天津大学第五版-刘俊吉-物理化学课后习题答案(全)
- 格式:doc
- 大小:1.73 MB
- 文档页数:149
物理化学上册习题解(天津大学第五版)第一章 气体的 pVT 关系1-1 物质的体膨胀系数 V与等温压缩系数 T 的定义如下:1 V 1 VV TV T p试导出理想气体的V、T与压力、温度的关系?解:对于理想气体,pV=nRTV p T1 V VT V 1 V Tp VpT1 (nRT / p)V T1 ( nRT / p) Vp1 nR 1 V T 1 p V p V T 1 nRT 1 V p 1T V p 2 V p1-2 气柜内有 3 90kg 的流量输往使用车间,试问贮121.6kPa 、27℃的氯乙烯( C2H3Cl )气体 300m ,若以每小时 存的气体能用多少小时?解:设氯乙烯为理想气体,气柜内氯乙烯的物质的量为pV121.6 103300n 8.314 14618.623molRT 300.15 3 3 每小时 90kg 的流量折合 p 摩尔数为 v90 10 90 10 1441.153mol h 1M C 2H3Cl 62.45 n/v= ( 14618.623 ÷1441.153 ) =10.144 小时1-3 0 ℃、 101.325kPa 的条件常称为气体的标准状况。
试求甲烷在标准状况下的密度。
解:CH 4 n M CH 4 p M CH 4 101325 16 103 0.714kg m 3V RT 8.314 273.151-4 一抽成真空的球形容器,质量为 25.0000g 。
充以 4℃水之后,总质量为 125.0000g 。
若改用充以 25℃、 13.33kPa 的某碳氢化合物气体,则总质量为 25.0163g 。
试估算该气体的摩尔质量。
解:先求容器的容积V125.0000 25.000 100.0000 cm 3 100.0000cm 3H 2 O(l ) 1n=m/M=pV/RTM RTm 8.314 298.15 (25.0163 25.0000) mol pV 13330 10 430.31g1-5 两个体积均为 V 的玻璃球泡之间用细管连接,泡内密封着标准状况条件下的空气。
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载物理化学(天大第五版全册)课后习题答案地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容气体pVT性质1-1物质的体膨胀系数与等温压缩系数的定义如下:试导出理想气体的、与压力、温度的关系?解:对于理想气体,pV=nRT1-5 两个体积均为V的玻璃球泡之间用细管连接,泡内密封着标准状况条件下的空气。
若将其中一个球加热到100℃,另一个球则维持0℃,忽略连接管中气体体积,试求该容器内空气的压力。
解:方法一:在题目所给出的条件下,气体的量不变。
并且设玻璃泡的体积不随温度而变化,则始态为终态(f)时1-8 如图所示一带隔板的容器中,两侧分别有同温同压的氢气与氮气,二者均克视为理想气体。
(1)保持容器内温度恒定时抽去隔板,且隔板本身的体积可忽略不计,试求两种气体混合后的压力。
(2)隔板抽去前后,H2及N2的摩尔体积是否相同?(3)隔板抽去后,混合气体中H2及N2的分压力之比以及它们的分体积各为若干?解:(1)抽隔板前两侧压力均为p,温度均为T。
(1)得:而抽去隔板后,体积为4dm3,温度为,所以压力为(2)比较式(1)、(2),可见抽去隔板后两种气体混合后的压力仍为p。
(2)抽隔板前,H2的摩尔体积为,N2的摩尔体积抽去隔板后所以有,可见,隔板抽去前后,H2及N2的摩尔体积相同。
(3)所以有*1-17 试由波义尔温度TB的定义式,试证范德华气体的TB可表示为TB=a/(bR)式中a、b为范德华常数。
解:先将范德华方程整理成将上式两边同乘以V得求导数当p→0时,于是有当p→0时V→∞,(V-nb)2≈V2,所以有 TB= a/(bR)第二章热力学第一定律2-1 1mol理想气体于恒定压力下升温1℃,试求过程中气体与环境交换的功W。
物理化学(天⼤第五版全册)课后习题答案第⼀章⽓体pVT 性质1-1物质的体膨胀系数V α与等温压缩系数T κ的定义如下:1 1TT p V p V V T V V-=??? =κα试导出理想⽓体的V α、T κ与压⼒、温度的关系解:对于理想⽓体,pV=nRT111 )/(11-=?=?==??? =T TVV p nR V T p nRT V T V V p p V α 1211 )/(11-=?=?=???? ????-=???? ????-=p p V V pnRT V p p nRT V p V V T T T κ 1-5 两个体积均为V 的玻璃球泡之间⽤细管连接,泡内密封着标准状况条件下的空⽓。
若将其中⼀个球加热到100℃,另⼀个球则维持0℃,忽略连接管中⽓体体积,试求该容器内空⽓的压⼒。
解:⽅法⼀:在题⽬所给出的条件下,⽓体的量不变。
并且设玻璃泡的体积不随温度⽽变化,则始态为 )/(2,2,1i i i i RT V p n n n =+=终态(f )时+=?+=+=ff ff f ff f f fT T T T R Vp T V T V R p n n n ,2,1,1,2,2,1,2,1 kPaT T T T T p T T T T VR n p f f f f i i ff f f f 00.117)15.27315.373(15.27315.27315.373325.1012 2,2,1,2,1,2,1,2,1=+=???+=? ??+=(1)保持容器内温度恒定时抽去隔板,且隔板本⾝的体积可忽略不计,试求两种⽓体混合后的压⼒。
(2)隔板抽去前后,H 2及N 2的摩尔体积是否相同(3)隔板抽去后,混合⽓体中H 2及N 2的分压⼒之⽐以及它们的分体积各为若⼲解:(1)抽隔板前两侧压⼒均为p ,温度均为T 。
p dmRT n p dmRT n p N N H H ====33132222 (1)得:223N Hn n =⽽抽去隔板后,体积为4dm 3,温度为,所以压⼒为3331444)3(2222dm RT n dm RT n dm RT n n V nRT p N N N N ==+== (2)⽐较式(1)、(2),可见抽去隔板后两种⽓体混合后的压⼒仍为p 。
第一章气体的pVT关系1-1物质的体膨胀系数V α与等温压缩系数T κ的定义如下: 试导出理想气体的V α、T κ与压力、温度的关系?解:对于理想气体,pV=nRT1-2 气柜内有121.6kPa 、27℃的氯乙烯(C 2H 3Cl )气体300m 3,若以每小时90kg 的流量输往使用车间,试问贮存的气体能用多少小时?解:设氯乙烯为理想气体,气柜内氯乙烯的物质的量为每小时90kg 的流量折合p 摩尔数为 133153.144145.621090109032-⋅=⨯=⨯=h mol M v Cl H Cn/v=(14618.623÷1441.153)=10.144小时1-3 0℃、101.325kPa 的条件常称为气体的标准状况。
试求甲烷在标准状况下的密度。
解:33714.015.273314.81016101325444--⋅=⨯⨯⨯=⋅=⋅=m kg M RT p M V n CH CH CHρ 1-4 一抽成真空的球形容器,质量为25.0000g 。
充以4℃水之后,总质量为125.0000g 。
若改用充以25℃、13.33kPa 的某碳氢化合物气体,则总质量为25.0163g 。
试估算该气体的摩尔质量。
解:先求容器的容积33)(0000.10010000.100000.250000.1252cm cm Vl O H ==-=ρ n=m/M=pV/RT1-5 两个体积均为V 的玻璃球泡之间用细管连接,泡内密封着标准状况条件下的空气。
若将其中一个球加热到100℃,另一个球则维持0℃,忽略连接管中气体体积,试求该容器内空气的压力。
解:方法一:在题目所给出的条件下,气体的量不变。
并且设玻璃泡的体积不随温度而变化,则始态为)/(2,2,1i i i i RT V p n n n =+=终态(f )时 ⎪⎪⎭⎫⎝⎛+=⎪⎪⎭⎫ ⎝⎛+=+=ff ff f ff f ff T T T T R Vp T V T V R p n n n,2,1,1,2,2,1,2,1 1-6 0℃时氯甲烷(CH 3Cl )气体的密度ρ随压力的变化如下。
第一章 气体的pVT 关系1-1物质的体膨胀系数V α与等温压缩系数T κ的定义如下:1 1TT p V p V V T V V ⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫ ⎝⎛∂∂=κα 试导出理想气体的V α、T κ与压力、温度的关系? 解:对于理想气体,pV=nRT111 )/(11-=⋅=⋅=⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂=T T VV p nR V T p nRT V T V V p p V α 1211 )/(11-=⋅=⋅=⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎪⎭⎫ ⎝⎛∂∂-=p p VV pnRT V p p nRT V pV V T T T κ 1-2 气柜内有121.6kPa 、27℃的氯乙烯(C 2H 3Cl )气体300m 3,若以每小时90kg 的流量输往使用车间,试问贮存的气体能用多少小时?解:设氯乙烯为理想气体,气柜内氯乙烯的物质的量为mol RT pV n 623.1461815.300314.8300106.1213=⨯⨯⨯== 每小时90kg 的流量折合p 摩尔数为133153.144145.621090109032-⋅=⨯=⨯=h mol M v Cl H C n/v=(14618.623÷1441.153)=10.144小时1-3 0℃、101.325kPa 的条件常称为气体的标准状况。
试求甲烷在标准状况下的密度。
解:33714.015.273314.81016101325444--⋅=⨯⨯⨯=⋅=⋅=m kg M RT p M V n CH CH CHρ 1-4 一抽成真空的球形容器,质量为25.0000g 。
充以4℃水之后,总质量为125.0000g 。
若改用充以25℃、13.33kPa 的某碳氢化合物气体,则总质量为25.0163g 。
试估算该气体的摩尔质量。
解:先求容器的容积33)(0000.10010000.100000.250000.1252cm cm V l O H ==-=ρn=m/M=pV/RTmol g pV RTm M ⋅=⨯-⨯⨯==-31.301013330)0000.250163.25(15.298314.841-5 两个体积均为V 的玻璃球泡之间用细管连接,泡内密封着标准状况条件下的空气。
(3) y H3n N2n N23n N2y N所以有P H :P N 231汀:4p3:1第一章气1- 1物质的体膨胀系数 V 与等温压缩系数T 的定义如下:解:对于理想气体,pV=nRT1- 5两个体积均为V 的玻璃球泡之间用细管连接,泡内密封着标准状况条件下的空气。
若将其中一个球加热到100C ,另一个球则维持0C,忽略连接管中气体体积,试求该容器 内空气的压力。
解:方法一:在题目所给出的条件下,气体的量不变。
并且设玻璃泡的体积不随温度而 变化,则始态为n n 口 n 2J 2 p i V /(RT i )1-8如图所示一带隔板的容器中,两侧分别有同温同压的氢气与氮气,二者均克视为理 想气体。
3n N 2)£蚀孚啤⑵4dm 3 4dm 3 1dm 3(2),可见抽去隔板后两种气体混合后的压力仍为 p 。
RT/ p ,N 2 的摩尔体积 V m ,N 2RT / p抽去隔板后 所以有 V m,H 2RT/ P ,V m,N 2RT / p试导出理想气体的T与压力、温度的关系?终态(f )时nPfV V p fV T2,f%f n 2,fRRT 1, f T 2, fT vT 1, f T 2, f(1) 保持容器内温度恒定时抽去隔板,且隔板本身的体积可忽略不计,试求两种气体 混合后的压力。
(2) 隔板抽去前后,H 及N 的摩尔体积是否相同?(3) 隔板抽去后,混合气体中H 2及N 2的分压力之比以及它们的分体积各为若干? 解: P H(1)抽隔板前两侧压力均为p ,温度均为T o“H ZRT厂 PN3dm叽RTp ( 1) 1dm 3得: 叶23n N 2而抽去隔板后, 体积为4dm,温度为,所以压力为p 乎 5N2 比较式(1)、(2)抽隔板前,“的摩尔体积为v m ,H 2可见,隔板抽去前后, “及N 的摩尔体积相同。
*1-17试由波义尔温度T B 的定义式,试证范德华气体的 T B 可表示为T B =a/( bR式中a 、b 为范德华常数。
第一章 气体的pVT 关系1-1物质的体膨胀系数V α与等温压缩系数T κ的定义如下:1 1TT p V p V V T V V ⎪⎪⎭⎫⎝⎛∂∂-=⎪⎭⎫ ⎝⎛∂∂=κα 试导出理想气体的V α、T κ与压力、温度的关系? 解:对于理想气体,pV=nRT111 )/(11-=⋅=⋅=⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂=T TVV p nR V T p nRT V T V V p p V α 1211 )/(11-=⋅=⋅=⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎪⎭⎫ ⎝⎛∂∂-=p p V V pnRT V p p nRT V p V V T T T κ 1-2 气柜内有121.6kPa 、27℃的氯乙烯(C 2H 3Cl )气体300m 3,若以每小时90kg 的流量输往使用车间,试问贮存的气体能用多少小时?解:设氯乙烯为理想气体,气柜内氯乙烯的物质的量为mol RT pV n 623.1461815.300314.8300106.1213=⨯⨯⨯== 每小时90kg 的流量折合p 摩尔数为133153.144145.621090109032-⋅=⨯=⨯=h mol M v Cl H C n/v=(14618.623÷1441.153)=10.144小时1-3 0℃、101.325kPa 的条件常称为气体的标准状况。
试求甲烷在标准状况下的密度。
解:33714.015.273314.81016101325444--⋅=⨯⨯⨯=⋅=⋅=m kg M RT p M V n CH CH CHρ 1-4 一抽成真空的球形容器,质量为25.0000g 。
充以4℃水之后,总质量为125.0000g 。
若改用充以25℃、13.33kPa 的某碳氢化合物气体,则总质量为25.0163g 。
试估算该气体的摩尔质量。
解:先求容器的容积33)(0000.10010000.100000.250000.1252cm cm V l O H ==-=ρn=m/M=pV/RTmol g pV RTm M ⋅=⨯-⨯⨯==-31.301013330)0000.250163.25(15.298314.841-5 两个体积均为V 的玻璃球泡之间用细管连接,泡内密封着标准状况条件下的空气。
第一章气体的pVT 关系1-1物质的体膨胀系数V α与等温压缩系数T κ的定义如下:1 1TT p V p V V T V V ⎪⎪⎭⎫⎝⎛∂∂-=⎪⎭⎫ ⎝⎛∂∂=κα 试导出理想气体的V α、T κ与压力、温度的关系?解:对于理想气体,pV=nRT111 )/(11-=⋅=⋅=⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂=T TVV p nR V T p nRT V T V V p p V α 1211 )/(11-=⋅=⋅=⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎪⎭⎫ ⎝⎛∂∂-=p p V V pnRT V p p nRT V p V V T T T κ 1-2 气柜内有121.6kPa 、27℃的氯乙烯(C 2H 3Cl )气体300m 3,若以每小时90kg 的流量输往使用车间,试问贮存的气体能用多少小时?解:设氯乙烯为理想气体,气柜内氯乙烯的物质的量为mol RT pV n 623.1461815.300314.8300106.1213=⨯⨯⨯==每小时90kg 的流量折合p 摩尔数为 133153.144145.621090109032-⋅=⨯=⨯=h mol M v Cl H Cn/v=(14618.623÷1441.153)=10.144小时1-3 0℃、101.325kPa 的条件常称为气体的标准状况。
试求甲烷在标准状况下的密度。
解:33714.015.273314.81016101325444--⋅=⨯⨯⨯=⋅=⋅=m kg M RT p M V n CH CH CHρ 1-4 一抽成真空的球形容器,质量为25.0000g 。
充以4℃水之后,总质量为125.0000g 。
若改用充以25℃、13.33kPa 的某碳氢化合物气体,则总质量为25.0163g 。
试估算该气体的摩尔质量。
解:先求容器的容积33)(0000.10010000.100000.250000.1252cm cm Vl O H ==-=ρ n=m/M=pV/RTmol g pV RTm M ⋅=⨯-⨯⨯==-31.301013330)0000.250163.25(15.298314.841-5 两个体积均为V 的玻璃球泡之间用细管连接,泡内密封着标准状况条件下的空气。
第一章气体pVT 性质1-1物质的体膨胀系数V与等温压缩系数T的定义如下:11TTpVpV VTV V 试导出理想气体的V、T与压力、温度的关系?解:对于理想气体,pV=nRT111)/(11TT V VpnR VT p nRT V T V V ppV1211)/(11ppV VpnRT Vpp nRT VpV VT T T1-5 两个体积均为V 的玻璃球泡之间用细管连接,泡内密封着标准状况条件下的空气。
若将其中一个球加热到100℃,另一个球则维持0℃,忽略连接管中气体体积,试求该容器内空气的压力。
解:方法一:在题目所给出的条件下,气体的量不变。
并且设玻璃泡的体积不随温度而变化,则始态为)/(2,2,1i i iiRT V p n n n终态(f )时ff ff f ff f ff T T T T RV p T V T V R p n n n,2,1,1,2,2,1,2,1kPaT T T T T p T T T T VR np ff ff ii ff f f f00.117)15.27315.373(15.27315.27315.373325.10122,2,1,2,1,2,1,2,11-8 如图所示一带隔板的容器中,两侧分别有同温同压的氢气与氮气,二者均克视为理想气体。
H 2 3dm 3p TN 2 1dm 3p T(1)保持容器内温度恒定时抽去隔板,且隔板本身的体积可忽略不计,试求两种气体混合后的压力。
(2)隔板抽去前后,H 2及N 2的摩尔体积是否相同?(3)隔板抽去后,混合气体中H 2及N 2的分压力之比以及它们的分体积各为若干?解:(1)抽隔板前两侧压力均为p ,温度均为T 。
pdmRTn p dmRTn p N NH H33132222(1)得:223NHn n 而抽去隔板后,体积为4dm 3,温度为,所以压力为3331444)3(2222dmRTn dmRTn dmRT n n VnRT pN N N N(2)比较式(1)、(2),可见抽去隔板后两种气体混合后的压力仍为p 。
第一章 气体pVT 性质1-1物质的体膨胀系数V α与等温压缩系数T κ的定义如下: 试导出理想气体的V α、T κ与压力、温度的关系?解:对于理想气体,pV=nRT1-2 气柜内有121.6kPa 、27℃的氯乙烯(C 2H 3Cl )气体300m 3,若以每小时90kg 的流量输往使用车间,试问贮存的气体能用多少小时?解:设氯乙烯为理想气体,气柜内氯乙烯的物质的量为每小时90kg 的流量折合p 摩尔数为 133153.144145.621090109032-⋅=⨯=⨯=h mol M v Cl H C n/v=(14618.623÷1441.153)=10.144小时1-3 0℃、101.325kPa 的条件常称为气体的标准状况。
试求甲烷在标准状况下的密度。
解:33714.015.273314.81016101325444--⋅=⨯⨯⨯=⋅=⋅=m kg M RT p M V n CH CH CHρ 1-4 一抽成真空的球形容器,质量为25.0000g 。
充以4℃水之后,总质量为125.0000g 。
若改用充以25℃、13.33kPa 的某碳氢化合物气体,则总质量为25.0163g 。
试估算该气体的摩尔质量。
解:先求容器的容积33)(0000.10010000.100000.250000.1252cm cm V l O H ==-=ρn=m/M=pV/RT1-5 两个体积均为V 的玻璃球泡之间用细管连接,泡内密封着标准状况条件下的空气。
若将其中一个球加热到100℃,另一个球则维持0℃,忽略连接管中气体体积,试求该容器内空气的压力。
解:方法一:在题目所给出的条件下,气体的量不变。
并且设玻璃泡的体积不随温度而变化,则始态为 )/(2,2,1i i i i RT V p n n n =+=终态(f )时 ⎪⎪⎭⎫⎝⎛+=⎪⎪⎭⎫ ⎝⎛+=+=f f ff f f f f f f T T T T R Vp T V T V R p n n n ,2,1,1,2,2,1,2,1 1-6 0℃时氯甲烷(CH 3Cl )气体的密度ρ随压力的变化如下。
第一章 气体的pVT 关系
1-1物质的体膨胀系数V α与等温压缩系数T κ的定义如下:
1
1T
T p
V p V V T V V
⎪⎪⎭⎫ ⎝
⎛∂∂-=⎪⎭⎫
⎝⎛∂∂=
κα 试导出理想气体的V α、T κ与压力、温度的关系? 解:对于理想气体,pV=nRT
111 )/(11-=⋅=⋅=⎪⎭⎫
⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂=
T T V
V p nR V T p nRT V T V V p p V α 1
211 )/(11-=⋅=⋅=⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎪⎭⎫ ⎝⎛∂∂-
=p p V V p nRT V p p nRT V p
V
V T
T T κ 1-2 气柜内有121.6kPa 、27℃的氯乙烯(C 2H 3Cl )气体300m 3,若以每小时90kg 的流量输往使用车间,试问贮存的气体能用多少小时?
解:设氯乙烯为理想气体,气柜内氯乙烯的物质的量为
mol RT pV n 623.1461815
.300314.8300
106.1213=⨯⨯⨯== 每小时90kg 的流量折合p 摩尔数为 13
3153.144145
.621090109032-⋅=⨯=⨯=h mol M v Cl H C
n/v=(14618.623÷1441.153)=10.144小时
1-3 0℃、101.325kPa 的条件常称为气体的标准状况。
试求甲烷在标准状况下的密度。
解:33
714.015
.273314.81016101325444
--⋅=⨯⨯⨯=⋅=⋅=m kg M RT p M V n CH CH CH
ρ 1-4 一抽成真空的球形容器,质量为25.0000g 。
充以4℃水之后,总质量为125.0000g 。
若改用充以25℃、13.33kPa 的某碳氢化合物气体,则总质量为25.0163g 。
试估算该气体的摩尔质量。
解:先求容器的容积33)(0000.1001
0000.100000.250000.1252
cm cm V l O H ==-=ρ
n=m/M=pV/RT
mol g pV RTm M ⋅=⨯-⨯⨯==
-31.3010
13330)0000
.250163.25(15.298314.84
1-5 两个体积均为V 的玻璃球泡之间用细管连接,泡内密封着标准状况条
件下的空气。
若将其中一个球加热到100℃,另一个球则维持0℃,忽略连接管中气体体积,试求该容器内空气的压力。
解:方法一:在题目所给出的条件下,气体的量不变。
并且设玻璃泡的体积不随温度而变化,则始态为 )/(2,2,1i i i i RT V p n n n =+=
终态(f )时 ⎪⎪⎭
⎫
⎝⎛+=⎪⎪⎭
⎫ ⎝⎛+
=
+=f
f f
f f f
f f f f T T T T R V
p T V T V R p n n n ,2,1,1,2,2,1,2,1 kPa
T T T T T p T T T T VR n p f f f f i i f
f f f f 00.117)
15.27315.373(15.27315.27315.373325.1012 2,2,1,2,1,2,1,2,1=+⨯⨯⨯=⎪
⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+=
1-6 0℃时氯甲烷(CH 3Cl )气体的密度ρ随压力的变化如下。
试作ρ/p —p 图,用外推法求氯甲烷的相对分子质量。
P/kPa 101.325
67.5
50
50.6
63
33.7
75
25.3
31
ρ/
(g 〃dm -3) 2.30
74 1.52
63 1.14
01
0.75
713
0.56
660
解:将数据处理如下: P/kPa 101.325
67.550
50.663
33.7
75
25.3
31
(ρ/p)/(g 〃dm -3〃kPa ) 0.02277
0.02260
0.02250
0.02242
0.02
237
作(ρ/p)对p 图
0.0222
0.02230.02240.02250.02260.02270.02280.02290
20
40
6080
100
120
p
ρ/p
ρ/p
线性 (ρ/p)
当p →0时,(ρ/p)=0.02225,则氯甲烷的相对分子质量为
()10529.5015.273314.802225.0/-→⋅=⨯⨯==mol g RT p M p ρ。