二面角的平面角
- 格式:docx
- 大小:12.38 KB
- 文档页数:1
二面角的平面角摘要:求二面角的平面角的大小,关键是找出或作出二面角的平面角。
关键词:二面角;平面角;转化求二面角的平面角的大小是高中立体几何的一个重要内容,也是一个难点。
解决有关二面角问题的关键是找出或作出二面角的平面角,通过找出或作出二面角的平面角,使空间问题转化为平面问题来解决。
学生往往不是不会计算,而是找不到二面角的平面角。
作二面角的平面角,常用方法一般有三种:(1)定义法;(2)三垂线定理法;(3)垂面法。
下面看几例具体的例子:一、根据二面角的平面角的定义直接找出或作出二面角的平面角例1.二面角α-l-β为60°,A点和B点分别在α、β内,且到棱l的距离分别是2和4,若线段AB=10,试求:(1)直线AB与棱所成的角;(2)直线AB与平面α所成的角。
分析:求解此题,首先要作出二面角α-l-β的平面角,并将其构造到某一个三角形中,进而应用平面几何的知识求解。
由题意,在面α内作AD⊥l,在面β内作BE⊥l,作DC■EB,联结BC、AC,易知CD⊥l,则∠ADC 为二面角α-l-β的平面角,等于6°,如图1再进一步求解就比较容易了。
■定义法:过棱上一点分别在两个半平面内作垂直于棱的射线,得到二面角的一个平面角。
如图2,以二面角α-a-β的棱上的任意一点O为端点,在平面α、β内分别引垂直于棱a的射线OA、OB,那么∠AOB就是二面角的平面角。
二、三垂线定理法例2.过正方形ABCD的顶点A作SA⊥平面ABCD,并使平面SBC、平面SCD与底面ABCD都成45°角,求二面角B-SC-D的大小。
解:如图3,过点B作BE⊥SC于E,联结ED。
■∵SA⊥底面ABCD,∴BA为SB在底面ABCD内的射影。
∵AB⊥BC,∴SB⊥BC。
∴∠SBA为平面SBC与平面ABCD所成的角,即∠SBA=45°,同理∠SDA=45°。
设SA=a,则SB=SD=■a,则△SCB≌△SCD.∵BE⊥SC,则ED⊥SC,∴∠BED为二面角B-SC-D的平面角.∵SB=■a,BC=a,SC=■a∴BE=DE=■a由余弦定理得cos∠BED=-■∴∠BED=120°。
二面角的平面角的概念
以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线相交所成的角称为二面角的平面角。
二面角的大小可用平面角表示。
二面角也可以看作是从一条直线出发的一个半平面绕着这条直线旋转,它的最初位置和最终位置组成的图形。
二面角的平面角的大小,与其顶点在棱上的位置无关。
如果两个二面角能够完全重合,则说它们是相等的.如果两个二面角的平面角相等,那么这两个二面角相等。
反之,相等二面角的平面角相等。
直二面角:平面角是直角的二面角叫做直二面角。
互相垂直的平面:相交成直角的两个平面叫做互相垂直的平面。
二面角定义:平面内的一条直线把平面分为两部分,其中的每一部分都叫做半平面,从一条直线出发的两个半平面所组成的图形,叫做二面角(这条直线叫做二面角的棱,每个半平面叫做二面角的面).二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。
平面角是直角的二面角叫做直二面角。
两个平面垂直的定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直。
二面角的大小范围0≤θ≤π 既然是空间立体图形,那么可以将180°~360°的另一边看成0°~180°。
二面角的求法作二面角的平面角的常用方法有六种:1.定义法2.垂面法3.射影定理4.三垂线定理5.向量法6..转化法二面角一般都是在两个平面的相交线上,取恰当的点,经常是端点和中点。
过这个点分别在两平面做相交线的垂线,然后把两条垂线放到一个三角形中考虑。
有时也经常做两条垂线的平行线,使他们在一个更理想的三角形中。
由公式S射影=S斜面cosθ,作出二面角的平面角直接求出。
运用这一方法的关键是从图中找出斜面多边形和它在有关平面上的射影,而且它们的面积容易求得 也可以用解析几何的办法,把两平面的法向量n1,n2的坐标求出来。
然后根据n1·n2=|n1||n2|cosα,θ=α为两平面的夹角。
这里需要注意的是如果两个法向量都是垂直平面,指向两平面内,所求两平面的夹角θ=π-α 二面角的通常求法:(1)由定义作出二面角的平面角;(2)作二面角棱的垂面,则垂面与二面角两个面的交线所成的角就是二面角的平面角;(3)利用三垂线定理(逆定理)作出二面角的平面角;(4)空间坐标求二面角的大小。
其中,(1)、(2)点主要是根据定义来找二面角的平面角,再利用三角形的正、余弦定理解三角形。
求二面角大小的基本步骤(1)作出二面角的平面角:A:利用等腰(含等边)三角形底边的中点作平面角;B:利用面的垂线(三垂线定理或其逆定理)作平面角;C:利用与棱垂直的直线,通过作棱的垂面作平面角;D:利用无棱二面角的两条平行线作平面角。
利用空间向量求二面角的平面角1.二面角的概念:二面角的定义.从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,每个半平面叫做二面角的面若棱为l ,两个面分别为,αβ的二面角记为l αβ--.2.二面角的平面角:过二面角的棱上的一点O 分别在两个半平面内作棱的两条垂线,OA OB ,则AOB ∠叫做二面角l αβ--的平面角3、二面角的大小(1)二面角的平面角范围是[0,180];(2)二面角的平面角为直角时,则称为直二面角,组成直二面角的两个平面互相垂直4、用法向量求二面角5、面面角的求法(1)法向量法:一进一出,二面角等于法向量夹角;同进同出,二面角等于法向量夹角的补角(2)方向向量法:将二面角转化为二面角的两个面的方向向量(在二面角的面内且垂直于二面角的棱)的夹角。
D CβαBA O m 2m 1n 2n 1DCβαl如图所示,分别在二面角α-l -β的面α,β内,并且沿α,β延伸的方向,作向量1n ⊥l ,2n ⊥l ,则我们可以用向量1n 与2n 的夹角来度量这个二面角。
如图,设1m ⊥α,2m ⊥β,则角<12,m m >与该二面角相等或互补。
cos cos ,AB CD AB CD AB CDθ⋅==⋅小结:1.异面直线所成角:2.直线与平面所成角:3.二面角:二.求二面角的平面角:例1:在正方体AC1中,求二面角D1—AC —D 的大小?例2:如图,三棱锥P-ABC 中,面PBC ⊥面ABC ,⊿PBC 是边长为a 的正三角形,∠ACB= 90°, ∠BAC=30°,BM=MC 。
(1)求证: PB ⊥AC (2)二面角C-PA-M 的大小 。
cos cos ,AB CDAB CD AB CD θ⋅==⋅1A例1:在棱长为1的正方体1AC 中,求平面1C BD 与底面ABCD 所成二面角1C BD C --的平面角正弦值大小.解:过1C 作1C O BD ⊥于点O , ∵正方体1AC ,∴1CC ⊥平面ABCD ,∴1COC ∠为平面1C BD 与平面ABCD 所成二面角1C BD C --的平面角,可以求得:36sin 1=∠COC ,所以,平面1C BD 与底面ABCD 所成 二面角1C BD C --的平面角的正弦值大小为36 例2.如图,AB ⊥平面BCD ,BD CD ⊥,若2AB BC BD ==,求二面角B AC D --的正弦值分析:要求二面角的正弦值,首先要找到二面角的平面角 解:过D 作BC DF ⊥于F ,过D 作AC DE ⊥于E ,连结EF ,则AC 垂直于平面DEF , FED ∠为二面角B AC D --的平面角, 又AB ⊥平面BCD ,∴AB DF ⊥,AB CD ⊥,∴DF ⊥平面ABC , ∴DF EF ⊥又∵AB CD ⊥,BD CD ⊥,∴CD ⊥平面ABD ,∴CD AD ⊥,设BD a =,则2AB BC a ==,在RtBCD ∆中,1122BCD S BC DF BD CD ∆=⋅=⋅,∴DF =同理,Rt ACD ∆中,DE =,∴sin 5DF FED DE ∠===, 所以,二面角B AC D --.AB C DEF通过观察探究利用法向量解决: 例1:解:建立空间直角坐标系得:)1,1,0(1=DC ,)0,1,1(=DB ,)0,1,0(=DC设平面1C BD 的法向量),,(1111z y x n =,平面CBD 的法向量),,(2222z y x n =,可得)1,1,1(1-=n ,)1,0,0(2=n ,33cos 21=n n ,即二面角的平面角36sin =θ 例2:解:建立空间直角坐标系得: )2,21,23(),2,0,0(),2,2,0(-==-=AD BA AC 设平面BAC 的法向量),,(1111z y x n =,平面DAC 的法向量),,(2222z y x n =得:)1,0,0(1=n ,)33,33,1(2=n ,515cos 21=n n 所以,二面角B AC D --10.。
二面角的平面角及求法1、半平面的定义:一条直线把平面分成两个部分,每一部分都叫做半平面.2、二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面。
3、二面角的平面角的概念:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角。
一个平面角的大小可用它的平面的大小来衡量,二面角的平面角是多少度,就说这个二面角是多少度。
二面角大小的取值范围是[0,180°]。
4、直二面角:平面角是直角的二面角叫直二面角。
两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角。
5、二面角的平面角具有下列性质:a.二面角的棱垂直于它的平面角所在的平面,即l⊥平面AOB.b.从二面角的平面角的一边上任意一点(异于角的顶点)作另一面的垂线,垂足必在平面角的另一边(或其反向延长线)上.c.二面角的平面角所在的平面与二面角的两个面都垂直,即平面AOB⊥α,平面AOB⊥α.6、求二面角的平面角的方法:(1)定义法:通过二面角的平面角来求;找出或作出二面角的平面角;证明其符合定义;通过解三角形,计算出二面角的平面角.上述过程可概括为一作(找)、二证、三计算”.(2)三垂线法:已知二面角其中一个面内一点到另一个面的垂线,用三垂线定理或其逆定理作出平面角.(3)垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个半平面的交线所成的角即为平面角,由此可知,二面角的平面角所在的平面与棱垂直.(4)射影法:利用面积射影定理求二面角的大小;其中S为二面角一个面内平面图形的面积,S′是这个平面图形在另一个面上的射影图形的面积,α为二面角的大小.(5)向量法:设二面角的平面角为θ.①如果那么②设向量m、n分别为平面α和平面β的法向量是相等还是互补,根据具体图形判断。