启东教育第11课时一元一次不等式(组)(
- 格式:doc
- 大小:145.50 KB
- 文档页数:7
———————欢迎下载,祝您学习进步,成绩提升———————11.5 用一元一次不等式解决问题教学目标:1.能够根据实际问题中的数量关系,列出一元一次不等式,解决简单问题;2.初步体会一元一次不等式的应用价值,发展学生的分析问题和解决问题的能力. 教学重点:列不等式解决实际问题.教学难点:找出不等关系并用准确的不等式表示出来.教学过程:一、课前专训1.解不等式86(1)x +-<50,并将不等式的解集在数轴上表示出来.要求:复习不等式的解法,让学生在黑板上板演,暴露学生在解题过程中出现的问题.2.当x 取何值时,代数式912x -+的值不大于代数式2(1)13x +-的值? 解:根据题意,得 912x -+≤2(1)13x +- 解得 x ≥—19 所以,当x ≥—19时,代数式912x -+的值不大于代数式2(1)13x +-的值.要求:让学生能从列一元一次不等式解决数学文字题的过程,逐步体验到向列一元一次不等式解决实际问题的过渡.要注意解题的规范性.二、复习列一元一次方程解决实际问题的步骤是什么?要求:为下面总结列一元一次不等式解决问题的步骤作铺垫.三、教学过程:1.搭“小鱼”问题.搭“小鱼”图片———————欢迎下载,祝您学习进步,成绩提升———————按图示的搭法,用少于50根的火柴棒最多可以搭多少条“小鱼”?要求:让学生完成,同桌相互合作,用火柴棒搭一搭.学生讨论并得出搭n条“小鱼”需要[8+6(n-1)]根火柴棒.根据“用少于50根的火柴棒”得到不等式8+6(n-1)<50.对于本题,只要求学生能分析题中的关系,列出不等式就可以了.通过本题的设置,引导学生操作、探究出关系式,学生感觉应该不会太难.2.“纸箱装苹果”问题:问题情境:秋天确好是苹果收获的季节,每年的这个时候,果农们总是忙着将苹果装入纸箱运往外地销售,他们总是想在纸箱中尽可能多的装苹果,以降低运输成本.问题1:一只纸箱的质量为1kg,放入一些苹果后,纸箱和苹果的总质量不超过10kg.假设每个苹果的质量为0.25kg,这只纸箱内最多能装多少个苹果?分析:题目中已知条件是什么?所求问题是什么?如何设未知数?表示这个问题的不等关系是什么?能用所学的一元一次不等式的知识来解决这个问题吗?怎样列出不等式?学生分析用一元一次不等式解决问题的思路,关键是找到表示实际问题意义的不等关系:箱子的质量与苹果的质量之各不超过10kg.解:设这只纸箱内能装x个苹果,根据题意,得0.25x+1≤10解得 x≤36所以x的最大整数是36.答:这只纸箱内最多能装36个苹果.———————欢迎下载,祝您学习进步,成绩提升———————要求:“纸箱装苹果”是取自学生身边的问题,学生要积极参与计算,他们运用的方法会是算术方法或用一元一次方程的知识来解决,要引导学生用不等式来刻画问题中的不等关系,尝试用不等式的知识来解决问题,要鼓励学生用数学语言表达自己的想法,自主探索问题结果,并能进一步感受到不等式是刻画现实世界的重要的数学模型.3.“海拔估气温”问题问题2:某种杜鹃花适宜生长在平均气温为17℃到20℃之间的山区,已知某山区山脚下的平均气温为20℃,并且每上升100m ,气温下降0.6℃,要在该山区种植这种杜鹃花,应种在比山脚的海拔最多高多少米的山坡上?分析:题目中已知条件是什么?所求问题是什么?如何设未知数?表示这个问题的不等关系是什么?能用所学的一元一次不等式的知识来解决这个问题吗?怎样列出不等式? 解:设这种杜鹃花应种在比山脚的海拔高x 米的山坡上,那么这个区域的平均气温是(20-100x ×0.6) ℃ 根据题意, 得20-100x ×0.6≥17 解得x ≤500答:这种杜鹃花应种在比山脚的海拔最多高500米的山坡上要求:引导学生独立审题,寻找出题中的不等关系,并能运用不等式的知识解决问题.4.归纳步骤上述三个问题的解决过程中,你认为列一元一次不等式解决实际问题的步骤是什么? 我们都尝试着从下面的几个过程中来思考:(1)题目中已知条件是什么?所求问题是什么?(2)如何设未知数?(3)表示这个问题意义的不等关系是什么?如何列出不等式?师生合作交流,在老师的引导下学生总结列一元一次不等式解决实际问题的步骤:(1)审:认真审题,分清已知量、未知量及其关系,找出题中不等关系,要抓住题设中的关键字“眼”,如“大于”、“小于”、“不小于”、“不大于”等的含义;———————欢迎下载,祝您学习进步,成绩提升———————(2)设:设出适当的未知数;(3)列:根据题中的不等关系,列出不等式;(4)解:解出所列不等式的解集;(5)答:写出答案,并检验答案是否符合题意.要求:学生初学不等式解决问题,这里强调用不等式解决问题的一般步骤,有利于学生获得分析问题和解决问题的基本方法.5.例题解析:例1 某电影院暑假向学生优惠开放,每张票2元.另外,每场次还可以售出每张5元的普通票300张,如果要保持每场次票房收入不低于2000元,那么平均每场次至少应出售学生优惠票多少张?要求:学生发表意见,表达观点,相互补充.300×5+2x≥2000x≥250答:平均每场次至少应出售学生优惠票250张.要求:在总结用不等式解决问题的一般步骤的基础上,让学生体会用不等式解决问题的一般步骤并要求学生能够规范地写出解题过程.例2 暑假学校准备组织一批学生参加夏令营,联系了甲、乙两家旅行社,他们的服务质量相同,且入营费都是每人200元.经过协商,甲旅行社表示可以给每位入营队员七五折优惠;乙旅行社表示可先免去一位带队老师的费用,其余的入营队员八折优惠.请问应该选择哪家旅行社,才能使费用最少?解:设参加夏令营的有x人,总费用为y元,根据题意得:y甲=200×0.75=150xy乙=200×0.8×(x-1)=160(x-1)(1)若y甲=y乙,得x=16;(2)若y甲>y乙,得x<16;(3)若y甲<y乙,得x>16.———————欢迎下载,祝您学习进步,成绩提升———————答:当参加夏令营的人数等于16人时,两家旅行社的费用一样;当参加夏令营的人数少于16人时,乙旅行社的费用较低,故选乙;当参加夏令营的人数多于16人时,甲旅行社的费用较低,故选甲.要求:本题运用“分类”的重要思想,学会分类,有利于学习新的数学知识,有利于分析和解决新的数学问题.课后让学生练习此类题型.6..运用新知:搭一搭,算一算:按上图的搭法,用4根火柴棒可以搭1个正方形,用7根火柴棒可以搭2个正方形,用10根火柴棒可以搭3个正方形.照此搭法,用50根火柴棒最多可以搭多少个正方形?请用不等式验证.学生用预先准备好的火柴棒继续往下搭,在搭的过程中寻找规律,用不等式验证:可设用50根火柴棒最多可以搭x 个正方形.根据题意,得4+3(x -1)≤50.解得x ≤493. 所以,最多可搭出16个正方形.要求:在活动过程中,提出“如何列不等式解决这个问题?”通过“活动——思考”的形式,让学生交流各种不同的解决问题的方法,充分发表自己的见解,有利于学生感悟数学思想,积累活动经验.提高提出问题、分析问题和解决问题的能力,增强学生的应用意识和创新意识.7.课堂练习某工程队计划在10天内整修河堤600米,施工2天修了120米后,该工程需要比原计划提前2天完成,此后平均每天至少要整修河堤多少米?解:设平均天要整修河堤x 米,根据题意,得(10-2-2)x ≥600-120解得x ≥80———————欢迎下载,祝您学习进步,成绩提升———————答:平均每天至少要整修河堤80米.四、巩固应用:水果店进了某种水果1吨,进价是7元/千克,售价定为10元/千克,销售一半以后,为了尽快销完,准备打折出售.如果要使利润不低于2000元,那么余下的水果至少按原定价的几折出售?变式:若将上题“如果要使利润不低于2000元”改为“如果要使利润率不低于20%”又该如何解答?(列出不等式即可).注:涉及到的利润和利润率问题,对学生来讲比较陌生.利润=售价-进价利润率=利润÷进价×100%解:设余下的水果按原定价的x折出售,根据题意,得500×(10-7)+500×(10×0.1x-7)≥2000.解得x≥8.答:余下的水果至少按原定价的8折出售.变式:解:设余下的水果按原定价的x折出售,根据题意,得500×(10-7)+500×(10×0.1x-7)×100%≥20%.7×1000打折问题在生活中有广泛的应用,本题所选素材来源于生活,同时又具有一定的挑战性,学生从中感受到数学的价值和趣味.小结:1.谈谈用一元一次不等式解决问题有哪些步骤?2.用一元一次不等式解决问题的关键是什么?3.通过这节课的学习,你还有什么感受?一起分享!师生共同小结.参考答案:通过本节课的学习能够:———————欢迎下载,祝您学习进步,成绩提升———————(1)掌握一种方法:掌握列一元一次不等式解决问题的方法;(2)领悟一种思想:在“选择优惠方案”的过程中领悟“分类讨论”的数学思想;(3)体验一种过程:继续体验自主学习、合作探究的学习过程.(1)让学生在学习中体会学习方法,体验成功,改进不足,以便今后更好地学习数学.(2)师生互动,锻炼学生的口头表达能力,培养学生勇于发表自己看法的能力. 课后作业:1.《数学补充习题》11.5 用一元一次不等式解决问题.2.思考题(选做):有人问一位数学老师,她所教的班级有多少个学生,这位老师风趣地说:“一半在学数学,四分之一在学音乐,七分之一在读英语,还剩不足6位同学在操场上踢足球”.试问这个班共有多少学生?学生课后独立完成.参考答案:解:设这个班共有x 个学生,由题意,得x -( x 2 + x 4 + x 7)<6. 解之得x <56,又因为x 2,x 4,x 7均为正整数, 所以x =28.答:该班共有28名学生.(1)通过课后作业,教师及时了解学生对本节知识的掌握情况,知识延伸,使学生能力得以提高.(2)练习能充分体现本节课的重点,能准确及时地了解教和学的效果,巩固了教学目标.———————欢迎下载,祝您学习进步,成绩提升———————。
第11课一元一次不等式组与实际问题(1)初一()班姓名______学号____ 第___周星期___ __月__日例1、用9辆小面包车运送一批游客,若每辆车乘坐人数比与预定人数少1人,则一次载客将不足90人;若每辆车乘坐人数比预定人数多1人,则一次载客可超过98人,求每辆车预定载客数是多少?分析:不足90就是 90;超过98就是 98 (填“<”、“>” ) 解:设每辆车预定载客数是x人,根据题意得:练习1、某车间生产机器零件,如果每天比预定计划多做一件,8天所做零件的总数超过100件;如果每天比预定计划少做一件,那么8天可做零件的总数不到90件,则预定计划每天做多少件?(件数是正整数)例2 在课外阅读课上,老师将一批书分给某班兴趣小组同学,若每人分5本,则剩下12本;若每人分7本,则最后一个同学分不足7本但超过2本,求这批图书的本数和该班兴趣小组的人数?分析:设该班兴趣小组的人数为x人,那么这批图书共本;除去最后一个同学,其他的同学一共分了本书;最后一个同学分了本书。
练习2、把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本。
这些书有多少本?学生有多少人?(注:分不到3本,包含分不到书的学生)A 组题1、不等式组{2151<-<+x x 的解集是( )A 3<xB 43<<xC 4<xD 空集2、已知点P (3m – 6,m+2)在第二象限,则m 的取值范围是 。
3、不等式组{1372>+<x x 的整数解的个数有( )A 1个B 2个C 3个D 4个4、从甲地到乙地有16km ,某人以4km/h~8km/h 的速度由甲地到乙地,则他用的时间大约为( )A 1h~2hB 2h~3hC 3h~4hD 2h~ 4h5、小兰准备用30元买钢笔和笔记本,已知一支钢笔2.5元,一本笔记本3元,买了若干本笔记本,若再买6支钢笔则钱不够;若再买4支钢笔则还有钱剩余;请问小兰买了几本笔记本?6、五四青年节,市团委组织部分中学的团员去西山植树。
第11课时 一元一次不等式(组)一、知识导航图一元一次不等式(组)的应用一元一次不等式(组)的解法一元一次不等式(组)解集的含义一元一次不等式(组)的概念不等式的性质一元一次不等式和一元一次不等式组二、中考课标要求三、中考知识梳理1.判断不等式是否成立判断不等式是否成立,关键是分析判定不等号的变化,变化的依据是不等式的性质,特别注意的是,不等式两边都乘以(或除以)同一个负数时,要改变不等号方向;反之,若不等式的不等号方向发生改变,则说明不等式两边同乘以(或除以)了一个负数.因此,在判断不等式成立与否或由不等式变形求某些字母的范围时, 要认真观察不等式的形式与不等号方向. 2.解一元一次不等式(组)解一元一次不等式的步骤与解一元一次方程的步骤大致相同,应注意的是,不等式两边所乘以(或除以)的数的正负,并根据不同情况灵活运用其性质,不等式组解集的确定方法:若a<b,则有:(1)00a b <⎧⎨<⎩的解集是x<a,即“小小取小”.(2)ab>⎧⎨>⎩的解集是x>b,即“大大取大”.(3)ab>⎧⎨<⎩的解集是a<x<b,即“大小小大取中间”.(4)ab<⎧⎨>⎩的解集是空集,即“大大小小取不了”.一元一次不等式(组)常与分式、根式、一元二次方程、函数等知识相联系,解决综合性问题。
3.求不等式(组)的特殊解不等式(组)的解往往是有无数多个,但其特殊解在某些范围内是有限的,如整数解、非负整数解,要求这些特殊解,首先是确定不等式(组)的解集, 然后再找到相应的答案.注意应用数形结合思想.4.列不等式(组)解应用题注意分析题目中的不等量关系,考查的热点是与实际生活密切相联的不等式(组)应用题. 四、中考题型例析1.判断不等式是否成立例1 (2004·陕西)如图,若数轴的两点A、B表示的数分别为a、b,则下列结论正确的是( )A.12b-a>0 B.a-b>0 C.2a+b>0 D.a+b>0分析:首先由A、B两点在数轴上的位置分析出a、b的符号和绝对值的大小关系,再根据有理数法则进行选择.解:由点A、B在数轴上的位置可知:a<0,b>0,│a│>│b│.∴12b>0,-a>0.∴12b-a>0.故选A.答案:A2.在数轴上表示不等式的解集例2 (2004·广州)不等式组212xx<⎧⎪⎨≥⎪⎩的解集在数轴上应表示为( )ABCD解析:在数轴上表示x<2的范围应不包括2向左,而x≥1是包括1向右,故选B.1ba3.求字母的取值范围例3 (2004·重庆)如果关于x 的不等式(a-1)x<a+5和2x<4的解集相同,则 a 的值为_____________.分析:2x<4的解集是x<2,故不等式(a-1)x<a+5的解集也是x<2, 所以a-1>0,且51a a +-=2,故解得a=7,因此答案填7.答案:7. 4.解不等式组例4 解不等式组3(2)451312x x x x x -+<⎧⎪⎨--≥+⎪⎩分析:根据解不等式的步骤,先求两个不等式的解集,然后再取其公共部分. 解:解不等式①,得x>-1. 解不等式②,得x ≤37-.∴不等式组的解集是-1<x ≤37-.5.列不等式(组)解应用题例5 (2004·广州)国际能源机构(IEA)2004年1月公布的《石油市场报告》预测,2004年中国石油年耗油量将在2003年的基础上继续增加,最多可达3亿吨,将成为全球第二大石油消耗大国.已知2003年中国石油年耗油量约为2.73亿吨, 若一年按365天计,石油的平均日耗油量以桶为单位(1吨约合7.3桶),则2004年中国石油的平均日耗油量在什么范围?分析:本题特点是文字多,数据杂,综合了方程与不等式的知识,考生必须具有一定的阅读和分析能力.解本题的关键是把问题转化为不等式,故寻找不等量关系至关重要.解:设2004年中国石油的平均日耗油量为x 万桶,则2004 年中国石油年耗油量为365x 万桶,根据题意,得4848365103107.336510 2.73107.3x x ⎧⨯≤⨯⨯⎪⎨⨯>⨯⨯⎪⎩解这个不等式组,得600546x x ≤⎧⎨>⎩答:估计2004年中国石油平均日耗油量多于546万桶且不超过600万桶.基础达标验收卷一、选择题1.(2004.北京市海淀区)不等式组2010x x -<⎧⎨+>⎩ 的解集为( )2.(2004.四川)不等式组23182xx x>-⎧⎨-≤-⎩的最小整数解是( )A.-1B.0C.2D.33.(2003.黄冈)在直角坐标系中,点P(2x-6,x-5)在第四象限,则x的取值范围是( )A.3<x<5B.-3<x<5C.-5<x<3D.-5<x<-34.(2003.徐州)如果a+b<0,且b>0,那么a、b、-a、-b的大小关系为( )A.a<b<-a<-bB.-b<a<-a<bC.a<-b<-a<bD.a<-b<b<-a5.(2003.北京)如果关于x的一元二次方程k2x-6x+9=0有两个不相等的实数根, 那么k的取值范围是( )A.k<1B.k≠0 B.k<1且k≠0 D.k>1二、填空题1.(2004.天津)不等式5x-9≤3(x+1)的解集是________.2.(2004.上海)不等式组230320xx-<⎧⎨+>⎩的整数解是________.3.(2003.宜昌)函数1x+的自变量x的取值范围是________.4.(2003.重庆)关于x的不等式组521xx a-≥-⎧⎨->⎩无解,则a的取值范围是_____.5.(2003.四川)已知关于x的方程82x+(m+1)x+m-7=0有两个负数根,那么实数m的取值范围是_________.三、解答题1.解不等式组312(1)2(1)4x xx x+≥-⎧⎨+>⎩,并把它的解集在数轴上表示出来.2.(2004.南昌)已知关于x的方程2x-2(m+1)x+2m=0,当m取什么值时,原方程没有实数根.3.(2003.南京)一个长方形足球场的长为xcm,宽为70m.如果它的周长大于350m,面积小于75602m,求x的取值范围,并判断这个球场是否可以用作国际足球比赛.(注:用于国际比赛的足球场的长在100m到110m之间,宽在64m至75m之间.)能力提高练习一、学科内综合题1.已知方程组3133x y kx y+=+⎧⎨+=⎩的解x、y,且2<k<4,则x-y的取值范围是( )A.0<x-y<12B.0<x-y<1C.-3<x-y<-1D.-1<x-y<1二、跨学科应用题.2.在一次爆破中,用1米的导火索来引爆炸药,导火索的燃烧速度为0.5cm/s, 引爆员点着导火索后,至少以每秒多少米的速度才能跑到600m或600m以外的安全区域?三、分类讨论问题3.(2002,广州)当a取什么数值时,关于未知数x的方程a2x+4x-1=0只有正实数根?四、实际应用题4.(2004.南宁)某饮料厂为了开发新产品,用A、B两种果汁原料各19kg、2kg,试制甲、乙两种新型饮料共50kg,下表是试验的相关数据:(1)假设甲种饮料需配制xkg,请你写出满足题意的不等式组,并求出其解集.(2)设甲种饮料每千克成本为4元,乙种饮料每千克成本为3元, 这两种饮料的成本总额为y 元,请写出y与x的函数表达式.并根据(1)的运算结果, 确定当甲种饮料配制多少千克时,甲、乙两种饮料的成本总额最少?答案:基础达标验收卷一、1.C 2.A 3.A 4.D 5.C二、1.x≤6 2.x=0,1 3.x≥-3且x≠-1 4.a≥3 5.m>7三、1.解:由3x+1≥2(x-1),得x≥-3.由2(x+1)>4x,得x<1.∴不等式组的解集为-3≤x<1.如图所示:2.解:△=[-2(m+1)]2-4m2=4(m2+2m+1)-4m2=4(2m+1)<0,∴m<-1 2当m<-12时,原方程没有实数根.3.解:根据题意,得2(70)350 707560xx+>⎧⎨<⎩解①,得x>105,解②,得x<108.∴105<x<108,∴这个球场可以用作国际足球比赛. 能力提高练习1.B答:至少以3m/s 的速度才能跑到安全区域. 3.解:(1)当a=0时,方程为4x-1=0,∴x=14(2)当a ≠0时,△=42-4(a-1)=16+4a. 令16+4a ≥0,得a ≥-4且a ≠0时方程有两个实数根. ① 设方程的两个实数根为x 1、x 2. ∵方程只有正实数根,∴由根与系数的关系,得x 1·x 2=-1a>0,且x 1+x 2=4a->0.解之,得a<0. ②由①、②可得:当-4≤a<0时,原方程有两个正实数根. 综上讨论可知:当-4≤a ≤0时,方程ax 2+4x-1=0只有正实数根. 另解:(1)当a ≠0时,△= 42-4a(-1)=16+4a. 令16+4a ≥0,得a ≥-4且a ≠0时方程有两个实数根. 设方程的两个实数根为x 1、x 2, 令x 12x a a =若a>0,则2<0,不满足条件要求,舍去. 若-4≤a<0,则0此时,x 1>0且x 2>0,满足条件要求. (2)当a=0时,方程ax 2+4x-1=0有正根x=14.由(1)、(2)得:当-4≤a ≤0时,原方程只有正实数根.4.解:(1)0.50.2(50)190.30.4(50)17.2x x x x +-≤⎧⎨+-≤⎩由①,得x ≤30,由②得x ≥28, ∴28≤x ≤30.(2)y=4x+3(50-x),即y=x+150. ∵x 越小,则y 越小.∴当x=28时,甲、乙两种饮料的成本总额最少.。