预制桩基础工程课程设计
- 格式:doc
- 大小:377.04 KB
- 文档页数:8
1.1 选择桩型、桩端持力层 、承台埋深1.1.1 选择桩型根据施工场地、地基条件以及场地周围环境条件,选择桩基础。
采用静压预制桩.根据地基土层,采用摩擦桩。
1.1.2 选择桩的几何尺寸以及承台埋深依据地基土的分布,第③层是灰色淤泥质的粉质粘土,且比较后,而第④层是粉土夹粉质粘土,所以第④层是比较适合的桩端持力层。
桩端全断面进入持力层1.0m (>2d ),工程桩入土深度为m h h 1.231123.88.1,=+++=由于第①层厚1.8m ,所以初步选择承台底进入第②层土0.3m ,即承台埋深为2.1m ,桩基的有效桩长即为23.1-2.1=21m 。
桩截面尺寸选用:由于经验关系建议:楼层<10时,桩边长取300~400,因此选择桩的尺寸为350mm ×350mm 。
桩分为两节,上段长11m ,下段长11m (不包括桩尖长度在内),实际桩长比有效桩长长1m ,这是考虑持力层可能有一定的起伏以及桩需要嵌入承台一定长度而留有的余地。
1.3 确定单桩竖向承载力标准值按静力触探法确定单桩竖向极限承载力标准值:2 40.35156-2.136 4.1431211110.351784.5 1166.34+218.6 1385kNuk sk pk ski i sk pQ Q Q u q l P A α=+=+⨯⨯⨯⨯⨯⨯⨯∑=〔()+++〕+==估算的单桩竖向承载力设计值(60.1==p s γγ) kN Q ppks6.8656.11385Q R sk1==+=γγ 按经验参数法确定单桩竖向承载力极限承载力标准值:240.35358+29125510.352200956.2269.5 1226kNuk sk pk Q Q Q =+⨯⨯⨯⨯⨯⨯⨯=(+)+=+=估算的单桩竖向承载力设计值(65.1==p s γγ)kN Q ppks74365.11226Q R sk2==+=γγ 由于R 1>R 2,所以最终按经验参数法计算单桩承载力设计值,即采用kN R R 7432==,初步确定桩数。
目录1 .设计资料 (1)1.1 建筑物上部荷载 (2)1.2 建筑物场地资料 (2)2 .选择桩型、桩端持力层、承台埋深 (3)2.1 选择桩型 (3)2.2 选择桩的几何尺寸以及承台埋深 (3)3 .确定单桩竖向承载力标准值 (4)3.1 确定单桩竖向承载力标准值 (4)4 .确定桩数和承台底面尺寸 (4)4.1 桩数确定 (4)4.2 承台平面尺寸确定 (4)4.3 群桩中单桩竖向承载力计算 (5)5 .桩身设计 (6)5.1 桩身强度验算 (6)6 .承台设计 (6)6.1 承台设计 (7)6.2 四桩承台设计 (7)6.3 抗冲切验算 (8)6.4 局部受压验算 (11)7 .参考文献 (12)1. 设计资料 1.1 建筑物上部荷载基础顶面竖向荷载设计值k N =1765.6kN ,弯矩设计值k x M ,=152.2kN ,ky M,=123.8kN1.2 建筑物场地资料拟建建筑物场地位于市区内,地势平坦,建筑物场地位于非地震区,不考虑地震影响。
地下水类型为潜水,地下水位离地表1.2米。
建筑地基的土层分布情况及各土层物理、力学指标见表1.1。
表1.1地基各土层物理、力学指标层次 土种类 层厚 )(kPa q a)(kPa q p1--1 杂填土 1.20 — — 1--2 粘土 0.90 10 — 2--1 淤质粘土 2.80 6 — 2--2 淤质粘土 9.80 10 — 2--3 淤质粘土 7.00 8 — 3--1 淤质粘土 3.20 10 — 4--1 粘土 5.10 13 — 5--1 粘土 5.20 32 2168 5--2粉质粘土8.202525882. 选择桩型、桩端持力层、承台埋深2.1 选择桩型根据施工场地、地基条件以及场地周围环境条件,选择桩基础。
采用预应力高强混凝土薄壁管桩,这样可以较好的保证桩身质量,并在较短的施工工期完成沉桩任务。
桩截面尺寸选用:D=400mm ,壁厚t=75mm。
一,设计资料1.1上部结构资料哈市近郊单层工业厂房,室内室外地面高差0.3m ,室外设计地面与天然地面一致,两跨,第一跨度为30m ,有两台50顿桥式吊车,另一跨跨度为24m ,有两台30顿桥式吊车,柱距为12m ,预制中柱截面600×1200mm2,作用于杯口顶面的荷载设计值为:,4.55,103.10,29902KN V m KN M KN F =⋅⨯==底层柱网平面布置及柱底荷载见设计任务书内附图。
1.2建筑物场地资料土层分布和物理力学性质如任务书内附表二,选择桩型,桩端持力层,承台埋深2.1选择桩型根据施工场地的地质条件,采用静压预制桩。
2.2选择桩的几何尺寸及承台埋深如图1所示,承台埋深2.3m ,桩长10m ,桩边长取400×400。
三,确定单桩极限承载力标准值本设计属于二级建筑桩基,根据土的物理指标与承载力参数之间的关系, 单桩竖向极限承载力标准值:26004.0)6.41004.536(4.0421⨯+⨯+⨯⨯⨯=+⋅=+=∑p pk i sik pk sk uk A q l q Q Q Q μ KN 04.14636.404.1047=+=估算单桩承载力设计值(65.1,65.1==p s γγ) KN Q Q R p pk s sk69.88665.104.1463==+=γγ 以此初步确定桩数四,确定桩数和承台底面尺寸4.1桩数及承台的确定荷载,4.55,103.10,29902KN V m KN M KN F =⋅⨯==初步估算桩数,柱子偏心受压考虑。
37.369.8862990==≥R F n (根)取4=n 柱距.2.13m d S a =≥承台底面尺寸3.0m ×2.4m ,边距3002002=d 满足要求。
五,确定复合桩基竖向承载力设计值该桩基属于非端承桩.3 n 按复合基桩计算竖向承载力设计值,采用群桩效应计算复合基桩承载力设计值5.1四桩承台力计算承台净面积:2256.64.044.20.3m A c =⨯-⨯=承台低地基极限阻力标准值,a ck kp q 160= a c ck ck kp n A q Q 4.262456.6160=⨯== a sk kp Q 04.1047=a sk kp Q 416= 分项系数70.1,65.1===c p s γγγ因为桩分布不规则,所以要对桩的距径进行修正,0.34.044.20.3886.0886.0=⨯⨯⨯==b n A d s c a 2.124.2==l B c 群桩效应系数查表得64.1,8.0==p s ηη 承台底土阻力群桩效应系数c e c e c c i c i cc A A A A ηηη+= 承台外正净面积:281.1)5.04.2()5.03(56.6m A e c =-⨯--=承台内正净面积:275.481.156.6m i A i c =-=查表得63.0,11.0==e c i c ηη 25.056.681.163.056.675.411.0=+=+=c e c e c c i c icc A A A A ηηη 则,复合桩基竖向承载力设计值R:KN Q Q Q R c ck c p pk p s sk s723.9597.14.26225.065.141664.165.104.10478.0=++=++=γηγηγη六,单桩设计吊运及吊运采用单点吊桩的强度进行桩身配筋计算,吊点位置在距桩顶,桩端平面处0.293L (L=10m ),起吊时桩身的最大正负弯矩:m kN q k kql M 8.42.1254.0,3.1,,0429.022max =⨯⨯===桩身采用c30混凝土,Ⅱ级钢,m kN kql M ⋅==8.260429.02max桩身截面有效高度:36.004.04.0=-=o h03615.02==o c s bh f M α 查表得9816.0=s γ 2253mm h f M A o y s s ==γ选用2Φ18(2253509mm A s >=)整个主筋为4Φ1821018mm A s =配筋率%6.0%636.0min =>=ρρ满足要求桩身强度:kN R KN A f A f s y c c 691.8866.2364)10183003604003.140.1(0.1)(=>=⨯+⨯⨯⨯=+ϕϕ满足要求七,桩顶作用验算7.1中心受压计算KN G F 6.32996.30929902015.24.20.32990=+=⨯⨯⨯+=+kN n G F N 9.82446.3299==+= kN R N o 69.8869.8249.8240.1=<=⨯=γ7.2偏心荷载计算KN KN M n G F N i6.5812.106875.0475.0103046.329)(22maxmin max =⨯⨯±=⨯±+=∑∑γγ 0,03.10642.112.1068min max >=≈=N KN R KN N o o γγ满足要求八,承台设计8.1承台尺寸柱插入深度1000mm ,柱底与杯底距50mm ,承台厚1450mm ,采用c30混凝土,钢筋采用二级钢,台底保护层厚100mm8.2冲切承载力验算承台底面在45°范围之内,可不进行冲切验算8.3 受弯计算由桩受力可知,2.1068max KN N =平均受力KN N 9.824= KN n G N N j 8.99046.3092.1068max max =-=-= KN n F n G N N j 5.74742990===-= 承台1-1截面处最大弯矩m KN y N M j ⋅=+⨯==64.792)24.02.0(6.19812max 22175)1001050(3009.0792640009.0mm h f M A o y s =-⨯⨯== 选配15Φ14221752308mm A s >=承台2-2截面处最大弯矩m KN y N M j ⋅=+⨯==64.792)24.02.0(6.19812max 选配15Φ14221752308mm A s >=8.4受剪承载力计算mm a y 200=,mm a x 200=,3.015.01350200<====o x y x h a λλ 取2.03.012.0,3.0=+==λβλ ○1KN h f f o y c 4.92661035.14.23.142.06=⨯⨯⨯⨯=β KN v o 4.92666.19818.99020.1<=⨯⨯=γ○2KN h f f o y c 115831035.133.142.06=⨯⨯⨯⨯=β KN v o 115836.19818.99020.1<=⨯⨯=γ。
基础工程课程设计(桩基础)-、桩基基本参数的确定1、设计采用钢筋混凝土预制方桩,断面400mmΧ400mm,以第四层粉质粘性土作为持力层。
承台埋深1.5m 。
承台高度1m,桩顶伸入承台0.05m。
钢筋保护层取70mm。
承台有效高度为:h0=1-0.07=0.93m=930mm。
2、桩长设计按照桩基规范,持力层为粉质粘土时,预制桩桩端入持力层深度不小于2倍桩径=2Χ400mm=800mm。
桩长:L=10m。
进入持力层2150mm >800mm。
3、材料桩:混凝土强度等级C30,配置HRB335级钢筋。
承台:混凝土强度等级C20,配置HRB335级钢筋。
4、单桩竖向承载力设计值R a的确定查阅相关文献规范,可知:对于淤泥质粘土q sik=10KPA;粘土q sik=40KPA,q pk=2000KPA;粉质粘土q sik =45KPA。
取桩打穿到粉质粘性土IV层,打穿深度为10m。
由公式Ra= q pk×Ap+U p∑q sik×Li=2000×0.4×0.4+4×0.4×(10×4.6+40×2.2+45×2.15)=689KN 5、桩数及平面布置1.确定桩的数量,间距和布置方式。
初步选桩根数为,F k=F/1.35=3000/1.35=2222n> F k /Ra=2222/689=3.22则取n=4根,按两排,每排两根桩布置,为方形承台布置。
桩距按《基础工程》表4—9查得,桩距S=3.0×bp=3.0×0.4=1.2 m承台边长:a=2×400+1200=2000mm承台埋深1.5m 。
承台高度1m,桩顶伸入承台0.05m。
钢筋保护层取70mm。
承台有效高度为:h0=1-0.07=0.93m=930mm。
二、验算桩基的承载力(1)承载力验算Q k=(F k+G k)/n=(2222+20Χ2Χ2Χ1.5)/4=620KN<689kNQ kmax=Q k+=620+(320/1.35+0.9Χ50/1.35) Χ1.2/(4Χ1.2Χ1.2)=676KN<1.2R aQ kmin= Q k-=620-(320/1.35+0.9Χ50/1.35) Χ1.2/(4Χ1.2Χ1.2)=563KN>0H1k=H k/n=50/1.35/4=9.25kN<R ha(2)沉降计验算。
桩基础课程设计(仅供参考)1.设计资料本次设计的资料主要包括以下内容:1.1 工程概况本工程为一座钢筋混凝土结构的多层住宅楼,共有20层,总高度约为60米。
建筑占地面积为5000平方米,总建筑面积约为8万平方米。
本工程的设计目标是满足现代城市居民的居住需求,提供舒适、安全、便捷的居住环境。
1.2 结构设计本工程的结构设计采用了现代化的钢筋混凝土结构设计理念,结构形式为框架结构。
在设计过程中,我们充分考虑了地震、风荷载等自然因素的影响,保证了建筑的安全性和稳定性。
同时,我们还考虑了建筑的使用寿命和维修保养等因素,使得建筑的经济性和可靠性得到了充分的保障。
1.3 设备设计本工程的设备设计主要包括电气、水暖、通风、空调等方面。
在设计过程中,我们采用了现代化的设计理念和技术手段,使得建筑的设备系统能够满足居民的各种需求,同时又具有良好的节能环保性能。
1.4 施工方案本工程的施工方案主要包括施工组织设计、施工工艺流程设计、材料采购和管理等方面。
在设计过程中,我们充分考虑了施工过程中可能出现的各种问题和风险,制定了详细的施工方案,以保证工程的顺利进行和质量的保证。
1.5 质量控制本工程的质量控制主要包括材料质量控制、施工过程控制和验收检查等方面。
在设计过程中,我们制定了严格的质量控制标准和流程,对工程的每个环节进行了细致的监控和检查,以保证工程的质量达到预期的要求。
1.6 安全管理本工程的安全管理主要包括施工安全、工程质量安全和环境保护安全等方面。
在设计过程中,我们充分考虑了各种安全风险和可能出现的环境问题,制定了详细的安全管理措施和预案,以保证工程的安全和环保水平达到预期的要求。
1.1 上部结构资料1.2 建筑物场地资料在进行桩基础设计之前,需要收集上部结构和建筑物场地的相关资料。
2.选择桩型、桩端持力层、承台埋深2.1 选择桩型2.2 选择桩的几何尺寸以及承台埋深在选择桩型、桩的几何尺寸以及承台埋深时,需要考虑土壤的力学性质和桩基础的受力特点。
设计题目本次课程设计题目:预制桩基设计一、设计荷载(1)柱底荷载效应标准组合值如下:○A轴荷载:F k=1632kN M k=195 kN•m V k=86kN○B轴荷载:F k=1980kN M k=164 kN•m V k=93kN○C轴荷载:F k=1342kN M k=187 kN•m V k=96kN(2)柱底荷载效应基本组合值如下:○A轴荷载:F=2203.2 kN M=263.3kN•m V=116.1kN○B轴荷载:F=2673 kN M=221.4kN•m V=125.5kN○C轴荷载:F=1811.7 kN M=252.5kN•m V=129.6kN设计B轴柱下桩基,A,C轴柱下仅设计承台尺寸和估算桩数。
二、设计资料、地层条件及其参数某住宅楼,六层钢筋混凝土框架结构体系,建筑场地位于城郊建筑室内地面标高为±0.00,室外地面标高为- 0.15m地下水位位于地表以下3.3m,柱底标高-0.7m。
地基基础设计等级:乙级工程地质条件:该建筑物地处二级阶地,土层分布、物理力学性质指标见下表设计规范:建筑地基基础设计规范(GB 50007-2002);混凝土结构设计规范(GB 50010--2002);建筑桩基技术规范(JGJ 94--2008)。
三、预制桩基设计建筑物基础设计方案采用混凝土预制桩,具体设计方案如下:室外地坪标高为- 0.15m,自然地面标高同室外地坪标高。
该建筑桩基属乙级建筑基桩,拟采用截面为400mm*400mm的混凝土预制方桩,以6号土层草黄色粉质黏土为持力层,桩尖深入1.2m,设计桩长11.0m,初步设计承台高0.8m,承台底面埋置深度-1.50m,桩顶伸入承台50mm。
1、单桩承载力计算根据以上设计,桩顶标高为-1.5m,装底标高为-12.6m,桩长11m。
(1) 单桩竖向极限承载力标准值单桩竖向极限承载力标准值按下式计算: Q uk = Q sk + Q pk = u p ∑q sik l i + A p q pk 由于Q sk =4×0.4×(78×1.25+32×2+32×3.5+50×4.0+78×0.25)=789kNQ pk =0.4×0.4×2800=448kN则Q uk =789+448=1237kN (2)基桩竖向承载力特征值本工程不考虑承台土效应,取ηc =0,则有 R= R a =K Q uk =21237=618.5kN 根据上部荷载初步估计粧数为 n=a k R F =5.6181980=3.20 则设计桩数为4根。
°基础工程课程设计三:设计内容:(1) 确定桩型,桩长根据地质资料,以黄褐色粘土为桩尖持力层,钢筋混凝土预制桩Φ500mm ,承台埋深1.8m.,初步将桩打入第五层黄褐黏土下3.2m ,桩长为19.5m (1) 确定单桩或基桩竖向承载力 查《建筑地基基础设计规范》(GBJ 7-89)得: 土层液性指数Ic 预制桩侧阻力特征值 Q sia (kPa)桩在该土层伸入长度 L n (m) 灰色粘土 0.7 25.4 8.5 灰黄色粘土 0.5 31 4 黄色粉质粘土 0.35 35.2 3.6 黄褐色粘土0.25383.2预制桩桩端端阻力特征值:L=20m,Ic=0.25 q pk =2500kPa中柱:柱截面面积2220.04m d A P ==π柱截面周长m d U 57.1==π is i a pp pa l qu A q R ∑+=51.142325002.0)2.3386.32.354315.84.25(57.1=⨯+⨯+⨯+⨯+⨯⨯=R边柱:柱截面面积2220.04m d A P ==π柱截面周长m d U 57.1==πi sia p p pa l q u A q R ∑+=51.142325002.0)2.3386.32.354315.84.25(57.1=⨯+⨯+⨯+⨯+⨯⨯=R 角柱:柱截面面积2220.04m d A P ==π柱截面周长m d U 57.1==π is i a pp pa l qu A q R ∑+=51.142325002.0)2.3386.32.354315.84.25(57.1=⨯+⨯+⨯+⨯+⨯⨯=R(3)确定桩数、承台尺寸及建筑物的桩基础平面布置 ①、桩数n中柱: 86.351.142350001.11.1=÷⨯=≥R Fn 取4根 边柱:25.351.142342001.11.1=÷⨯=≥R Fn 取4根角柱:96.151.142325301.11.1=÷⨯=≥RFn 取2根②、柱距a S柱距a S 大小直接影响群桩的群桩效应,根据规范规定,2~5.1)4~3(==d S a (m)取2m ,边距取0.5m杂填土 316m kN=γ灰色黏土 39.17m kN=γ 7.0=l I 50.0=eo 12=ϕ kPa c 15= kPa f ak 110=32.18m kN =γMPa E S 0.4=50.0=l I 70.0=e o 16=ϕkPa c 25=kPa f ak 170=黄色粉质黏土30.18m kN =γ MPa E s 0.5= 35.0=l I 70.0=e kPa f ak 200=黄褐色黏土35.18mkN=γo 18=ϕ kPa c 35=MPa E S 0.6= kPa f ak 220=③、桩布置形式采用正方形布置,承台尺寸如图示:中柱:边柱:角柱:④、桩数验算 承台及上覆土重中柱:kN G 36033202=⨯⨯⨯=477.351.1423)3605000(≤=÷+=+RGF 边柱:kNG 36033202=⨯⨯⨯=420.351.1423)3604200(≤=÷+=+RGF 角柱:kNG 24032220=⨯⨯⨯=295.151.1423)2402530(≤=÷+=+RGF(5)桩基验算①、桩基竖向承载力验算 中柱:F=5000kN M=240kN.m H=50kN 荷载作用。
预制桩基础工程课程设计一、课程目标知识目标:1. 理解预制桩基础工程的基本概念,掌握其分类、构造及应用场景;2. 掌握预制桩的受力特点、桩基承载力的计算方法及影响因素;3. 了解预制桩施工工艺流程、施工质量控制要点及验收标准。
技能目标:1. 能够分析预制桩基础工程的案例,进行简单的桩基受力分析;2. 能够运用所学知识,解决实际工程中预制桩基础设计及施工问题;3. 能够通过查阅资料、开展实地调查等方式,了解预制桩基础工程的发展动态。
情感态度价值观目标:1. 培养学生对土木工程专业的热爱,增强对预制桩基础工程领域的学习兴趣;2. 培养学生的团队协作精神,提高沟通、交流能力;3. 增强学生的社会责任感,认识到预制桩基础工程在国民经济建设中的重要性。
本课程旨在通过理论教学与实践相结合的方式,使学生掌握预制桩基础工程的基本知识、技能,培养学生在实际工程中的应用能力,同时注重培养学生的专业兴趣和社会责任感。
针对高中年级学生的特点,课程内容将紧密结合教材,注重知识点的系统性和连贯性,以适应学生的认知水平和学习需求。
在教学过程中,教师应关注学生的个体差异,提供个性化指导,确保课程目标的达成。
二、教学内容1. 预制桩基础工程概述- 了解预制桩的定义、分类及构造- 掌握预制桩的应用场景及优缺点2. 预制桩受力特点及承载力计算- 学习预制桩的受力分析及桩基承载力计算方法- 分析影响预制桩承载力的因素3. 预制桩施工工艺及质量控制- 掌握预制桩施工工艺流程- 学习预制桩施工质量控制要点及验收标准4. 预制桩基础工程设计- 了解预制桩基础工程设计的基本原则和方法- 学习预制桩基础工程的案例分析5. 预制桩基础工程发展动态- 了解国内外预制桩基础工程的新技术、新工艺- 探讨预制桩基础工程的发展趋势教学内容依据教材章节进行组织,确保科学性和系统性。
在教学过程中,教师将根据课程目标和学生的实际情况,合理安排教学进度,注重理论与实践相结合。
桩基础课程设计-(预制桩参考)一、前言预制桩工程是建筑工程中应用最为广泛的一种施工技术,其主要优点在于快速实施和维护简易。
近几十年来,随着国家的不断发展,城市化加速,市政建设与公路建设的频繁进行,预制桩以其独特的优良性能在建筑行业中显示出了无限的潜力。
然而,预制桩的施工、运输以及安装等过程中存在许多质量问题,对于质量承诺存在极大影响,因此,正确理解并正确设计预制桩基础桩型结构,进行合理预应力研究变得极其重要。
二、概要预制桩基础课程设计的主要内容包括:1、介绍预制桩的结构形式和细节;2、进行工程量测量和规划;3、确定基础基础预应力研究方案;4 、进行桩型结构设计;5、施工管理及报告撰写。
三、预制桩结构形式预制桩基础一般普遍存在于城市建筑、道路、桥梁、河流等,其结构形式有很多种,比如埋深桩、外挖桩和实浇桩。
1.埋深桩:推荐开挖宽度为1.2~1.4米,埋深深度符合项目要求,一般为4~8m,采用护筒埋深桩法施工,推荐使用上下两段钢管;2.外挖桩:外挖桩一般用于经常有水位变化的地下水位较低的情况,将桩型材料垂直布置于桩墙内,在上部垫以护笼,避免护笼与桩墙的摩擦力对护笼的破坏,一般采用冷拔构件形成护笼;3.实浇桩:实浇桩用重力预制桩砼或浆砼实浇,主要用在水位较低,桩墙底层可以采取混凝土浇筑,而上面只需要安放护笼。
四、基础基础预应力研究基础基础预应力研究是预制桩施工项目的重要步骤,对于此类工作需求的客观分析,可以采用施工图纸和现场实验数据等多种方法同时考虑,结合施工经验合理确定预应力得以满足应力及细节设计要求。
实施预应力研究时,应注意材料力学性能、受力状态、工程量、护筒角度及支座类型等因素,以及设计相关准则要求,以保证施工的质量与效果。
五、桩型结构设计桩型结构设计主要包括桩底承载力计算、桩顶仰角计算、护筒控制角计算、预制桩段的计算和曲线计算等步骤,且需要考虑护筒承载及钢筋细部梁柱结构,最后将各步骤的计算结果综合进行桩型结构设计。
基础工程课程设计任务书某办公楼桩基础设计姓名:王怀正学号:1011111108院系:建筑工程学院专业:土木工程二○一三年十一月一、计算书中需要完成的内容:(一):设计资料 1、建筑场地土层按其成因土的特征和力学性质的不同自上而下划分为四层,物理力学指标见下表。
地下水位在地面以下2.0m ,地下水水质分析结果表明,本场地下水无腐蚀性。
建筑安全等级为Ⅱ级,已知作用到基础顶面处的柱荷载:轴向力kN F K 2850=,力矩m kN M ⋅=0.395,水平力kN H 42=。
2、根据地基条件和施工设备,采用钢筋混凝土预制桩,以黄土粉质粘土为桩尖持力层。
3、桩身混凝土强度为C35,承台混凝土强度为C30。
4、据地质资料,以黄土粉质粘土为桩尖持力层,钢筋混凝土预制桩断面尺寸为**×**,桩长为10m 。
5、桩身资料: 混凝土为C35,轴心抗压强度设计值fc= 16.7N/mm 2,主筋采用:4Φ16,强度设计值:fy=300N/mm 2。
6、台设计资料:混凝土为C30,轴心抗压强度设计值为fc=14.3 N/mm 2,承台底面埋深:D =2.0m 。
附:1):土层主要物理力学指标; 附表一:附表二:桩静载荷试验Q-s曲线(如下图)(二)设计要求:1、单桩竖向承载力标准值和设计值的计算;2、确定桩数和桩的平面布置图;3、群桩中基桩的受力验算4、承台结构设计及验算;5、桩及承台的施工图设计:包括桩的平面布置图,桩身配筋图,承台配筋和必要的施工说明;6、需要提交的报告:计算说明书和桩基础施工图,使用A4图纸打印。
三:桩基础设计(一):必要资料准备1、建筑物的类型及规模:住宅楼2、岩土工程勘察报告:见上页附表3、环境及检测条件:地下水无腐蚀性,Q—S曲线见附表(二):外部荷载及桩型确定1、柱传来荷载:F= 2850kN 、M = 395kN ·m 、H = 42kN2、桩型确定:1)、由题意选桩为钢筋混凝土预制桩; 2)、构造尺寸:桩长L =10m ,截面尺寸:400mm ×400mm 3)、桩身:混凝土强度等级 C35、cf=16.7 N/mm 2、4Φ16yf=300 N/mm 24)、承台材料:混凝土强度等级C30、cf=14.3 N/mm 2、tf=1.43 N/mm 2(三):单桩承载力确定1、 单桩竖向承载力的确定: 1)、根据桩身材料强度(ϕ=1.0,配筋Φ16)()()kNA f A f R Sy p c 29138.8033004007.160.12=⨯+⨯⨯=''+=ϕ2)、根据地基基础规范公式计算: ①、桩尖土端承载力计算: 粉质粘土,LI=0.60,入土深度为12.0m由书105页表4-4知,当h 在9和16之间时,当LI=0.75时,1500=pk q kPa,当LI=0.5时,2100=pa q ,由线性内插法:75.06.0150075.05.015002100--=--pk q1860=pk q kPa ②、桩侧土摩擦力: 灰色粘土层1: 1.0LI = ,由表4-3,sik q =36~50kPa ,由线性内插法,取36kPa灰黄色粉质粘土层2: 0.60LI= ,由表4-3,sik q =50~66kPa ,由线性内插法可知,75.06.05075.05.05066--=--sik q ,kPa q sik 6.59=()kNl q u A q Q isik p pk uk 36.9116.5913694.044.018602=⨯+⨯⨯⨯+⨯=+=∑3)、根据静载荷试验数据计算:根据静载荷单桩承载力试验Q s -曲线,按明显拐点法得单桩极限承载力550ukN Q=单桩承载力标准值:55027522uk kN QR === 根据以上各种条件下的计算结果,取单桩竖向承载力特征值275akN R=4)、确定桩数和桩的布置:①、初步假定承台的尺寸为 3×4㎡ 上部结构传来垂直荷载: F=2850KN 承台和土自重: ()48020432=⨯⨯⨯=G kN桩数可取为n=1.1x (F+G )/Ra=1.1x (2850+480)/275=13.32,取n=16 桩距 :=S (3~4)d =(3~4)×0.4=1.2~1.6m 取 S =1.5m②、承台平面尺寸及桩排列如下图:承台平面布置图 1:100(四):单桩受力验算: 1、单桩所受平均作用力:35.248162023.53.52850=⨯⨯⨯+=+=n G F Q i <Ra 2、单桩所受最大及最小力:()()Ra kN kN i i x Mx n G F Q 2.125.271045.225222maxmaxmin 25.275.0825.25.14239535.248<>=+⨯⨯+±=±+=∑ 3、 单桩水平承载力计算:625.21642===n H H i kN,125.178162850==i V kN ,0147.0125.178625.2==i i V H <<121 即 iV与iH合力 与iV的夹角小于5∴单桩水平承载力满足要求,不需要进一步的验算。
1.1 选择桩型、桩端持力层 、承台埋深1.1.1 选择桩型根据施工场地、地基条件以及场地周围环境条件,选择桩基础。
采用静压预制桩.根据地基土层,采用摩擦桩。
1.1.2 选择桩的几何尺寸以及承台埋深依据地基土的分布,第③层是灰色淤泥质的粉质粘土,且比较后,而第④层是粉土夹粉质粘土,所以第④层是比较适合的桩端持力层。
桩端全断面进入持力层 1.0m (>2d ),工程桩入土深度为m h h 1.231123.88.1,=+++=由于第①层厚1.8m ,所以初步选择承台底进入第②层土0.3m ,即承台埋深为2.1m ,桩基的有效桩长即为23.1-2.1=21m 。
桩截面尺寸选用:由于经验关系建议:楼层<10时,桩边长取300~400,因此选择桩的尺寸为350mm ×350mm 。
桩分为两节,上段长11m ,下段长11m (不包括桩尖长度在内),实际桩长比有效桩长长1m ,这是考虑持力层可能有一定的起伏以及桩需要嵌入承台一定长度而留有的余地。
1.3 确定单桩竖向承载力标准值按静力触探法确定单桩竖向极限承载力标准值:2 40.35156-2.136 4.1431211110.351784.5 1166.34+218.6 1385kNuk sk pk ski i sk pQ Q Q u q l P A α=+=+⨯⨯⨯⨯⨯⨯⨯∑=〔()+++〕+==估算的单桩竖向承载力设计值(60.1==p s γγ) kN Q ppks6.8656.11385Q R sk1==+=γγ 按经验参数法确定单桩竖向承载力极限承载力标准值:2 40.35358+29125510.352200956.2269.51226kNuk sk pk Q Q Q =+⨯⨯⨯⨯⨯⨯⨯=(+)+=+=估算的单桩竖向承载力设计值(65.1==p s γγ)kN Q ppks74365.11226Q R sk2==+=γγ 由于R 1>R 2,所以最终按经验参数法计算单桩承载力设计值,即采用kN R R 7432==,初步确定桩数。
1.4 确定桩数和承台底面尺寸1.4.1 ①—B 柱桩数和承台的确定最大轴力组合的荷载:F 2160kN,M=204kN m Q 149kN ⋅=,=初步估算桩数,由于柱子是偏心受压,故考虑一定的系数,规范中建议取1.1~1.2,现在取1.1的系数,即:()22160n 1.1 1.1 3.2743F R ≥⨯=⨯=根 取n =4根,桩距 1.05m 3d =≥a S承台尺寸为1.9m 1.9m ⨯。
1.5 确定复合基桩竖向承载力设计值该桩基属于非端承桩,并n>3,承台底面下并非欠固结土,新填土等,故承台底面不会于土脱离,所以宜考虑桩群、土、承台的相互作用效应,按复合基桩计算竖向承载力设计值。
目前,考虑桩基的群桩效应的有两种方法。
《地基规范》采用等代实体法,《桩基规范》采用群桩效应系数法。
下面用群桩效应系数法计算B,C 复合基桩的竖向承载力设计值1.5.1四桩承台承载力计算(B 承台)承台净面积:22212.335.049.1m A c =⨯-=。
承台底地基土极限阻力标准值:KPa f q k ck 25012522=⨯== kN n A q Q c ck ck 19542.3250=⨯==kN l quQ iski sk 2.956==∑kN q A Q p p pk 5.269==分项系数70.1,65.1===c p s γγγ 群桩效应系数查表得:64.1,8.0==p s ηη承台底土阻力群桩效应系数:cece c c i c i cc A A A A ηηη+= 承台外区净面积2222.1)35.09.1(9.1m A e c =--= 承台内区净面积92.12.112.3=-=-=e c c i c A A A m 2查表63.0,11.0==ec i c ηη31.012.32.163.012.392.111.0=+=+=c ece c c i c i cc A A A A ηηη 那么,B 复合桩基竖向承载力设计值R:kN Q Q Q R cckcppkpssks76770.119531.065.15.26964.165.12.9568.0=++=++=γηγηγη 1.6 桩顶作用验算1.6.1四桩承台验算(B 承台)(1)荷载取B 柱的max N 组合:F 2294kN,M=78kN m Q 47kN •=,= 承台高度设为1m 等厚,荷载作用于承台顶面。
本工程安全等级为二级,建筑物的重要性系数0λ=1.0.由于柱处于①轴线,它是建筑物的边柱,所以室内填土比室外高,设为0.3m ,即室内高至承台底2.4m ,所以承台的平均埋深m d 25.2)4.21.2(21=+=。
作用在承台底形心处的竖向力有F,G,但是G 的分项系数取为1.2.kN G F 248919522942.12025.29.122942=+=⨯⨯⨯+=+作用在承台底形心处的弯矩∑=⨯+=kN M 12514778桩顶受力计算如下:kN y y M n G F N i 6746.046.012542489)(22max max =⨯⨯+=⨯++=∑∑ kN y y M n G F N i5706.046.012542489)(22max min =⨯⨯-=⨯-+=∑∑ kN n G F N 62242489==+=R kN N 2.1674max 0<=γ0min 0>N γkN R kN N 7676220=<=γ 满足要求(2)荷载取max M 组合:F 1977kN,M=254kN m Q 38kN •=,=∑=⨯+==+=+kNM kNG F 29213825421721951977桩顶受力计算如下: kN y y M n G F N i 7.6647.1215436.046.029242172)(22max max =+=⨯⨯+=⨯++=∑∑ kN y y M n G F N i3.4217.1215436.046.029242172)(22max min =-=⨯⨯-=⨯-+=∑∑ kN n G F N 54342172==+=R kN N 2.17.664max 0<=γ0min 0>N γkN R kN N 7675430=<=γ 满足要求1.7 桩基础沉降验算采用长期效应组合的荷载标准值进行桩基础的沉降计算。
由于桩基础的桩中心距小于6d ,所以可以采用分层总和法计算最终沉降量。
1.7.1 B 柱沉降验算竖向荷载标准值kN F 1764=基底处压力kPa A G F p 7.5339.19.12025.29.19.11764=⨯⨯⨯⨯+=+=基底自重压力kPa d 371.21.23.04.188.15.17=⨯⨯+⨯=γ基底处的附加应力kPa P P d 7.496377.5330=-=-=γ桩端平面下的土的自重应力c σ和附加应力z σ(04p z ασ=)计算如下: ①.在z=0时:1)101.19(12)108.17(8)104.18(3.04.188.15.17⨯-+⨯-+⨯-+⨯+⨯==∑i i c h γσ=206.9kPa kPa p bz b ls 7.4967.49625.044,25.0,02,10=⨯⨯=====ασα ②.在m z 2=时: kPa hii c 1.2251.929.206=⨯+==∑γσkPa p b z bls 16.1567.4960786.044,0786.0,1.29.142,10=⨯⨯======ασα③.在m z 8.2=时:kPa h i i c 38.2321.98.29.206=⨯+==∑γσkPa p b z b l s 8.887.4960447.044,0447.0,39.16.52,10=⨯⨯======ασα ④.在m z 3.4=时kPa h i i c 2461.93.49.206=⨯+==∑γσkPa p b z b l s 5.437.4960218.044,0218.0.0,5.49.16.82,1=⨯⨯======ασα将以上计算资料整理于表2.4表2.4 z c σσ,的计算结果(B 柱)在z=4.4m 处,2.0176.02465.43<==c zσσ,所以本基础取m Z n 3.4=计算沉降量。
计算如表2.5表2.5计算沉降量(B 柱)S 桩基础持力层性能良好,去沉降经验系数0.1=ψ。
短边方向桩数2=b n ,等效距径比4.235.049.19.1886.0886.0=⨯⨯==b n Ae d Sa ,长径比6035.021==dl,承台的长宽比0.1=BcLc,查表:59.17,9.1,031.0210===C C C082.059.17)12(9.11231.0)1(210=+--+=+-+=C n C n C b b e ψ所以,四桩桩基础最终沉降量'S S e ψψ==mm 21.65.75082.00.1=⨯⨯ 满足要求1.8桩身结构设计计算两端桩长各11m,采用单点吊立的强度进行桩身配筋设计。
吊立位置在距桩顶、桩端平面0.293l(L=11m),起吊时桩身最大正负弯矩2max0429.0KqL M=,其中K=1.3;./675.32.12535.02m kN q =⨯⨯=。
即为每延米桩的自重(1.2为恒载分项系数)。
桩身长采用混凝土强度C30,II 级钢筋,所以:M kN KqL M .8.2411675.33.10429.00429.022max =⨯⨯⨯==桩身截面有效高度m h 31.004.035.00=-=05156.03103503.14108.242620=⨯⨯⨯==bh f M c s α9735.0)05156.0211(21)211(21=⨯-+=-+=s s αγ桩身受拉主筋2602743103009735.0108.24mm h f M As y s =⨯⨯⨯==γ选用22214(308274)s A mm mm Φ=>,因此整个截面的主筋为2414,615s A mm Φ=,配筋率为566.0310350615=⨯=ρ%>4.0min =ρ%。
其他构造要求配筋见施工图2-10。
桩身强度R kN A f A f s y c c >=⨯+⨯⨯⨯⨯=+2.1742)6153103103503.140.1(0.1)(ψϕ 满足要求1.9 承台设计承台混凝土强度等级采用C201.9.1四桩承台设计(B 柱)由于桩的受力可知,桩顶最大反力kN N 674max =,平均反力kN N 622=,桩顶净反力:kNn F n G N N kN n G N N j j 5.573422943.6254195674max max ===-==-=-=(1) 柱对承台的冲切由图2-8,2175mm a a oy ox ==,承台厚度H=1.0m,计算截面处的有效高度mm h 9208010000=-=,承台底保护层厚度取80mm.冲垮比19.09201750====h a ox oy ox λλ 冲切系数846.12.019.072.02.072.0=+=+==ox oy ox d d λB 柱截面取2500500mm ⨯,混凝土的抗拉强度设计值kPa f t 1100=冲切力设计值kN QF F il 5.17205.5732294=-=-=∑m mm u m 7.22700)175500(4==+⨯=kN F kN h u f l m t 5.1720504492.07.21100846.100=>=⨯⨯⨯=γα(2) 角桩对承台的冲切由图2-8,mm c c mm a a y x 525,1752111==== 角桩冲垮比19.09201750111====h a x y x λλ 角桩的冲切系数23.12.019.048.02.048.0111=+=+==x y x λαα0111121)]2()2([h f a c a c t xy y x +++αα 92.01100)2175.0525.0(23.12⨯⨯+⨯⨯= kN N kN j 3.6258.1524max 0=>=γ 满足要求 (3)斜截面抗剪验算计算截面为I-I ,截面有效高度m h 92.00=,截面的计算宽度m b 9.10=,混凝土的抗压强度kPa Mpa f c 96006.9==,该计算截面的最大剪力设计值kN N V j 134867422max =⨯==mm a a y x 175== 剪跨比19.09201750====h a x y x λλ 剪切系数2449.03.019.012.03.012.0=+=+=x λβkN V kN h b f c 1348410992.09.196002449.0000=>=⨯⨯⨯=γβ 满足要求(4)受弯计算承台I-I 截面处最大弯矩m kN y N M j .8.471)235.0175.0(13482max =+⨯== II 级钢筋2/300mm N f y =26019009203009.0108.4719.0mm h f M A y s =⨯⨯⨯==每米宽度范围的配筋210009.11900mm A s ==,选用22714,10771000s A mm mm Φ=>整个承台宽度范围内用筋7 1.913.3⨯=根,取14根,而且双向布置,即1414Φ(双向布置)(5)承台局部受压验算B 柱截面面积225.05.05.0m A t =⨯=,局部受压净面积2125.0m A A t n ==,局部受压计算面积225.2)5.03()5.03(,m A A b b =⨯⨯⨯=混凝土的局部受压强度提高系数325.025.2,===t b A A ββ kN F kN A f B n c 2294972025.09600335.135.11=>=⨯⨯⨯=β 满足条件。