1,故选A.(2)法一:画出可行域如图所示.由z =2x +3y ,得y =-23x +z 3,欲求z 的最大值,可将直线y =-23x 向上平移,易知当经过B 点时截距最大,即z 取得最大值.由⎩⎪⎨⎪⎧ x =4,x +2y =2,得⎩⎪⎨⎪⎧x =4,y =-1,故B (4,-1),则z max =2×4+3×(-1)=5.故选B.法二:画出可行域如图所示.分别求出点A (-2,2),点B (4,-1),点C (4,-4),代入z =2x +3y 得z 的值依次为2,5,-4,故z =2x +3y 的最大值为5.故选B.(3)对于选项A ,当m =-2时,可行域如图(1),直线y =2x -z 的截距可以无限小,z 不存在最大值,不符合题意,故A 不正确;对于选项B ,当m =-1时,mx -y ≤0等同于x +y ≥0,可行域如图(2),直线y =2x -z 的截距可以无限小,z 不存在最大值,不符合题意,故B 不正确;对于选项C ,当m =1时可行域如图(3),当直线y =2x -z 过点A (2,2)时截距最小,z 最大为2,满足题意,故C 正确;对于选项D ,当m =2时,可行域如图(4),直线y =2x -z 与直线2x -y =0平行,截距最小值为0,z 最大为0,不符合题意,故D 不正确.故选C.【答案】 (1)A (2)B (3)C归纳总结:1.解线性规划问题的一般步骤(1)画:在直角坐标平面上画出可行域和直线ax +by =0(目标函数为z =ax +by ); (2)移:平行移动直线ax +by =0,确定使z =ax +by 取得最大值或最小值的点; (3)求:求出取得最大值或最小值的点的坐标(解方程组)及最大值和最小值; (4)答:给出正确答案.2.一般地,对目标函数z =ax +by ,若b >0,则纵截距与z 同号,因此,纵截距最大时,z 也最大;若b <0,则纵截距与z 异号,因此,纵截距最大时,z 反而最小.探究2:非线性目标函数的最优解问题例2. 变量x ,y 满足⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y -25≤0,x ≥1.(1)设z =yx,求z 的最小值;(2)设z =x 2+y 2,求z 的取值范围.【精彩点拨】 (1)①式子z =yx可进行怎样的改写?②y -0x -0表示的几何意义是什么? ③当倾斜角是锐角时,斜率与倾斜角的大小关系是什么? (2)①代数式x 2+y 2可以怎样进行改写? ②x 2+y 2的几何意义是什么?【自主解答】 由约束条件⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y -25≤0,x ≥1,作出(x ,y )的可行域如图所示.由⎩⎪⎨⎪⎧x =1,3x +5y -25=0,解得A ⎝⎛⎭⎫1,225.由⎩⎪⎨⎪⎧x =1,x -4y +3=0,解得C (1,1),由⎩⎪⎨⎪⎧x -4y +3=0,3x +5y -25=0,解得B (5,2).(1)∵z =y x =y -0x -0,∴z 的值即是可行域中的点与原点O 连线的斜率.观察图形可知z min =k OB =25.(2)z =x 2+y 2的几何意义是可行域中的点到原点O 的距离的平方.结合图形可知,可行域中的点到原点的距离中,d min =|OC |=2,d max =|OB |=29,∴2≤z ≤29.归纳总结:1.利用线性规划求最值,关键是理解线性目标函数的几何意义,从本题的求解过程可以看出,最优解一般在可行域的边界上,并且通常在可行域的顶点处取得,所以作图时要力求准确.2.非线性目标函数的最值的求解策略(1)z =(x -a )2+(y -b )2型的目标函数可转化为点(x ,y )与点(a ,b )距离的平方,特别地,z =x 2+y 2型的目标函数表示可行域内的点到原点的距离的平方.(2)z =y -b x -a 型的目标函数可转化为点(x ,y )与点(a ,b )连线的斜率.(3)z =|Ax +By +C |可转化为点(x ,y )到直线Ax +By +C =0的距离的A 2+B 2倍.:探究3:利用线性规划解决实际问题某公司有60万元资金,计划投资甲、乙两个项目,按要求对项目甲的投资不小于对项目乙投资的23倍,且对每个项目的投资不能低于5万元.探究1 设投资甲、乙两个项目的资金分别为x 、y 万元,那么x 、y 应满足什么条件?【提示】 ⎩⎨⎧x +y ≤60,x ≥23y ,x ≥5,y ≥5.探究2 若公司对项目甲每投资1万元可获得0.4万元的利润,对项目乙每投资1万元可获得0.6万元的利润,设该公司所获利润为z 万元,那么z 与x ,y 有何关系?【提示】 根据公司所获利润=投资项目甲获得的利润+投资项目乙获得的利润,可得z 与x ,y 的关系为z =0.4x +0.6y .探究3 x ,y 应在什么条件下取值,x ,y 取值对利润z 有无影响?【提示】 x ,y 必须在线性约束条件⎩⎨⎧x +y ≤60,x ≥23y ,x ≥5,y ≥5下取值.x ,y 取不同的值,直接影响z 的取值.例3. 某人承揽一项业务,需做文字标牌4个,绘画标牌5个.现有两种规格的原料,甲种规格每张3 m 2,可做文字标牌1个,绘画标牌2个;乙种规格每张2 m 2,可做文字标牌2个,绘画标牌1个,求两种规格的原料各用多少张,才能使得总用料面积最小.【精彩点拨】 可先设出变量,建立目标函数和约束条件,转化为线性规划问题来求解. 【自主解答】 设需要甲种原料x 张,乙种原料y 张,则可做文字标牌(x +2y )个,绘画标牌(2x +y )个,由题意可得⎩⎪⎨⎪⎧2x +y ≥5,x +2y ≥4,x ≥0,y ≥0,x ,y ∈N ,所用原料的总面积为z =3x +2y ,作出可行域如图.在一组平行直线z =3x +2y 中,经过可行域内的点且到原点距离最近的直线过直线2x +y =5和直线x +2y =4的交点(2,1),∴最优解为x =2,y =1,∴使用甲种规格原料2张,乙种规格原料1张,可使总的用料面积最小.归纳总结:解答线性规划应用题的一般步骤(1)审题——仔细阅读,对关键部分进行“精读”,准确理解题意,明确有哪些限制条件,起关键作用的变量有哪些.由于线性规划应用题中的比较多,为了理顺题目中量与量之间的关系,有时可借助表格来理顺.(2)转化——设元.写出约束条件和目标函数,从而将实际问题转化为数学上的线性规划问题.(3)求解——解这个纯数学的线性规划问题. (4)作答——就应用题提出的问题作出回答. 四、学以致用1.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧4x +5y ≥8,1≤x ≤3,0≤y ≤2,则z =3x +2y 的最小值为( )A .4 B.235 C .6D.315【解析】 不等式组⎩⎪⎨⎪⎧4x +5y ≥8,1≤x ≤3,0≤y ≤2,表示的平面区域为如图所示的阴影部分,作直线l 0:3x+2y =0,平移直线l 0,当经过点A 时,z 取得最小值.此时⎩⎪⎨⎪⎧x =1,4x +5y =8,∴A ⎝⎛⎭⎫1,45,∴z min =3×1+2×45=235. 【答案】 B2.若x ,y 满足⎩⎪⎨⎪⎧x -y ≤0,x +y ≤1,x ≥0,则z =x +2y 的最大值为( )A .0B .1C.32D .2 【解析】 作出不等式组所表示的平面区域,如下图.作直线x +2y =0,向右上平移,当直线过点A (0,1)时,z =x +2y 取最大值,即z max =0+2×1=2.【答案】 D3.设x ,y 满足条件⎩⎪⎨⎪⎧x -y +5≥0,x +y ≥0,x ≤3.(1)求u =x 2+y 2的最大值与最小值;(2)求v =yx -5的最大值与最小值.【解】 画出满足条件的可行域如图所示,(1)x 2+y 2=u 表示一组同心圆(圆心为原点O ),且对同一圆上的点x 2+y 2的值都相等,由图可知:当(x ,y )在可行域内取值时,当且仅当圆O 过C 点时,u 最大,过(0,0)时,u 最小.又C (3,8),所以u max =73,u min =0.(2)v =yx -5表示可行域内的点P (x ,y )到定点D (5,0)的斜率,由图可知,k BD 最大,k CD最小,又C (3,8),B (3,-3),所以v max =-33-5=32,v min =83-5=-4.4.某厂拟用集装箱托运甲、乙两种货物,集装箱的体积、重量、可获利润和托运能力限制【解】 设甲货物托运x 箱,乙货物托运y箱,利润为z ,由题意得⎩⎪⎨⎪⎧5x +4y ≤24,2x +5y ≤13,x ≥0,y ≥0,x ∈N ,y ∈N .z=20x +10y ,作出可行域如图所示,作直线l :20x +10y =0,当直线z =20x +10y 经过可行域上的点A 时,z 最大,又A (4.8,0)不是整点,解方程组⎩⎪⎨⎪⎧5x +4y =24,2x +5y =13,得点B (4,1)为整点.所以甲货物托运4箱,乙货物托运1箱,可获得最大利润.五、自主小测1.z =x -y 在⎩⎪⎨⎪⎧2x -y +1≥0,x -2y -1≤0,x +y ≤1的线性约束条件下,取得最大值的可行解为( )A .(0,1)B .(-1,-1)C .(1,0)D.⎝⎛⎭⎫12,122.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤1,x -y ≤1,x +1≥0,则z =x +2y 的最小值为( )A .3B .1C .-5D .-63.已知实数x ,y 满足⎩⎪⎨⎪⎧y ≤2x ,y ≥-2x ,x ≤3,则目标函数z =x -2y 的最小值是_____.4.已知点P (x ,y )的坐标满足条件⎩⎪⎨⎪⎧x +y ≤4,y ≥x ,x ≥1,点O 为坐标原点,那么|PO |的最小值等于________,最大值等于________.5.某公司租赁甲、乙两种设备生产A 、B 两类产品,甲种设备每天能生产A 类产品5件和B 类产品10件,乙种设备每天能生产A 类产品6件和B 类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费为300元.现该公司至少要生产A 类产品50件,B 类产品140件,所需租赁费最少为多少元?参考答案1.【解析】 可以验证这四个点均是可行解,当x =0,y =1时,z =-1;当x =-1,y =-1时,z =0;当x =1,y =0时,z =1;当x =12,y =12时,z =0.排除选项A ,B ,D ,故选C.【答案】 C2.【解析】 由约束条件作出可行域如图:由z =x +2y 得y =-12x +z 2,z 2的几何意义为直线在y 轴上的截距,当直线y =-12x +z2过直线x =-1和x -y =1的交点A (-1,-2)时,z 最小,最小值为-5,故选C.【答案】 C3.【解析】 不等式组表示的平面区域如下图中阴影部分所示.目标函数可化为y =12x-12z ,作直线y =12x 及其平行线,知当此直线经过点A 时,-12z 的值最大,即z 的值最小.又A 点坐标为(3,6),所以z 的最小值为3-2×6=-9.【答案】 -94.【解析】 点P (x ,y )满足的可行域为△ABC 区域,A (1,1),C (1,3). 由图可得,|PO |min =|AO |=2;|PO |max =|CO |=10.【答案】 2 105.【解】 设需租赁甲种设备x 台,乙种设备y 台, 租赁费z 元,由题意得⎩⎪⎨⎪⎧5x +6y ≥50,10x +20y ≥140,x ,y ≥0且x ,y ∈N ,z =200x +300y .作出如图所示的可行域.令z =0,得l 0:2x +3y =0,平移l 0可知,当l 0过点A 时,z 有最小值.又由⎩⎪⎨⎪⎧5x +6y =50,10x +20y =140,得A 点坐标为(4,5).所以z min =4×200+5×300=2 300.答:该公司至少要生产A 类产品50件,B 类产品140件,所需租赁费最少为2 300元.。
《简单的线性规划问题》教学设计一、教学内容解析线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,是辅助人们进行科学管理的数学方法,为合理地利用有限的人力、物力、财力等资源作出最优决策。
本节的教学重点是线性规划问题的图解法。
数形结合和化归思想是研究线性约束条件下求线性目标函数的最值问题的数学理论和方法,本节课重点体现了这一数学思想,将目标函数与直线的截距、斜率、两点距离联系起来,这样就能使学生对数形结合思想的理解和应用更透彻,为以后解析几何的学习和研究奠定了基础,使学生从更深层次地理解“以形助数”的作用。
二、教学目标设置(1)知识与技能:使学生了解线性规划的意义,利用数形结合及化归的数学方法,理解并掌握非线性目标函数及非线性约束条件下目标函数的最值求法;(2)过程与方法:在实验探究的过程中,培养学生的数据分析能力、探究能力、合情推理能力;在应用图解法解题的过程中,培养学生运用数形结合思想解题的能力;(3)情态、态度与价值观:激发学生动手操作、勇于探索的精神,培养学生发现问题、分析问题及解决问题的能力,体会数学活动充满着探索与创造。
三、教学重点难点教学重点:求非线性目标函数的最值;教学难点:能将代数问题转化为斜率或距离等几何问题;四、学情分析本节课学生在学习了简单线性规划问题的基础上,会画出平面区域,并且会计算简单线性目标函数的最值。
从数学知识上看,学生在此基础上还学习过直线的斜率,两点距离问题,直线与圆的位置关系,具备本节课所需知识要素。
从数学方法上看,学生对图解法的认识还很少,数形结合的思想方法的掌握还需时日,这成了学生学习的困难。
五、教学方法本课以例题为载体,以学生为主体,以数学实验为手段,以问题解决为目的,激发学生动手操作、观察思考、猜想探究的兴趣。
注重引导帮助学生充分体验“从具体到一般”的抽象过程。
应用“数形结合”的思想方法,培养学生学会分析问题,解决问题的能力。
六、教学过程。
线性规划一、教学目标:1.会用不等式〔组〕表示不等关系;2.熟悉不等式的性质,能应用不等式的性质求解“范围问题〞,会用作差法比拟大小;3.会解一元二次不等式,熟悉一元二次不等式、一元二次方程和二次函数的关系;二、教学重点:不等式性质的应用,用二元一次不等式〔组〕表示平面区域,求线性目标函数在线性约束条件下的最优解。
三、教学难点:利用不等式加法法那么及乘法法那么解题,求目标函数的最优解。
.四、教学过程:教学过程设计意图一、复习复习直线及二元一次不等式所表示的平面区域的画法复习、预习作业相结合养成学生好的学习习惯二、探究简单的线性规划问题的过程1.本节课巧妙运用经典故事引入,利用导学案和预习作业做铺垫让学生轻松进入;2.利用Excel软件进行随机点名使每位学生积极思考、探索,利用smart交互性创造良好的互动课堂;3.运用几何画板软件模拟整个运动过程,形象、生动产生良好效果;4.小博士出题环节让学生主动参与出题,积极性高,趣味性强使学生成为课堂的主人;5.小组竞赛测试相关高考题,使学生积极备战有张有弛,比赛环节不仅学到了东西而且轻松快乐。
让学生对照二元一次不等式平面区域的画法,画二元一次不等式组的平面区域三、简单线性规划问题的解题步骤简单线性规划问题的解题步骤:1.找〔约束条件〕让学生熟悉解题思想,解题步骤。
观察几何画板软件,对图形有深刻的了解,2.画〔可行域、目标函数〕3.移〔平移目标函数寻找最值〕4.解〔写解题过程〕加深印象。
四、高考典例分析、小组竞赛高考典例:通过练习使学生不仅能够感受高考的脉搏而且加深理解会画图列式,求解线性规划的题四、小博士出题让学生主动参与进来,提高学生兴趣,活泼课堂,编一个数学小故事,增加互动通过变式训练,和自己出题五、小结与作业1.小结〔1〕线性规划题解题思路步骤;〔2〕画平面区域的方法;〔3〕感受高考,充分理解题意,会解题2.作业:同步导学P42-43回忆本节课的内容;布置作业,稳固学习效果。
《如何让“线性规划”不失分》教学设计一、教学内容高三二轮复习内容:如何让“线性规划”不失分。
二、课标要求了解二元一次不等式所表示的平面区域;了解线性规划的意义,并会简单的应用.三、教学目标(一)知识与技能目标准确确定二元一次不等式表示的平面区域;了解线性规划意义,并会简单的运用。
(二)过程与方法目标提高学生的作图能力、实际应用能力,培养学生运动变化的数学思维。
(三)情感、态度与价值观目标渗透集合、数形结合、化归的数学思想,培养学生“数形结合”的应用数学的意识;激发学生的学习兴趣。
四、教学重难点1.教学重点:能准确确定二元一次不等式表示的平面区域;会求线性规划的最优解.2.教学难点:如何将简单的线性规划问题转化为求直线在y轴上的截距问题,并给出解答。
五、学情分析高三(3)班是文科慢班,班上学生由本年级基础差、底子薄的学生组成,学生基础知识掌握不扎实,完成作业困难较大,因此,在教学中我删除了中等偏难的题目,选择学生能够理解、听懂的题目。
本轮复习中以基础知识为主,打好基础,为第二轮学习做好准备。
六、教学过程(一)题型分析·高考展望“线性规划”是高考每年必考的内容,主要以选择题、填空题的形式考查,题目难度大多数为低、中档,在填空题中出现时难度稍高.二轮复习中,要注重常考题型的反复训练,注意研究新题型的变化点,争取在该题目上做到不误时,不丢分。
(二)典型例题分析。
题型一 已知约束条件,求线性目标函数的最值例1 若x ,y 满足⎩⎪⎨⎪⎧ 2x -y≤0,x +y≤3,x≥0,则2x +y 的最大值为( )A .0B .3C .4D .5答案 C解析 不等式组表示的可行域如图中阴影部分所示.令z =2x +y ,则y =-2x +z ,作直线2x +y =0并平移,当直线过点A 时,截距最大,即z 取得最大值,由⎩⎪⎨⎪⎧ 2x -y =0,x +y =3,得⎩⎪⎨⎪⎧ x =1,y =2,所以A 点坐标为(1,2),可得2x +y 的最大值为2×1+2=4.点评 (1)确定平面区域的方法:“直线定界,特殊点定域”.(2)线性目标函数在线性可行域中的最值,一般在可行域的顶点处取得,故可先求出可行域的顶点,然后代入比较目标函数的取值即可确定最值.题型二 已知约束条件,求非线性目标函数的最值例2:若x ,y 满足⎩⎪⎨⎪⎧ 2x -y≥0,x +y≤3,x≥0,则2x +y 的最大值为( )A.0B.3C.1D.5答案 C变式1.已知实数x ,y 满足⎩⎪⎨⎪⎧ 2x -y≤0,x +y≤3,x≥0,则x 2+y 2的取值范围是________.答案 ⎣⎢⎢⎡⎦⎥⎥⎤45,13变式2:已知实数x ,y 满足⎩⎪⎨⎪⎧ 2x -y≤0,x +y≤3,x≥0,则(x-2)2+y 2的取值范围是________.变式3.已知实数x ,y 满足⎩⎪⎨⎪⎧2x -y≤0,x +y≤3,x≥0,则y -1x +3的取值范围是________. 变式4.已知实数x ,y 满足⎩⎪⎨⎪⎧ 2x -y≤0,x +y≤3,x≥0,则y -1x-0.5的取值范围是.点评 非线性目标函数的最值,常见的有两种模型:(1)直线的斜率,一般在可行域的顶点处取得最值,故可先求出可行域的顶点,然后代入比较目标函数的取值即可确定最值,但要注意斜率不存在的情形。
3.3.2简单的线性规划问题(2)1. 从实际情境中抽象出一些简单的二元线性规划问题,并加以解决;2. 体会线性规划的基本思想,借助几何直观解决一些简单的线性规划问题.一、课前准备复习1:已知变量,x y满足约束条件4335251x yx yx-≤-⎧⎪+≤⎨⎪≥⎩,设2z x y=+,取点(3,2)可求得8z=,取点(5,2)可求得max 12z=,取点(1,1)可求得min 3z=取点(0,0)可求得0z=,取点(3,2)叫做_________点(0,0)叫做_____________,点(5,2)和点(1,1)__________________复习2:阅读课本P88至P91二、新课导学※学习探究线性规划在实际中的应用:线性规划的理论和方法主要在两类问题中得到应用,一是在人力、物力、资金等资源一定的条件下,如何使用它们来完成最多的任务;二是给定一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务.下面我们就来看看线性规划在实际中的一些应用:※典型例题例1 营养学家指出,成人良好的日常饮食应该至少提供0.075kg的碳水化合物,0.06kg的蛋白质,0.06kg的脂肪,1kg食物A含有0.105kg碳水化合物,0.07kg蛋白质,0.14kg脂肪,花费28元;而1kg食物B含有0.105kg碳水化合物,0.14kg蛋白质,0.07kg脂肪,花费21元. 为了满足营养专家指出的日常饮食要求,同时使花费最低,需要同时食用食物A和食物B多少kg?例2要将两种大小不同的钢板截成A、B、C三种规格,每张钢板可同时截得三种规格的小钢板的块数如下表所示:A、B、C、三种规格成品,且使所用钢板张数最少?变式:第一种钢板为22m,各截这两种钢板多少张,可得所需三种规格的1m,第二种为2成品且所用钢板面积最小?例3 一个化肥厂生产甲乙两种混合肥料,生产1车皮甲肥料的主要原料是磷酸盐4t,硝酸盐18t;生产1车皮乙种肥料的主要原料是磷酸盐1t,硝酸盐15t. 现库存磷酸盐10t,硝酸盐66t,在此基础上生产这两种混合肥料. 若生1车皮甲种肥料能产生的利润为10000元;生产1车皮乙种肥料,产生的利润为5000元. 那么分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?※动手试试练1. 某厂拟生产甲、乙两种适销产品,每件销售收入分别为3000元、2000元. 甲、乙产品都需要在A、B两种设备上加工,在每台A、B设备上加工1件甲设备所需工时分别为1h、2h,加工1件乙和设备所需工时分别为2h、1h,A、B两种设备每月有效使用台时数分别为400h和500h. 如何安排生产可使收入最大?练2. 某家电生产企业根据市场调查分析,决定调整产品生产方案,准备每周(按40个工时计算)生产空调器、彩电、冰箱共120台,且冰箱至少生20台.已知生产这些家电产品每台所需工时和每台产值如下表:(以千元为单位)三、总结提升※学习小结简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示平面区域做出可行域;(3)在可行域内求目标函数的最优解.※知识拓展含绝对值不等式所表示的平面区域的作法:(1)去绝对值,转化为不等式组;(2)采用分零点讨论或分象限讨论去绝对值;(3)利用对称性可避免讨论.※自我评价你完成本节导学案的情况为().A. 很好B. 较好C. 一般D. 较差※当堂检测(时量:5分钟满分:10分)计分:1. 完成一项装修工程,请木工需付工资每人50元,请瓦工需付工资每人40元,现有工人工资预算2000元,设木工x人,瓦工y人,请工人的约束条件是(). A.50402000x y+=B.50402000x y+≤C.50402000x y+≥D.40502000x y+≤2. 已知,x y满足约束条件0403280,0xyx yx y≤≤⎧⎪≤≤⎪⎨+≤⎪⎪≥≥⎩,则25z x y=+的最大值为().A.19 B.18 C.17 D.163. 变量,x y满足约束条件232421229360,0x yx yx yx y+≥⎧⎪+≥⎪⎨+≥⎪⎪≥≥⎩则使得32z x y=+的值的最小的(,)x y是().A.(4,5)B.(3,6)C.(9,2)D.(6,4)4.已知实数,x y满足约束条件240220330x yx yx y-+≥⎧⎪+-≥⎨⎪--≤⎩则目标函数2z x y=+的最大值为______________5.设变量,x y满足约束条件3023x yx yx-+≥⎧⎪+≥⎨⎪-≤≤⎩则目标函数2x y+的最小值为______________电视台应某企业之约播放两套连续剧.其中,连续剧甲每次播放时间为80min,其中广告时间为1min,收视观众为60万;连续剧乙每次播放时间为40min,其中广告时间为1min,收视观众为20万.已知此企业与电视台达成协议,要求电视台每周至少播放6min广告,而电视台每周只能为该企业提供不多于320min的节目时间.如果你是电视台的制片人,电视台每周播映两套连续剧各多少次,才能获得最高的收视率?。
3.3.2简单的线性规划问题一、教学目标:知识与技能:(1)、了解,了解线性约朿条件、(线性)目标函数、线性规划问题、可行解、可行域和最优解等概念;(2)、掌握求解线性规划问题的步骤与方法。
过程与方法:(1)、让学生从实际生活屮发现数学问题,把数学问题与实际生活相结合,培养学生发现问题、提出问题的能力;(2)、在画图的过程中培养学生的分析能力、观察能力、理解能力。
(3)、在目标函数变式训练的中,培养学生的类比能力、探索能力。
(4)、培养学生运用数形结合思想解题的能力和化归能力。
情感、态度与价值观:(1)、把身边的实际问题数学化,让学生品尝学习数学的乐趣。
(2)、培养学生勤于思考、勇于探索的精神;(3)、让学生能用运动与静止的辩证关系处理问题,开拓学生的思维活动。
二.重点难点重点:求解线性规划问题的步骤与方法;难点:如何提高学生分析问题的能力。
三、教材与学情分析本节课内容是在学生学一习了直线与直线方程的关系,初步了解了二元一次不等式(组)的几何意义的基础上,进-步研究用图解法解决线性规划问题,使学生体会数与形的转化过程,逐步形成学生应用几何图形解决代数问题的意识.面对基础饺为薄弱的学生,课堂教学容量不能太大,而本节课内容需要频繁地在代数和几何上转换,学生理解起來相当的艰难.本教学设计力求让学生充分地体验数与形的转化,适当使用多媒体,让学生更直观地理解代数问题的几何形态,感受用“图解法”解决简单的线性规划问题的必要性和有效性,进而掌握解题基本方法和步骤.作为解题的步骤,若老师没有经过仔细斟酌想要把过程表述清楚都有一定难度,更何况是学生,因此,对于刚接触新知识的学生来说必需明确解题的步骤,这样也有助于学生更深入地理解和掌握知识.四、教学方法问题引导,主动探究,启发式教学.五、教学过程(一)导入新课在这堂课,我進备把我去兴农中学参观的一些图片用动画的形式播放给学生看,然后指出借助社会力量办学是教育发展的一个方向,兴农中学是贵州办得不错的一所私立中学,但是办学不是租用儿间教室,招用儿个老师就能解决问题的,必须要考虑到很多具体问题。
一、内容及其解析本节课是《普通高中课程标准实验教科书数学》人教A版必修5第三章《不等式》中《简单的线性规划问题》的第一课时. 主要内容是线性规划的相关概念和简单的线性规划问题的解法.线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法,广泛地应用于军事作战、经济分析、经营管理和工程技术等方面.简单的线性规划指的是目标函数含两个自变量的线性规划,其最优解可以用数形结合方法求出。
简单的线性规划关心的是两类问题:一是在人力、物力、资金等资源一定的条件下,如何使用它们来完成最多的任务;二是给定一项任务,如何合理规划,能以最少的人力、物力、资金等资源来完成. 教科书利用生产安排的具体实例,介绍了线性规划问题的图解法,引出线性规划等概念,最后举例说明了简单的二元线性规划在饮食营养搭配中的应用.本节内容蕴含了丰富的数学思想方法,突出体现了优化思想、数形结合思想和化归思想.二、教学目标(1)知识与技能:使学生了解二元一次不等式表示平面区域;了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念;理解线性规划问题的图解法,并能应用它解决一些简单的实际问题;(2)过程与方法:在实验探究的过程中,培养学生的数据分析能力、探究能力、合情推理能力;在应用图解法解题的过程中,培养学生运用数形结合思想解题的能力。
(3)情态、态度与价值观:让学生体会数学源于生活,服务于生活;体会数学活动充满着探索与创造,培养学生动手操作、勇于探索的精神。
三、教学重、难点1、教学重点 :求线性规划问题的最优解2、教学难点 :学生对为什么要将求目标函数的最值问题转化为经过可行域的直线在y轴上的截距的最值问题以及如何想到这样转化存在疑惑,在教学中应紧扣实际,突出知识的形成发展过程。
四、学生学情分析本节课学生在学习了不等式、直线方程的基础上,通过实例理解了平面区域的意义,并会画出平面区域,还能初步用数学关系表示简单的二元线性规划的限制条件,将实际问题转化成数学问题。
3.3.2简单线性规划问题从容说课本节课先由师生共同分析日常生活中的实际问题来引出简单线性规划问题的一些基本概念,由二元一次不等式组的解集可以表示为直角坐标平面上的区域引出问题:在直角坐标系内,如何用二元一次不等式(组)的解集来解决直角坐标平面上的区域求解问题?再从一个具体的二元一次不等式(组)入手,来研究一元二次不等式表示的区域及确定的方法,作出其平面区域,并通过直线方程的知识得出最值.通过具体例题的分析和求解,在这些例题中设置思考项,让学生探究,层层铺设,以便让学生更深刻地理解一元二次不等式表示的区域的概念,有利于二元一次不等式(组)与平面区域的知识的巩固.“简单的线性规划”是在学生学习了直线方程的基础上,介绍直线方程的一个简单应用,这是《新大纲》对数学知识应用的重视.线性规划是利用数学为工具,来研究一定的人、财、物、时、空等资源在一定条件下,如何精打细算巧安排,用最少的资源,取得最大的经济效益.它是数学规划中理论较完整、方法较成熟、应用较广泛的一个分支,并能解决科学研究、工程设计、经营管理等许多方面的实际问题.中学所学的线性规划只是规划论中的极小一部分,但这部分内容体现了数学的工具性、应用性,同时也渗透了化归、数形结合的数学思想,为学生今后解决实际问题提供了一种重要的解题方法——数学建模法.通过这部分内容的学习,可使学生进一步了解数学在解决实际问题中的应用,培养学生学习数学的兴趣和应用数学的意识和解决实际问题的能力.依据课程标准及教材分析,二元一次不等式表示平面区域以及线性规划的有关概念比较抽象,按学生现有的知识和认知水平难以透彻理解,再加上学生对代数问题等价转化为几何问题以及数学建模方法解决实际问题有一个学习消化的过程,故本节知识内容定为了解层次.本节内容渗透了多种数学思想,是向学生进行数学思想方法教学的好教材,也是培养学生观察、作图等能力的好教材.本节内容与实际问题联系紧密,有利于培养学生学习数学的兴趣和“用数学”的意识以及解决实际问题的能力.教学重点重点是二元一次不等式(组)表示平面的区域.教学难点难点是把实际问题转化为线性规划问题,并给出解答.解决难点的关键是根据实际问题中的已知条件,找出约束条件和目标函数,利用图解法求得最优解.为突出重点,本节教学应指导学生紧紧抓住化归、数形结合的数学思想方法将实际问题数学化、代数问题几何化.课时安排3课时三维目标一、知识与技能1.掌握线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念;2.运用线性规划问题的图解法,并能应用它解决一些简单的实际问题.二、过程与方法1.培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力;2.结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生创新.三、情感态度与价值观1.通过本节教学着重培养学生掌握“数形结合”的数学思想,尽管侧重于用“数”研究“形”,但同时也用“形”去研究“数”,培养学生观察、联想、猜测、归纳等数学能力;2.结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生勇于创新.教学过程第1课时导入新课师 前面我们学习了二元一次不等式A x+B y+C >0在平面直角坐标系中的平面区域的确定方法,请同学们回忆一下. (生回答)推进新课 [合作探究]师 在现实生产、生活中,经常会遇到资源利用、人力调配、生产安排等问题.例如,某工厂用A 、B 两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A 产品耗时1小时,每生产一件乙产品使用4个B 产品耗时2小时,该厂每天最多可从配件厂获得16个A 配件和12个B 配件,按每天工作8小时计算,该厂所有可能的日生产安排是什么?设甲、乙两种产品分别生产x 、y 件,应如何列式?生 由已知条件可得二元一次不等式组:⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≤≤≤+.0,0,124,164,82y x y x y x师 如何将上述不等式组表示成平面上的区域?生 (板演)师 对照课本98页图3.39,图中阴影部分中的整点(坐标为整数的点)就代表所有可能的日生产安排,即当点P (x,y )在上述平面区域中时,所安排的生产任务x 、y 才有意义.进一步,若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大?设生产甲产品x 件,乙产品y 件时,工厂获得利润为z,则如何表示它们的关系? 生 则z=2x+3y.师 这样,上述问题就转化为:当x 、y 满足上述不等式组并且为非负整数时,z 的最大值是多少? [教师精讲]师 把z=2x+3y 变形为z x y 3132+-=,这是斜率为32-,在y 轴上的截距为31z 的直线.当z 变化时可以得到什么样的图形?在上图中表示出来.生 当z 变化时可以得到一组互相平行的直线.(板演)师 由于这些直线的斜率是确定的,因此只要给定一个点〔例如(1,2)〕,就能确定一条直线z x y 3132+-=,这说明,截距z[]3可以由平面内的一个点的坐标唯一确定.可以看到直线z x y 3132+-=与表示不等式组的区域的交点坐标满足不等式组,而且当截距3z 最大时,z 取最大值,因此,问题转化为当直线z x y 3132+-=与不等式组确定的区域有公共点时,可以在区域内找一个点P ,使直线经过P 时截距3z 最大.由图可以看出,当直线z x y 3132+-=经过直线x=4与直线x+2y-8=0的交点M (4,2)时,截距3z 最大,最大值为314.此时2x+3y=14.所以,每天生产甲产品4件,乙产品2件时,工厂可获得最大利润14万元. [知识拓展]再看下面的问题:分别作出x=1,x-4y+3=0,3x+5y-25=0三条直线,先找出不等式组所表示的平面区域(即三直线所围成的封闭区域),再作直线l 0:2x+y=0.然后,作一组与直线l 0平行的直线:l:2x+y=t,t ∈R (或平行移动直线l 0),从而观察t 值的变化:t=2x+y ∈[3,12].若设t=2x+y ,式中变量x 、y 满足下列条件⎪⎩⎪⎨⎧≥≤+-≤-.1,2553,34x y x y x 求t 的最大值和最小值.分析:从变量x 、y 所满足的条件来看,变量x 、y 所满足的每个不等式都表示一个平面区域,不等式组则表示这些平面区域的公共区域ABC .作一组与直线l 0平行的直线:l:2x+y=t,t ∈R (或平行移动直线l 0),从而观察t 值的变化:t=2x+y ∈[3,12].(1)从图上可看出,点(0,0)不在以上公共区域内,当x=0,y=0时,t=2x+y=0.点(0,0)在直线l 0:2x+y=0上.作一组与直线l 0平行的直线(或平行移动直线l 0)l:2x+y=t,t ∈R. 可知,当l 在l 0的右上方时,直线l 上的点(x,y)满足2x+y >0,即t >0.而且,直线l 往右平移时,t 随之增大(引导学生一起观察此规律).在经过不等式组所表示的公共区域内的点且平行于l 的直线中,以经过点B (5,2)的直线l 2所对应的t 最大,以经过点A (1,1)的直线l 1所对应的t 最小.所以t m a x =2×5+2=12,t min =2×1+3=3.(2)(3) [合作探究]师 诸如上述问题中,不等式组是一组对变量x 、y 的约束条件,由于这组约束条件都是关于x 、y 的一次不等式,所以又可称其为线性约束条件.t=2x+y 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,我们把它称为目标函数.由于t=2x+y 又是关于x 、y 的一次解析式,所以又可叫做线性目标函数.另外注意:线性约束条件除了用一次不等式表示外,也可用一次方程表示.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.例如:我们刚才研究的就是求线性目标函数z=2x+y 在线性约束条件下的最大值和最小值的问题,即为线性规划问题.那么,满足线性约束条件的解(x,y)叫做可行解,由所有可行解组成的集合叫做可行域.在上述问题中,可行域就是阴影部分表示的三角形区域.其中可行解(5,2)和(1,1)分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解.课堂小结 用图解法解决简单的线性规划问题的基本步骤:1.首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域).2.设t=0,画出直线l 0.3.观察、分析,平移直线l 0,从而找到最优解.4.最后求得目标函数的最大值及最小值.布置作业1.某工厂用两种不同原料均可生产同一产品,若采用甲种原料,每吨成本1 000元,运费500元,可得产品90千克;若采用乙种原料,每吨成本为1500元,运费400元,可得产品100千克,如果每月原料的总成本不超过6 000元,运费不超过2 000元,那么此工厂每月最多可生产多少千克产品?分析:将已知数据列成下表:甲原料(吨) 乙原料(吨) 费用限额成本1 000 1 500 6 000 运费500 400 2 000 产品90 100 解:设此工厂每月甲、乙两种原料各x 吨、y 吨,生产z 千克产品,则⎪⎪⎩⎪⎪⎨⎧≤+≤+≥≥,2000400500,600015001000,0,0y x y x y xz=90x+100y.作出以上不等式组所表示的平面区域,即可行域,如右图:由⎩⎨⎧=+=+.2045,1232y x y x 得⎪⎪⎩⎪⎪⎨⎧==.720,712y x 令90x+100y=t ,作直线:90x+100y=0,即9x+10y=0的平行线90x+100y=t ,当90x+100y=t 过点M (712,720)时,直线90x+100y=t 中的截距最大. 由此得出t 的值也最大,z m a x =90×712+100×720=440. 答:工厂每月生产440千克产品.2.某工厂家具车间造A 、B 型两类桌子,每张桌子需木工和漆工两道工序完成.已知木工做一张A 、B 型桌子分别需要1小时和2小时,漆工油漆一张A 、B 型桌子分别需要3小时和1小时;又知木工、漆工每天工作分别不得超过8小时和9小时,而工厂造一张A 、B 型桌子分别获利润2千元和3千元,试问工厂每天应生产A 、B 型桌子各多少张,才能获得利润最大?解:设每天生产A 型桌子x 张,B 型桌子y 张,则⎪⎩⎪⎨⎧≥≥≤+≤+.0,0,93,82y x y x y x目标函数为z=2x+3y. 作出可行域:把直线l :2x+3y=0向右上方平移至l′的位置时,直线经过可行域上的点M ,且与原点距离最大,此时z=2x+3y 取得最大值.解方程⎩⎨⎧=+=+,93,82y x y x 得M 的坐标为(2,3). 答:每天应生产A 型桌子2张,B 型桌子3张才能获得最大利润.3.课本106页习题3.3A 组2.第2课时导入新课师 前面我们学习了目标函数、线性目标函数、线性规划问题、可行解、可行域、最优解等概念.师 同学们回忆一下用图解法解决简单的线性规划问题的基本步骤.生(1)首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域);(2)设t=0,画出直线l 0;(3)观察、分析,平移直线l 0,从而找到最优解;(4)最后求得目标函数的最大值及最小值.推进新课师 【例1】 已知x 、y 满足不等式组⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+,0,0,2502,3002y x y x y x 试求z=300x+900y 的最大值时的整点的坐标及相应的z 的最大值.师 分析:先画出平面区域,然后在平面区域内寻找使z=300x+900y 取最大值时的整点. 解:如图所示平面区域A O BC ,点A (0,125),点B (150,0),点C 的坐标由方程组⇒⎩⎨⎧=+=+25023002y x y x ⎪⎪⎩⎪⎪⎨⎧==,3200,3350y x 得C (3350,3200), 令t=300x+900y, 即,90031t x y +-=, 欲求z=300x+900y 的最大值,即转化为求截距t[]900的最大值,从而可求t 的最大值,因直线90031t x y +-=与直线x y 31-=平行,故作x y 31-=的平行线,当过点A (0,125)时,对应的直线的截距最大,所以此时整点A 使z 取最大值,z m a x =300×0+900×125=112 500. 师 【例2】 求z=600x+300y 的最大值,使式中的x 、y 满足约束条件3x+y≤300,x+2y≤250, x≥0,y≥0的整数值.师 分析:画出约束条件表示的平面区域即可行域再解.解:可行域如图所示.四边形A O BC ,易求点A (0,126),B (100,0),由方程组⇒⎩⎨⎧=+=+25223003y x y x ⎪⎪⎩⎪⎪⎨⎧==.5191,5369y x 得点C 的坐标为(5369,5191).因题设条件要求整点(x,y)使z=600x+300y 取最大值,将点(69,91),(70,90)代入z=600x+300y ,可知当x=70,y=90时,z 取最大值为z m a x =600×70+300×900=69 000. 师 【例3】 已知x 、y 满足不等式⎪⎩⎪⎨⎧≥≥≥+≥+,0,0,12,22y x y x y x 求z=3x+y 的最小值.师 分析:可先找出可行域,平行移动直线l 0:3x+y=0找出可行解,进而求出目标函数的最小值.解:不等式x+2y≥2表示直线x+2y=2上及其右上方的点的集合;不等式2x+y≥1表示直线2x+y=1上及其右上方的点的集合.可行域如右图所示.作直线l 0:3x+y=0,作一组与直线l 0平行的直线l:3x+y=t(t ∈R).∵x 、y 是上面不等式组表示的区域内的点的坐标. 由图可知:当直线l:3x+y=t 通过P (0,1)时,t 取到最小值1,即z min=1.师 评述:简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域作出可行域;(3)在可行域内求目标函数的最优解.师 课堂练习:请同学们通过完成练习来掌握图解法解决简单的线性规划问题.(1)求z=2x+y 的最大值,使式中的x 、y 满足约束条件⎪⎩⎪⎨⎧-≥≤+≤.1,1,y y x x y(2)求z=3x+5y 的最大值和最小值,使式中的x 、y 满足约束条件⎪⎩⎪⎨⎧≥-+≤≤+.35,1,1535y x x y y x [教师精讲]师 (1)求z=2x+y 的最大值,使式中的x 、y 满足约束条件⎪⎩⎪⎨⎧-≥≤+≤.1,1,y y x x y解:不等式组表示的平面区域如右图所示:当x=0,y=0时,z=2x+y=0,点(0,0)在直线l 0:2x+y=0上.作一组与直线l 0平行的直线l:2x+y=t,t ∈R.可知在经过不等式组所表示的公共区域内的点且平行于l 的直线中,以经过点A (2,-1)的直线所对应的t 最大.所以z m a x =2×2-1=3.(2)求z=3x+5y 的最大值和最小值,使式中的x 、y 满足约束条件⎪⎩⎪⎨⎧≥-+≤≤+.35,1,1535y x x y y x解:不等式组所表示的平面区域如右图所示.从图示可知直线3x+5y=t 在经过不等式组所表示的公共区域内的点时,以经过点(-2,-1)的直线所对应的t 最小,以经过点(89,817)的直线所对应的t 最大. 所以z min =3×(-2)+5×(-1)=-11,z m a x =3×89+5×817=14.[知识拓展]某工厂生产甲、乙两种产品.已知生产甲种产品1 t ,需耗A 种矿石10 t 、B 种矿石5 t 、煤4 t ;生产乙种产品需耗A 种矿石4 t 、B 种矿石4 t 、煤9 t.每1 t 甲种产品的利润是600元,每1 t 乙种产品的利润是1 000元.工厂在生产这两种产品的计划中要求消耗A 种矿石不超过360 t 、B 种矿石不超过200 t 、煤不超过300 t ,甲、乙两种产品应各生产多少(精确到0.1 t ),能使利润总额达到最大?师 分析:将已知数据列成下表:消耗量 产品 资源甲产品(1 t ) 乙产品(1 t) 资源限额(t ) A 种矿石(t )10 4 300 B 种矿石(t)5 4 200 煤(t) 利润(元)4 9 360 600 1 000解:设生产甲、乙两种产品分别为x t 、y t ,利润总额为z 元,那么⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≤+≤+≤+;0,0,36094,20045,300410y x y x y x y x目标函数为z=600x+1 000y.作出以上不等式组所表示的平面区域,即可行域.作直线l:600x+1 000y=0,即直线:3x+5y=0,把直线l 向右上方平移至l 1的位置时,直线经过可行域上的点M ,且与原点距离最大,此时z=600x+1 000y 取最大值.解方程组⎩⎨⎧=+=+,36094,20045y x y x 得M 的坐标为x=29360≈12.4,y=291000≈34.4. 答:应生产甲产品约12.4 t ,乙产品34.4 t ,能使利润总额达到最大.课堂小结用图解法解决简单的线性规划问题的基本步骤:(1)首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域).(2)设t=0,画出直线l 0.(3)观察、分析,平移直线l 0,从而找到最优解.(4)最后求得目标函数的最大值及最小值. 以实际问题为背景的线性规划问题其求解的格式与步骤:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域作出可行域;(3)在可行域内求目标函数的最优解.当然也要注意问题的实际意义布置作业课本第105页习题3.3A 组3、4.第3课时导入新课师 前面我们已经学习了用图解法解决简单的线性规划问题的基本步骤以及以实际问题为背景的线性规划问题其求解的格式与步骤.这节课我们继续来看它们的实际应用问题. 推进新课师 【例5】 营养学家指出,成人良好的日常饮食应该至少提供0.075 kg 的碳水化合物,0.06 kg 的蛋白质,0.06 kg 的脂肪.1 kg 食物A 含有0.105 kg 碳水化合物,0.07 kg 蛋白质,0.14 kg 脂肪,花费28元;而1kg 食物B 含有0.105 kg 碳水化合物,0.14 kg 蛋白质,0.07 kg 脂肪,花费21元.为了满足营养学家指出的日常饮食要求,同时使花费最低,需要同时食用食物A 和食物B 各多少克?师 分析:将已知数据列成下表:食物/kg 碳水化合物/kg 蛋白质/kg 脂肪/kgA 0.105 0.07 0.14B 0.105 0.14 0.07若设每天食用x kg 食物A ,y kg 食物B ,总成本为z ,如何列式?生 由题设条件列出约束条件①⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≥+≥+≥+0,y 0,x 0.06,0.07y 0.14x 0.06,0.14y 0.07x 0.075,0.105y 105x .0 其目标函数z=28x+21y.二元一次不等式组①等价于②⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≥+≥+≥+.0,0,6714,6147,577y x y x y x y x师 作出二元一次不等式组②所表示的平面区域,即可行域.请同学们在草稿纸上完成,再与课本上的对照.生 考虑z=28x+21y,将它变形为2834z x y +-=,这是斜率为34-、随z 变化的一族平行直线.28z 是直线在y 轴上的截距,当28z 取得最小值时,z 的值最小.当然直线与可行域相交,即在满足约束条件时目标函数z=28x+21y 取得最小值.由图可见,当直线z=28x+21y 经过可行域上的点M 时,截距z[]28最小,即z 最小. 解方程组⎩⎨⎧=+=+6714,577y x y x 得点M(71,74),因此,当71=x ,74=y 时,z=28x+21y 取最小值,最小值为16.由此可知每天食用食物A 约143克,食物B 约571克,能够满足日常饮食要求,又使花费最低,最低成本为16元.师 【例6】 在上一节课本的例题(课本95页例3)中,若根据有关部门的规定,初中每人每年可收取学费1 600元,高中每人每年可收取学费2 700元.那么开设初中班和高中班各多少个,每年收取的学费总额最多?学段 班级学生数 配备教师数 硬件建设/万元 教师年薪/万元初中 45 2 26/班 2/人高中 40 3 54/班 2/人师 由前面内容知若设开设初中班x 个,高中班y 个,收取的学费总额为z 万元, 此时,目标函数z=0.16×45x+0.27×40y,可行域如下图把z=7.2x+10.8y 变形为54532z x y +-=,得到斜率为-32-,在y 轴上截距为545z ,随z 变化的一组平行直线.由图可以看出,当直线z=7.2x+10.8y 经过可行域上的点M 时,截距545z 最大,即z 最大. 解方程组⎩⎨⎧=+=+402,30y x y x 得点M (20,10),因此,当x=20,y=10时,z=7.2x+10.8y 取最大值,最大值为252.由此可知开设20个初中班和10个高中班时,每年收取的学费总额最多,为252万元. 师 【例7】 在上一节例4中(课本96页例4),若生产1车皮甲种肥料,产生的利润为10 000元,若生产1车皮乙种肥料,产生的利润为5 000元,那么分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?生 若设生产x 车皮甲种肥料,y 车皮乙种肥料,能够产生的利润z 万元.目标函数z=x+0.5y,可行域如下图:把z=x+0.5y 变形为y=-2x+2z,得到斜率为-2,在y 轴上截距为2z,随z 变化的一组平行直线.由图可以看出,当直线y=-2x+2z 经过可行域上的点M 时,截距2z 最大,即z 最大. 解方程组⎩⎨⎧=+=+104,661518y x y x 得点M(2,2),因此当x=2,y=2时,z=x+0.5y 取最大值,最大值为 3.由此可见,生产甲、乙两种肥料各2车皮,能够产生最大的利润,最大利润为3万元. [教师精讲]师 以实际问题为背景的线性规划问题其求解的格式与步骤:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解.当然也要注意问题的实际意义. 课堂小结 用图解法解决简单的线性规划问题的基本步骤:(1)首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域);(2)设t=0,画出直线l 0;(3)观察、分析,平移直线l 0,从而找到最优解;(4)最后求得目标函数的最大值及最小值. 以实际问题为背景的线性规划问题其求解的格式与步骤:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解.当然也要注意问题的实际意义.布置作业课本第105页习题3.3 B组1、2、3板书设计第1课时简单线性规划问题图1课堂小结线性规划问题的相关概念图2第2课时简单线性规划问题例1课堂小结例3例2第3课时简单线性规划问题例5课堂小结例7例6。
课题: 3.3.2简单的线性规划(3)一.:自主学习,明确目标1.知识与技能:掌握线性规划问题的图解法,并能应用它解决一些简单的实际问题;2.过程与方法:经历从实际情境中抽象出简单的线性规划问题的过程,提高数学建模能力;教学重点:利用图解法求得线性规划问题的最优解;教学难点:把实际问题转化成线性规划问题,并给出解答,解决难点的关键是根据实际问题中的已知条件,找出约束条件和目标函数,利用图解法求得最优解。
教学方法:经历从实际情境中抽象出简单的线性规划问题的过程,提高数学建模能力二.研讨互动,问题生成1、二元一次不等式Ax +By +C >0在平面直角坐标系中表示直线Ax +By +C =0某一侧所有点组成的平面区域(虚线表示区域不包括边界直线)2、目标函数, 线性目标函数,线性规划问题,可行解,可行域, 最优解:3、用图解法解决简单的线性规划问题的基本步骤:三.合作探究,问题解决1.线性规划在实际中的应用:例5 在上一节例4中,若生产1车皮甲种肥料,产生的利润为10 000元;生产1车皮乙种肥料,产生的利润为5 000元,那么分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?2.若实数x ,y 满足 1311x y x y ≤+≤⎧⎨-≤-≤⎩ 求4x +2y 的取值范围.错解:由①、②同向相加可求得:0≤2x ≤4 即 0≤4x ≤8 ③由②得 —1≤y —x ≤1将上式与①同向相加得0≤2y ≤4 ④③十④得 0≤4x 十2y ≤12以上解法正确吗?为什么?(1)[质疑]引导学生阅读、讨论、分析.(2)[辨析]通过讨论,上述解法中,确定的0≤4x ≤8及0≤2y ≤4是对的,但用x 的最大(小)值及y 的最大(小)值来确定4x 十2y 的最大(小)值却是不合理的.X 取得最大(小)值时,y 并不能同时取得最大(小)值。
由于忽略了x 和 y 的相互制约关系,故这种解法不正确.(3)[激励]产生上述解法错误的原因是什么?此例有没有更好的解法?怎样求解?正解:练习11、求y x z -=的最大值、最小值,使x 、y 满足条件⎪⎩⎪⎨⎧≥≥≤+002y x y x2、设y x z +=2,式中变量x 、y 满足 ⎪⎩⎪⎨⎧≥≤+-≤-1255334x y x y x自我评价 同伴评价 小组长评价。
3.3.2简单的线性规划问题(第1课时)【三维目标】 一、知识与技能1.掌握线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念;2.运用线性规划问题的图解法,并能应用它解决一些简单的实际问题.二、过程与方法1.培养学生类比、观察、联想以及作图的能力,渗透集合、化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力;2.结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生创新. 三、情感态度与价值观1.通过本节教学着重培养学生掌握“数形结合”的数学思想,尽管侧重于用“数”研究“形”,但同时也用“形”去研究“数”,培养学生观察、联想、猜测、归纳等数学能力;2.结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生勇于创新.【教学重点】 重点是二元一次不等式(组)表示平面的区域与目标函数关系.【教学难点】 难点是把实际问题转化为线性规划问题,并给出解答解决难点的关键是根据实际问题中的已知条件,找出约束条件和目标函数,利用图解法求得最优解,为突出重点,指导学生紧紧抓住化归、数形结合的数学思想方法将实际问题数学化、代数问题几何化.【教学过程】一、导入新课1.二元一次不等式Ax+By+C>0在平面直角坐标系中表示什么图形?利用信息技术演示二元一次不等式表示的区域与“B ”的关系2.二元一次不等式组所表示的平面区域?如下例:2404120.5180x y x y x y -+-≤⎧⎪--≤⎨⎪++≥⎩画出不等式组,所表示的平面区域并求其面积利用信息技术演示二元一次不等式组表示的区域与二元一次不等式的关系,并构造网格计算其面积.二、讲授新课在现实生产、生活中,经常会遇到资源利用、人力调配、生产安排等问题。
1.下面我们就来看与生产安排有关的一个问题引例、 某工厂用A,B 两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A 配件耗时1h ,每生产一件乙产品使用4个B 配件耗时2h ,该厂每天最多可从配件厂获得16个A 配件和12个B 配件,按每天工作8h 计算,该厂所有可能的日生产安排是什么? 设甲、乙两种产品分别生产x,y 件,由已知条件可得二元一次不等式组: 如图,图中的阴影部分的整点(坐标为整数的的点)就代表所有可能的日生产安排.2. 提出新问题:进一步,若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大?设生产甲产品x 件,乙产品y 件时,工厂获得的利润为z ,则z=2x+3y,这样,上述问题就转化为:“当x,y 满足不等式组①并且为非负整数时,z 的最大值是多少?”尝试解答:把z=2x+3y 变形为233z y x =-+,这是斜率为23-,在y 轴上的截距为3z 的直线, 那么我们向上平移直线233z y x =-+时,在y 轴上的截距3z 的值就会增大. 利用信息技术设置滑动条z ₁(z ₁=3×3z =z),移动滑动条试验z ₁的值,如下图 2841641200x y x y x y +≤⎧⎪≤⎪⎪≤⎨⎪≥⎪≥⎪⎩由试验可得,当直线233zy x=-+经过J(4,2)点时,截距3z的值最大,为143,此时z最大为14.故每天生产甲产品4件,乙产品2件时,工厂可获最大利润14万元.3.线性规划的有关概念(1)线性约束条件:在上述问题中,不等式组是一组变量x,y的约束条件,这组约束条件都是关于x,y的一次不等式,故又称线性约束条件.(2)线性目标函数:关于x,y的一次式z=2x+3y是欲达到最大值或最小值所涉及的变量x,y的解析式,称为线性目标函数.(3)线性规划问题:一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.(4)可行解、可行域和最优解:满足线性约束条件的解(x,y)叫做可行解.由所有可行解组成的集合叫做可行域.使目标函数取得最大或最小值的可行解叫做线性规划问题的最优解.三、应用举例【例1】某公司仓库A存有货物12吨,仓库B存有货物8吨,现按7吨,8吨和5吨把货物分别调运给甲,乙,丙三个商店,从仓库A运货物到商店甲,乙,丙,每吨货物的运费分别为8元,6元,9元;从仓库B运货物到商店甲,乙,丙,每吨货物的运费分别为3元,4元,5元.问应如何安排调运方案,才能使得从两个仓库运货物到三个商店的总运费最少?解:设仓库A运给甲,乙商店的货物分别为x吨、y吨,则运给丙商店的货物为(12-x-y)吨,从而仓库B运给甲,乙,丙商店的货物分别为(7-x)吨、(8-y)吨、[5-(12-x-y)]=(x+y-7)吨,于是总费用为(目标函数z₂):从而得到本题的数学模型为:求总运费z=x-2y+126在约束条件120070870x yxyx y--≥⎧⎪≤≥⎪⎨≤≤⎪⎪+-≥⎩下的最小值,如下图区域:运动滑动条Z₂点,平移目标函数直线,显然当直线移动到过(0,8)时,在可行域内z₂=x-2y+126取最小值110,则x=0,y=8时总费用最少.思考:注意到目标函数直线向上平移时z₂值会减小,为什么?四、学生练习在上面的引例中,如果生产一件甲产品获利2万元,生产一件乙产品获利5万元,又应当如何安排生产才能获得最大利润?【解答】目标函数z₃=2x+5y,运动Z₃点,平移目标函数直线,显然当直线移动到过(2,3)时,在可行域内z₃取最大值19.故每天生产甲产品2件,乙产品3件时,工厂可获最大利润19万元.如下图:思考:如果生产一件甲产品获利2万元,生产一件乙产品获利4万元,又应当如何安排生产才能获得最大利润?五、课时小结用图解法解决简单的线性规划问题的基本步骤:(1)寻找线性约束条件,线性目标函数.(2)由二元一次不等式表示的平面区域做出可行域.(3)在可行域内求目标函数的最优解.特别注意:目标函数中y的系数对最值得影响.六、课后作业教材91页练习第一题(2)、第二题.。
3.3.2 简洁的线性规划问题(一)明目标、知重点 1.了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念.2.了解线性规划问题的图解法,并能应用它解决一些简洁的实际问题.1.线性规划中的基本概念名 称 意 义约束条件 关于变量x ,y 的不等式(组) 线性约束条件 关于x ,y 的一次不等式(组)目标函数 欲求最大值或最小值的关于变量x ,y 的函数解析式线性目标函数 关于x ,y 的一次解析式 可行解 满足线性约束条件的解(x ,y ) 可行域 由全部可行解组成的集合最优解 使目标函数取得最大值或最小值的可行解线性规划问题在线性约束条件下求线性目标函数的最大值或最小值问题2.目标函数的最值线性目标函数z =ax +by (b ≠0)对应的斜截式直线方程是y =-a b x +z b ,在y 轴上的截距是zb ,当z 变化时,方程表示一组相互平行的直线.当b >0,截距最大时,z 取得最大值,截距最小时,z 取得最小值; 当b <0,截距最大时,z 取得最小值,截距最小时,z 取得最大值.[情境导学]已知1≤x +y ≤5,-1≤x -y ≤3,求2x -3y 的取值范围.解答时简洁错误的利用不等式中的加法法则,由原不等式组得到x ,y 的范围,再分别求出2x 及-3y 的范围,然后相加得2x -3y 的取值范围.由于不等式中的加法法则不具有可逆性,从而使x ,y 的取值范围扩大,得出错误的2x -3y 的取值范围.假如把1≤x +y ≤5,-1≤x -y ≤3看作变量x ,y 满足的条件,把求2x -3y 的取值范围看作在满足上述不等式的状况下,求z =2x -3y 的取值范围,就成了本节要争辩的一个线性规划问题. 探究点一 线性规划中的基本概念问题 某工厂用A 、B 两种配件生产甲,乙两种产品,每生产一件甲种产品使用4个A 配件耗时1 h ,每生产一件乙种产品使用4个B 配件耗时2 h ,该厂每天最多可从配件厂获得16个A 配件和12个B 配件,按每天工作8小时计算,该厂全部可能的日生产支配是什么?若生产1件甲种产品获利2万元,生产1件乙种产品获利3万元,接受哪种生产支配利润最大? 思考1 如何用不等式组表示问题中的限制条件?答 设甲、乙两种产品分别生产x 、y 件,由已知条件可得二元一次不等式组:⎩⎪⎨⎪⎧x +2y ≤8,4x ≤16,4y ≤12,x ≥0,y ≥0.(1)思考2 你能画出不等式组所表示的平面区域吗? 答 如图,区域内全部坐标为整数的点P (x ,y ),支配生产任务x ,y 都是有意义的,就代表全部可能的日生产支配.思考3 接受哪种生产支配利润最大问题应当转化成怎样的问题来解答?答 设生产甲产品x 件,乙产品y 件时,工厂获得的利润为z ,则z =2x +3y .这样,上述问题就转化为当x ,y 满足不等式组(1)并且为非负整数时,z 的最大值是多少?思考4 若把z =2x +3y 变形为y =-23x +z 3,这是斜率为定值-23,在y 轴上的截距为z3的直线,当点P 在可允许的取值范围变化时,如何求z 的最大值?答 如图,由于这些直线的斜率是确定的,因此只要给定一个点,就能确定一条直线,因而确定出唯一截距z3,可以看到,直线y =-23x +z 3与不等式组(1)表示的区域的交点坐标满足不等式组(1),而且当截距z3最大时,z 取得最大值.因此,在区域内找一个点P ,使直线经过点P 时截距z 3最大.由图可以看出,当直线y =-23x +z3经过直线x =4与直线x +2y -8=0的交点M (4,2)时,截距z 3的值最大,最大值为143,这时2x +3y =14.所以,每天生产甲产品4件,乙产品2件时,工厂可获得最大利润14万元.小结 (1)线性约束条件:在上述问题中,不等式组是一组变量x 、y 的约束条件,这组约束条件都是关于x 、y 的一次不等式,故又称线性约束条件.(2)线性目标函数:关于x 、y 的一次式z =2x +y 是欲达到最大值或最小值的关于变量x 、y 的解析式,叫线性目标函数.(3)线性规划问题:一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.(4)可行解、可行域和最优解:满足线性约束条件的解(x ,y )叫可行解.由全部可行解组成的集合叫做可行域.使目标函数取得最大或最小值的可行解叫线性规划问题的最优解. 探究点二 生活中的线性规划问题例 养分学家指出,成人良好的日常饮食应当至少供应0.075 kg 的碳水化合物,0.06 kg 的蛋白质,0.06 kg 的脂肪,1 kg 食物A 含有0.105 kg 碳水化合物,0.07 kg 蛋白质,0.14 kg 脂肪,花费28元;而1 kg 食物B 含有0.105 kg 碳水化合物,0.14 kg 蛋白质,0.07 kg 脂肪,花费21元.为了满足养分专家指出的日常饮食要求,同时使花费最低,需要同时食用食物A 和食物B 多少kg? 将已知数据列成下表:食物/kg 碳水化合物/kg蛋白质/kg 脂肪/kg A 0.105 0.07 0.14 B0.1050.140.07解 设每天食用x kg 食物A ,y kg 食物B ,总成本为z ,那么⎩⎪⎨⎪⎧ 0.105x +0.105y ≥0.075,0.07x +0.14y ≥0.06,0.14x +0.07y ≥0.06,x ≥0,y ≥0,⇒⎩⎪⎨⎪⎧7x +7y ≥5,7x +14y ≥6,14x +7y ≥6,x ≥0,y ≥0.目标函数为z =28x +21y .作出二元一次不等式组所表示的平面区域,把目标函数z =28x +21y 变形为y =-43x +z 21,它表示斜率为-43且随z 变化的一族平行直线.z21是直线在y 轴上的截距,当截距最小时,z 的值最小.如图可见,当直线z =28x +21y 经过可行域上的点M 时,截距最小,即z 最小.解方程组⎩⎪⎨⎪⎧7x +7y =5,14x +7y =6得M 点的坐标为⎝⎛⎭⎫17,47. 所以z min =28x +21y =16.答 每天食用食物A 17 kg ,食物B 47 kg ,能够满足日常饮食要求,又使花费最低,最低成本为16元.反思与感悟 图解法是解决线性规划问题的有效方法.其关键在于平移目标函数对应的直线ax +by =0,看它经过哪个点(或哪些点)时最先接触可行域和最终离开可行域,则这样的点即为最优解,再留意到它的几何意义,从而确定是取得最大值还是最小值.跟踪训练 已知1≤x +y ≤5,-1≤x -y ≤3,求2x -3y 的取值范围.解 作出二元一次不等式组⎩⎪⎨⎪⎧1≤x +y ≤5,-1≤x -y ≤3所表示的平面区域(如图)即为可行域.设z =2x -3y ,变形得y =23x -13z ,则得到斜率为23,且随z 变化的一族平行直线.-13z 是直线在y 轴上的截距,当直线截距最大时,z 的值最小,当然直线要与可行域相交,即在满足约束条件时,目标函数z =2x -3y 取得最小值.由图可见,当直线z =2x -3y 经过可行域上的点A 时,截距最大,即z 最小.解方程组⎩⎪⎨⎪⎧x -y =-1,x +y =5得A 的坐标为(2,3),∴z min =2x -3y =2×2-3×3=-5.当直线z =2x -3y 经过可行域上的点B 时,截距最小,即z 最大.解方程组⎩⎪⎨⎪⎧x -y =3,x +y =1得B 的坐标为(2,-1).∴z max =2x -3y =2×2-3×(-1)=7.∴-5≤2x -3y ≤7,即2x -3y 的取值范围是[-5,7].1.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤2x ,x +y ≤1,y ≥-1,则x +2y 的最大值是( )A .-52B .0 C.53 D. 52答案 C解析 画出可行域如图.设z =x +2y ,平行移动直线y =-12x +12z ,当直线y =-12x +z 2过点B ⎝⎛⎭⎫13,23时,z 取最大值53,所以(x +2y )max =53. 2.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥3,x -y ≥-1,2x -y ≤3,则目标函数z =2x +3y 的最小值为( )A .6B .7C .8D .23答案 B解析 作出可行域如图所示.由图可知,z =2x +3y 经过点A (2,1)时,z 有最小值,z 的最小值为7.3.在如图所示的坐标平面的可行域内(阴影部分且包括边界),目标函数z =x +ay 取得最小值的最优解有很多个,则a 的一个可能值为( ) A .-3B .3C .-1D .1答案 A解析 -1a =2-14-1=13,∴a =-3.4.已知实数x 、y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤2,则z =2x +4y 的最大值为________.答案 8解析 由不等式组表示的可行域知,目标函数z 在点(0,2)处取得最大值8. [呈重点、现规律]1.用图解法解决简洁的线性规划问题的基本步骤:(1)查找线性约束条件,线性目标函数;(2)作图——画出约束条件(不等式组)所确定的平面区域和目标函数所表示的平行直线系中的任意一条直线l ;(3)平移——将直线l 平行移动,以确定最优解所对应的点的位置;(4)求值——解有关的方程组求出最优解的坐标,再代入目标函数,求出目标函数的最值.2.作不等式组表示的可行域时,留意标出相应的直线方程,还要给可行域的各顶点标上字母,平移直线时,要留意线性目标函数的斜率与可行域中边界直线的斜率进行比较,确定最优解.3.在解决与线性规划相关的问题时,首先考虑目标函数的几何意义,利用数形结合方法可快速解决相关问题.一、基础过关1.若点(x ,y )位于曲线y =|x |与y =2所围成的封闭区域,则2x -y 的最小值为( ) A .-6 B .-2 C .0 D .2 答案 A解析 如图,曲线y =|x |与y =2所围成的封闭区域如图中阴影部分,令z =2x -y ,则y =2x -z ,作直线y =2x ,在封闭区域内平行移动直线y =2x ,当经过点A (-2,2)时,z 取得最小值,此时z =2×(-2)-2=-6.2.若实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +3y -3≥0,2x -y -3≤0,x -y +1≥0,则x +y 的最大值为( )A .9 B.157 C .1 D.715答案 A解析 画出可行域如图:当直线y =-x +z 过点A 时,z 最大.由⎩⎪⎨⎪⎧2x -y -3=0,x -y +1=0得A (4,5),∴z max =4+5=9. 3.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧3x +y -6≥0,x -y -2≤0,y -3≤0,则目标函数z =y -2x 的最小值为( )A .-7B .-4C .1D .2 答案 A解析 可行域如图阴影部分(含边界)令z =0,得直线l 0:y -2x =0,平移直线l 0知,当直线l 过D 点时,z 取得最小值.由⎩⎪⎨⎪⎧y =3,x -y -2=0得D (5,3). ∴z min =3-2×5=-7,故选A.4.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,x -5y +10≤0,x +y -8≤0,则目标函数z =3x -4y 的最大值和最小值分别为( )A .3,-11B .-3,-11C .11,-3D .11,3答案 A解析 作出可行域如图阴影部分所示,由图可知z =3x -4y 经过点A 时z 有最小值,经过点B 时z 有最大值.易求A (3,5),B (5,3).∴z 最大=3×5-4×3=3,z 最小=3×3-4×5=-11.5.已知-1≤x +y ≤4且2≤x -y ≤3,则z =2x -3y 的取值范围是________(答案用区间表示). 答案 [3,8]解析 作出不等式组⎩⎪⎨⎪⎧-1≤x +y ≤4,2≤x -y ≤3表示的可行域,如图中阴影部分所示.在可行域内平移直线2x -3y =0,当直线经过x -y =2与x +y =4的交点A (3,1)时,目标函数有最小值,z min =2×3-3×1=3; 当直线经过x +y =-1与x -y =3的交点B (1,-2)时,目标函数有最大值,z max =2×1+3×2=8. 所以z ∈[3,8].6.在线性约束条件⎩⎪⎨⎪⎧x +3y ≥12,x +y ≤10,3x +y ≥12下,求z =2x -y 的最大值和最小值.解 如图作出线性约束条件⎩⎪⎨⎪⎧x +3y ≥12,x +y ≤10,3x +y ≥12下的可行域,包含边界:其中三条直线中x +3y =12与3x +y =12交于点A (3,3),x +y =10与x +3y =12交于点B (9,1),x +y =10与3x +y =12交于点C (1,9),作一族与直线2x -y =0平行的直线l :2x -y =z .即y =2x -z ,然后平行移动直线l ,直线l 在y 轴上的截距为-z ,当l 经过点B 时,-z 取最小值,此时z 最大,即z max =2×9-1=17;当l 经过点C 时,-z 取最大值,此时z 最小,即z min =2×1-9=-7. 所以z max =17,z min =-7.7.在3.3.1(二)此节跟踪训练3中,假如一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的养分要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐?解 设需要预订满足要求的午餐和晚餐分别为x 个单位和y 个单位,所花的费用为z 元,则依题意, 得z =2.5x +4y ,且x ,y 满足⎩⎪⎨⎪⎧x ≥0,y ≥0,12x +8y ≥64,6x +6y ≥42,6x +10y ≥54,即⎩⎪⎨⎪⎧x ≥0,y ≥0,3x +2y ≥16,x +y ≥7,3x +5y ≥27.让目标函数表示的直线2.5x +4y =z 在可行域上平移,由此可知z =2.5x +4y 在B (4,3)处取得最小值. 因此,应当为该儿童预订4个单位的午餐和3个单位的晚餐,就可满足要求.二、力气提升8.已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y ≤3,y ≥a (x -3),若z =2x +y 的最小值为1,则a 等于( )A.14 B.12 C . 1 D .2答案 B解析 作出不等式组表示的可行域,如图(阴影部分).易知直线z =2x +y 过交点B 时,z 取最小值,由⎩⎪⎨⎪⎧ x =1,y =a (x -3)得⎩⎪⎨⎪⎧x =1,y =-2a ,∴z min =2-2a =1,解得a =12,故选B.9.已知平面直角坐标系xOy 上的区域D 由不等式组⎩⎨⎧0≤x ≤2,y ≤2,x ≤2y给定.若M (x ,y )为D 上的动点,点A的坐标为(2,1),则z =OM →·OA →的最大值为( ) A .3 B .4 C .3 2 D .42 答案 B解析 由线性约束条件⎩⎪⎨⎪⎧0≤x ≤2,y ≤2,x ≤2y ,画出可行域如图阴影部分所示,目标函数z =OM →·OA →=2x +y ,将其化为y =-2x +z ,结合图形可知,目标函数的图象过点(2,2)时,z 最大,将点(2,2)代入z =2x +y 得z 的最大值为4.10.在3.3.1(二)此节课后作业第6题中,假定甲、乙两个电视台为该公司所做的每分钟广告能给公司带来的收益分别为0.3万元和0.2万元.问该公司如何支配在甲、乙两个电视台的广告时间,才能使公司的收益最大.最大收益是多少万元?解 设公司在甲电视台和乙电视台做广告的时间分别为x 分钟和y 分钟,总收益为z 元,由题意得⎩⎪⎨⎪⎧x +y ≤300,500x +200y ≤90 000,x ≥0,y ≥0.即⎩⎪⎨⎪⎧x +y ≤300,5x +2y ≤900,x ≥0,y ≥0.目标函数为z =3 000x +2 000y .作出可行域如图所示:作直线l :3 000x +2 000y =0,即3x +2y =0.平移直线l ,由图可知当l 过点M 时,目标函数z 取得最大值.由⎩⎪⎨⎪⎧x +y =300,5x +2y =900.得M (100,200). ∴z max =3 000×100+2 000×200=700 000(元).答 该公司在甲电视台做100分钟广告,在乙电视台做200分钟广告,公司的收益最大,最大收益是70万元. 三、探究与拓展11.假如点P 在平面区域⎩⎪⎨⎪⎧2x -y +2≥0,x +y -2≤0,2y -1≥0上,点Q 在曲线x 2+(y +2)2=1上,求|PQ |的最小值.解 画出不等式组⎩⎪⎨⎪⎧2x -y +2≥0,x +y -2≤0,2y -1≥0所表示的平面区域,x 2+(y +2)2=1所表示的曲线为以(0,-2)为圆心,1为半径的一个圆.如图所示,只有当点P 在点A ⎝⎛⎭⎫0,12,点Q 在点B (0,-1)时,|PQ |取最小值32.。