左婷命题第5周晚练(三角2)
- 格式:doc
- 大小:81.00 KB
- 文档页数:2
专练24 高考大题专练(二) 三角函数与解三角形的综合运用1.[2022·全国乙卷(理),17]记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin C sin (A -B )=sin B sin (C -A ).(1)证明:2a 2=b 2+c 2;(2)若a =5,cos A =2531,求△ABC 的周长.2.[2022·新高考Ⅱ卷,18]记△ABC 的三个内角分别为A ,B ,C ,其对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为S 1,S 2,S 3,已知S 1-S 2+S 3=32,sin B =13.(1)求△ABC 的面积; (2)若sin A sin C =23,求b .3.[2022·新高考Ⅰ卷,18]记△ABC的内角A,B,C的对边分别为a,b,c,已知cos A 1+sin A=sin2B1+cos2B.(1)若C=2π3,求B;(2)求a2+b2c2的最小值.4.[2020·全国卷Ⅱ]△ABC中,sin2A-sin2B-sin2C=sin B sin C.(1)求A;(2)若BC=3,求△ABC周长的最大值.5.[2022·江西省南昌市模拟]如图,锐角△OAB 中,OA =OB ,延长BA 到C ,使得AC =3,∠AOC =π4,sin∠OAC =223.(1)求OC ; (2)求sin∠BOC .6.[2022·江西省重点中学盟校联考]在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,从条件①:b sinB +C2=a sin B ,条件②:b =a cos C +12c ,条件③:b tan A =(2c -b )tan B 这三个条件中选择一个作为已知条件.(1)求角A ;(2)若AB →·AC →=3,求a 的最小值.专练24 高考大题专练(二) 三角函数与解三角形的综合运用1.解析:(1)证明:∵sin C sin (A -B )=sin B sin (C -A ), ∴sin C sin A cos B -sin C cos A sin B =sin B sin C cos A -sin B cos C sin A , ∴sin C sin A cos B =2sin B sin C cos A -sin B cos C sin A . 由正弦定理,得ac cos B =2bc cos A -ab cos C . 由余弦定理,得a 2+c 2-b 22=b 2+c 2-a 2-a 2+b 2-c 22.整理,得2a 2=b 2+c 2. (2)由(1)知2a 2=b 2+c 2. 又∵a =5,∴b 2+c 2=2a 2=50. 由余弦定理,得a 2=b 2+c 2-2bc cos A , 即25=50-5031bc ,∴bc =312.∴b +c =b 2+c 2+2bc =50+31=9, ∴a +b +c =14.故△ABC 的周长为14.2.解析:(1)∵边长为a 的正三角形的面积为34a 2, ∴S 1-S 2+S 3=34(a 2-b 2+c 2)=32. 结合余弦定理,得ac cos B =1,即cos B =1ac.由sin B =13,得cos B =223,∴ac =324,故S △ABC =12ac sin B =12×324×13=28.(2)由正弦定理,得b 2sin 2B =a sin A ·c sin C =ac sin A sin C =32423=94,故b =32sin B =12. 3.解析:(1)由已知条件,得sin2B +sin A sin2B =cos A +cos A cos2B .所以sin2B =cos A +cos A cos2B -sin A sin2B =cos A +cos (A +2B )=cos [π-(B +C )]+cos [π-(B +C )+2B ]=-cos (B +C )+cos [π+(B -C )]=-2cos B cos C ,所以2sin B cos B =-2cos B cos C , 即(sin B +cos C )cos B =0.由已知条件,得1+cos2B ≠0,则B ≠π2,所以cos B ≠0,所以sin B =-cos C =12.又0<B <π3,所以B =π6.(2)由(1)知sin B =-cos C >0,则B =C -π2,所以sin A =sin (B +C )=sin (2C -π2)=-cos2C .由正弦定理,得a 2+b 2c 2=sin 2A +sin 2B sin 2C =cos 22C +cos 2C sin 2C =(1-2sin 2C )2+(1-sin 2C )sin 2C=2+4sin 4C -5sin 2C sin 2C =2sin 2C+4sin 2C -5≥22sin 2C·4sin 2C -5=42-5, 当且仅当sin 2C =22时,等号成立,所以a 2+b2c 2的最小值为42-5.4.解析:(1)由正弦定理和已知条件得BC 2-AC 2-AB 2=AC ·AB .① 由余弦定理得BC 2=AC 2+AB 2-2AC ·AB cos A .②由①②得cos A =-12.因为0<A <π,所以A =2π3.(2)由正弦定理及(1)得AC sin B =AB sin C =BCsin A =23,从而AC =23sin B ,AB =23sin (π-A -B )=3cos B -3sin B .故BC +AC +AB =3+3sin B +3cos B =3+23sin (B +π3).又0<B <π3,所以当B =π6时,△ABC 周长取得最大值3+2 3.5.解析:(1)在△OAC 中,由正弦定理知OC sin∠OAC =ACsin∠AOC ,所以,OC =3sin∠OACsinπ4=4.(2)设∠OAB =α,则α为锐角,sin α=sin (π-∠OAC )=sin∠OAC =223,所以,cos α=1-sin 2α=13,所以sin∠AOB =sin (π-2α)=sin2α=2sin αcos α=429,则cos∠AOB =cos (π-2α)=-cos2α=2sin 2α-1=79,所以sin∠BOC =sin (∠AOB +π4)=sin∠AOB cos π4+cos∠AOB sin π4=22×429+22×79=8+7218. 6.解析:(1)若选条件①,由正弦定理得sin B sin π-A 2=sin A sin B ,∵B ∈(0,π)⇒sin B >0,∴sin π-A 2=sin A ,∴cos A 2=2sin A 2cos A2,又A 2∈(0,π2),∴cos A 2≠0,∴sin A 2=12, ∴A 2=π6⇒A =π3; 若选条件②,△ABC 中,b -a cos C =c 2,由正弦定理知sin B -sin A cos C =12sin C ,∵A +B +C =π,∴sin B =sin [π-(A +C )]=sin A cos C +cos A sin C , ∴sin A cos C +cos A sin C -sin A cos C =12sin C ,∴cos A sin C =12sin C ,因为sin C >0, ∴cos A =12,又∵0<A <π,∴A =π3;若选条件③,由b tan A =(2c -b )tan B , 得sin B sin A cos A =(2sin C -sin B )sin Bcos B,B ∈(0,π),所以sin B >0,∴sin A cos B =2sin C cos A -sin B cos A , ∴sin (A +B )=2sin C cos A , ∴sin C =2sin C cos A ,∵C ∈(0,π),∴sin C >0,∴cos A =12,∵A ∈(0,π),∴A =π3.(2)由(1)及AB →·AC →=3得bc =6,所以a 2=b 2+c 2-2bc cos A =b 2+c 2-bc ≥bc =6, 当且仅当b =c =6时取等号,所以a 的最小值为 6.。
制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日周周练一、选择题(每一小题3分,一共30分)制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日2. 在以下各组图形中,是全等的图形是〔 〕3.4.:如图,CD ⊥AB ,BE ⊥AC ,垂足分别为D 、E ,BE 、CD 相交于O 点, ∠1=∠2.图中全等的三角形一共有 〔 〕 A .4对 B .3对 C 2对 D .1对5.如下图,某同学把一块三角形玻璃打碎成了三块,如今要到玻 店去配一块完全一样的玻璃,那么最事的方法是〔 〕 ①去 B. 带②去 C. 带③去 D. 带①和②去6.右图中三角形的个数是〔 〕A .6 B .7 C .8 D .97.假如两个三角形全等,那么以下结论不正确的选项是〔 〕 A .这两个三角形的对应边相等 B .这两个三角形都是锐角三角形 C .这两个三角形的面积相等 D .这两个三角形的周长相等8.9.以下图中,与左图中的图案完全一致的是〔 〕②①③5题C DA BEF6题ABCD制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日ABCDE图4图 2图3图410.二、填空题:〔每一小题4分一共24分〕11、为了使一扇旧木门不变形,木工师傅在木门的反面 加钉了一根木条,这样做的道理是 。
12、如图1所示:〔1〕在△ABC 中,BC 边上的高是 ;〔2〕在△AEC 中,AE 边上的高是 ;13、如图2,△ABC ≌△AED ,∠C=400,∠EAC=300,∠B=300,那么∠D= ,∠EAD= ; 15、。
16、如图4,有两个长度一样的滑梯,左边滑梯的高度AC 与右边滑梯程度方向的长度DF 相等,假设∠CBA=320,那么∠FED= ,∠EFD= 。
三、解答题〔一共52分〕 17图1制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日ABCDEF18〔6分〕如图AB 、CD 相交于点O ,AO =BO ,AC ∥DB 。
第四章 三角函数及三角恒等变换第二节 三角函数的图象和性质及三角恒等变换第一部分 五年高考荟萃2009年高考题一、选择题1.(2009年广东卷文)函数1)4(cos 22--=πx y 是A .最小正周期为π的奇函数 B. 最小正周期为π的偶函数 C. 最小正周期为2π的奇函数 D. 最小正周期为2π的偶函数解析 因为22cos ()1cos 2sin 242y x x x ππ⎛⎫=--=-= ⎪⎝⎭为奇函数,22T ππ==,所以选A. 答案 A2.(2009全国卷Ⅰ理)如果函数()cos 2y x φ=3+的图像关于点43π⎛⎫⎪⎝⎭,0中心对称,那么||ϕ的最小值为( )A .6π B.4π C.3π D. 2π解析:函数()cos 2y x φ=3+的图像关于点43π⎛⎫⎪⎝⎭,0中心对称 423k πφπ∴⋅+=42()3k k Z πφπ∴=-⋅∈由此易得min ||3πφ=.故选C 答案 C3.(2009全国卷Ⅰ理)若42x ππ<<,则函数3tan 2tan y x x =的最大值为 。
解析:令tan ,x t =142x t ππ<<∴>,4432224222tan 2222tan 2tan 81111111tan 1()244x t y x x x t t t t ∴=====≤=-------答案4..(2009浙江理)已知a 是实数,则函数()1sin f x a ax =+的图象不可能...是 ( )解析 对于振幅大于1时,三角函数的周期为2,1,2T a T aππ=>∴<,而D 不符合要求,它的振幅大于1,但周期反而大于了2π. 答案:D5..(2009浙江文)已知a 是实数,则函数()1sin f x a ax =+的图象不可能...是( )【命题意图】此题是一个考查三角函数图象的问题,但考查的知识点因含有参数而丰富,结合图形考查使得所考查的问题形象而富有深度. 【解析】对于振幅大于1时,三角函数的周期为2,1,2T a T aππ=>∴<,而D 不符合要求,它的振幅大于1,但周期反而大于了2π. 答案 D6.(2009山东卷理)将函数sin 2y x =的图象向左平移4π个单位, 再向上平移1个单位,所得图象的函数解析式是( ).A.cos 2y x =B.22cos y x = C.)42sin(1π++=x y D.22sin y x =解析 将函数sin 2y x =的图象向左平移4π个单位,得到函数sin 2()4y x π=+即sin(2)cos 22y x x π=+=的图象,再向上平移1个单位,所得图象的函数解析式为21cos22cos y x x =+=,故选B.答案:B【命题立意】:本题考查三角函数的图象的平移和利用诱导公式及二倍角公式进行化简解析式的基本知识和基本技能,学会公式的变形. 7.(2009山东卷文)将函数sin 2y x =的图象向左平移4π个单位, 再向上平移1个单位,所得图象的函数解析式是( ).A. 22cos y x =B. 22sin y x = C.)42sin(1π++=x y D. cos 2y x =解析 将函数sin 2y x =的图象向左平移4π个单位,得到函数sin 2()4y x π=+即sin(2)cos 22y x x π=+=的图象,再向上平移1个单位,所得图象的函数解析式为21cos22cos y x x =+=,故选A.答案:A【命题立意】:本题考查三角函数的图象的平移和利用诱导公式及二倍角公式进行化简解析式的基本知识和基本技能,学会公式的变形.8(2009安徽卷理)已知函数()cos (0)f x x x ωωω+>,()y f x =的图像与直线2y =的两个相邻交点的距离等于π,则()f x 的单调递增区间是 A.5[,],1212k k k Z ππππ-+∈ B.511[,],1212k k k Z ππππ++∈C.[,],36k k k Z ππππ-+∈D.2[,],63k k k Z ππππ++∈解析 ()2sin()6f x x πω=+,由题设()f x 的周期为T π=,∴2ω=,由222262k x k πππππ-≤+≤+得,,36k x k k z ππππ-≤≤+∈,故选C答案 C9..(2009安徽卷文)设函数,其中,则导数的取值范围是A. B. C.D.解析 21(1)sin x f x xθθ='=⋅⋅sin 2sin()3πθθθ==+50,sin()(1)21232f πθπθ⎤⎡⎤⎤'∈∴+∈∴∈⎥⎢⎥⎦⎣⎦⎣⎦,选D10.(2009江西卷文)函数()(1)cos f x x x =的最小正周期为 A .2π B .32π C .π D .2π答案:A解析 由()(1)cos cos 2sin()6f x x x x x x π==+=+可得最小正周期为2π,故选A.11.(2009江西卷理)若函数()(1)cos f x x x =,02x π≤<,则()f x 的最大值为A .1B .2C 1D 2 答案:B解析 因为()(1)cos f x x x ==cos x x =2cos()3x π-当3x π=是,函数取得最大值为2. 故选B12.(2009湖北卷理)函数cos(2)26y x π=+-的图象F 按向量a 平移到'F ,'F 的函数解析式为(),y f x =当()y f x =为奇函数时,向量a 可以等于.(,2)6A π-- .(,2)6B π-.(,2)6C π- .(,2)6D π答案 B解析 直接用代入法检验比较简单.或者设(,)a x y ''=v,根据定义cos[2()]26y y x x π''-=-+-,根据y 是奇函数,对应求出x ',y '13.(2009全国卷Ⅱ理)若将函数()tan 04y x πωω⎛⎫=+> ⎪⎝⎭的图像向右平移6π个单位长度后,与函数tan 6y x πω⎛⎫=+⎪⎝⎭的图像重合,则ω的最小值为A .16B.14C.13D.12解析:6tan tan[(]ta )6446n y x y x x πππππωωω⎛⎫⎛⎫=+→=-=+ ⎝+⎪ ⎪⎝⎭⎭向右平移个单位164()662k k k Z ππωπωπ+=∴=+∈∴-, 又min102ωω>∴=.故选D 答案 D14..(2009福建卷理)函数()sin cos f x x x =最小值是 ( ) A .-1 B. 12- C. 12D.1 答案 B解析 ∵1()sin 22f x x =∴min 1()2f x =-.故选B 15.(2009辽宁卷理)已知函数()f x =Acos(x ωϕ+)的图象如图所示,2()23f π=-,则(0)f =( )A.23-B. 23C.- 12D. 12解析 由图象可得最小正周期为2π3于是f(0)=f(2π3),注意到2π3与π2关于7π12对称所以f(2π3)=-f(π2)=23答案 B16.(2009全国卷Ⅰ文)如果函数3cos(2)y x φ=+的图像关于点4(,0)3π中心对称,那么φ的最小值为 A.6π B.4π C. 3π D. 2π 【解析】本小题考查三角函数的图象性质,基础题。
2025届广东省北京师范大广州实验校初三一轮复习:三角函数与解三角形检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本题包括12个小题,每小题3分,共36分.每小题只有一个选项符合题意) 1.下列图标表示“国家节水标志”的是A .B .C .D .2.磷可以促进作物生长,还可增强作物的抗寒、抗旱能力。
下列有关磷元素的说法不正确...的是A .原子序数为15B .元素符号为PC .核外电子数为30D .相对原子质量为30.973.氢氧化钴受热易分解,能与酸性溶液反应,可作涂料和清漆的干燥剂,制备方法为:22HCl NaOHCo CoCl Co(OH)①②下列判断正确的是( ) A .金属活动性顺序中钴在铜之后 B .氢氧化钴可溶解于水 C .①为置换反应,②为复分解反应D .氢氧化钴可干燥HCl4.根据实验现象,得出正确的结论,是化学研究、学习的常用方法。
下列四项对化学实验做出的解释或结论中,不正确的是A .一根燃着的木条伸入一集气瓶中,木条熄灭:集气瓶中气体一定为CO 2B .Ag 片伸入CuSO 4溶液许久后取出,Ag 片没有明显变化:Ag 没有Cu 活泼C .鸡蛋清溶液中滴加少量甲醛产生白色沉淀:甲醛能使蛋白质变性,对人体有害D.一粒烘干的花生在白色的滤纸上挤压,滤纸上留下一些油迹:花生中含有油脂5.有关“物质的量”说法正确的是()A.属于基本物理量,符号是mol B.物质的量相同则微粒个数相同C.描述对象一定是微粒D.物质的量乘以质量等于摩尔质量6.使用燃气热水器时,若通风不畅,易产生使人中毒的气体是( )A.一氧化碳B.二氧化碳C.甲烷D.氮气7.关于物质的鉴别、除杂错误的是()A.A B.B C.C D.D8.下列有关能源、生活、环境、资源问题叙述错误的是A.加速石油、煤炭的开采,快速提高人们的生活质量B.pH<5.6的雨水称为酸雨C.“温室效应”主要是由CO2等气体所引起的D.生活中为降低水的硬度,常用的方法是煮沸9.对下列事实的解释错误的是()A.A B.B C.C D.D10.现有7.45g KCl样品(其中混有少量下列某种盐类),加水溶解,当它跟足量硝酸银溶液充分反应后,得到AgCl 沉淀14g,则可能混入的盐是()A.NaCl B.CaCl2C.BaCl2D.MgCl211.中和反应在生活中有广泛应用。
江苏靖江高级中学数学滚动周练函数、导数、三角班级________ 姓名 ___________1、A、B 是非空集合,定义A B {x|x AUB,且x AI B},若A {x|y . x^3x}, B {y|y 3x},则A B= ▲2、若命题“x € R,使x2+(a —1)x+1<0 ”是假命题,则实数a的取值范围为▲3、函数y |x a的图象关于直线x 3对称•则a ▲14、若函数y — a为奇函数,则a ▲2x 15、若角6000的终边上有一点4,a,则a的值是▲6、设扇形的周长为8cm,面积为4cm2,则扇形的圆心角的弧度数是▲1 27、函数f (x) -x x定义域为m,n,值域为2m,2n , m n,则m n ▲28、若函数f x log(a23)(ax 4)在1,1上是单调增函数,则实数的取值范围是▲9、函数f x 满足fx f x 2 13,若f1 2,则f99 ▲10、已知t为常数,函数y |x22x t在区间[0 , 3]上的最大值为2,则t= ▲211、已知函数f(x)在R上满足f(x) 2f ( x) 3x 2x,则曲线y f (x)在点(1,f(1))处的切线方程是▲12、若f(n)为n2 1 (n N )的各位数字之和,如142 1 197 , 1 9 7 17,则f (14) 17 ;记f,n) f(n) , f2( n) f(£( n)),…,f k 1( n) f (f k( n)) , k N*,则f2°°8(8)13、h、I2、l3是同一平面内三条不重合自上而下的平行直线•如果边长为分别在h , l2 , l3上,设h与l2的距离为d1 , l2与l3的距离为d2,则d1 d2范围为▲14、函数f(x) x3 x,x R,当0 —时,f(msin ) f(1 m) 02 2的正三角形ABC的三顶点的恒成立,则实数m的取值范围是15、已知x 3 是函数f x2aln 1 x x 10x的一个极值点。
高考数学二轮复习三角函数与解三角形多选题练习题附解析一、三角函数与解三角形多选题1.在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且2a =,sin 2sin B C =,有以下四个命题中正确的是( )A .满足条件的ABC 不可能是直角三角形B .ABC 面积的最大值为43C .当A =2C 时,ABC 的周长为2+D .当A =2C 时,若O 为ABC 的内心,则AOB 【答案】BCD 【分析】对于A ,利用勾股定理的逆定理判断;对于B ,利用圆的方程和三角形的面积公式可得答案; 对于C ,利用正弦定理和三角函数恒等变形公式可得答案对于D ,由已知条件可得ABC 为直角三角形,从而可求出三角形的内切圆半径,从而可得AOB 的面积 【详解】对于A ,因为sin 2sin B C =,所以由正弦定理得,2b c =,若b 是直角三角形的斜边,则有222a c b +=,即2244c c +=,得3c =,所以A 错误; 对于B ,以BC 的中点为坐标原点,BC 所在的直线为x 轴,建立平面直角坐标系,则(1,),(1,0)B C -,设(,)A m n ,因为2b c ==, 化简得22516()39m n ++=,所以点A 在以5,03⎛⎫- ⎪⎝⎭为圆心,43为半径的圆上运动, 所以ABC 面积的最大值为1442233⨯⨯=,所以B 正确; 对于C ,由A =2C ,可得3B C π=-,由sin 2sin B C =得2b c =,由正弦定理得,sin sin b cB C=,即2sin(3)sin c c C C π=-,所以sin32sin C C =,化简得2sin cos 22cos sin 2sin C C C C C +=, 因为sin 0C ≠,所以化简得23cos 4C =,因为2b c =,所以B C >,所以cos C =,则1sin 2C =,所以sin 2sin 1B C ==,所以2B π=,6C π=,3A π=,因为2a =,所以c b ==,所以ABC 的周长为2+,所以C 正确; 对于D ,由C 可知,ABC 为直角三角形,且2B π=,6C π=,3A π=,c b ==,所以ABC 的内切圆半径为1212r ⎛=+= ⎝⎭,所以AOB 的面积为111122333cr ⎛=⨯-= ⎝⎭所以D 正确, 故选:BCD 【点睛】此题考查三角形的正弦定理和面积公式的运用,考查三角函数的恒等变换,考查转化能力和计算能力,属于难题.2.在ABC 中,角,,A B C 所对的边分别为,,a b c ,下列命题正确的是( ) A .若::4:5:6a b c =,ABC 的最大内角是最小内角的2倍 B .若cos cos a B b A c -=,则ABC 一定为直角三角形C .若4,5,6a b c ===,则ABC 外接圆半径为7D .若()()()cos cos cos 1A B B C C A ---=,则ABC 一定是等边三角形 【答案】ABD 【分析】对于A 选项,求得2A C =,由此确定选项正确.对于B 选项,求得2A π=,由此确定选项正确.对于C 选项,利用正弦定理求得ABC 外接圆半径,由此确定选项错误.对于D 选项,证得()()()cos cos cos 1A B B C C A -=-=-=,得到A B C ==,确定选项正确. 【详解】对于A 选项,A 角最小,C 角最大.由余弦定理得253616453cos 0256604A +-===>⨯⨯,16253651cos 0245408C +-===>⨯⨯,2231cos 22cos 12148A A ⎛⎫=-=⨯-= ⎪⎝⎭,cos2cos A C =.0,022A C ππ<<<<,则02A π<<,所以2A C =,所以A 选项正确.对于B 选项,cos cos a B b A c -=,由正弦定理得sin cos sin cos sin A B B A C -=,()sin cos cos sin sin sin cos cos sin A B A B A B A B A B -=+=+,cos sin 0=A B ,由于0,0A B ππ<<<<,所以2A π=,故B 选项正确.对于C 选项,16253651cos 245408C +-===⨯⨯,0C π<<,sin 8C ==, 设三角形ABC 外接圆半径为R,则2sin 2sin c cR R C C=⇒===,故C 选项错误.对于D 选项,0,0,A B A B ππππ<<-<-<-<-<,故()1cos 1A B -<-≤,同理可得()()1cos 1,1cos 1B C C A -<-≤-<-≤, 要使()()()cos cos cos 1A B B C C A ---=, 则需()()()cos cos cos 1A B B C C A -=-=-=,所以0,0,0A B B C C A -=-=-=,所以A B C ==,所以D 选项正确. 故选:ABD 【点睛】利用正弦定理可求得三角形外接圆的半径R ,要注意公式是2sin aR A=,而不是sin aR A =.3.已知函数()()sin f x x ωϕ=+(其中,0>ω,||2ϕπ<),08f π⎛⎫-= ⎪⎝⎭,3()8f x f π⎛⎫≤ ⎪⎝⎭恒成立,且()f x 在区间,1224ππ⎛⎫- ⎪⎝⎭上单调,则下列说法正确的是( )A .存在ϕ,使得()f x 是偶函数B .3(0)4f f π⎛⎫=⎪⎝⎭C .ω是奇数D .ω的最大值为3【答案】BCD 【分析】 根据3()8f x f π⎛⎫≤⎪⎝⎭得到21k ω=+,根据单调区间得到3ω≤,得到1ω=或3ω=,故CD 正确,代入验证知()f x 不可能为偶函数,A 错误,计算得到B 正确,得到答案. 【详解】08f π⎛⎫-= ⎪⎝⎭,3()8f x f π⎛⎫≤ ⎪⎝⎭,则3188242k T πππ⎛⎫⎛⎫--==+ ⎪ ⎪⎝⎭⎝⎭,k ∈N , 故221T k π=+,21k ω=+,k ∈N , 08f π⎛⎫-= ⎪⎝⎭,则()s n 08i f x πωϕ⎛⎫=+= ⎪⎭-⎝,故8k πωϕπ+=-,8k ϕπωπ=+,k Z ∈,当,1224x ππ⎛⎫∈-⎪⎝⎭时,,246x k k ωπωπωϕππ⎛⎫+∈++ ⎪⎝⎭,k Z ∈,()f x 在区间,1224ππ⎛⎫-⎪⎝⎭上单调,故241282T πππ⎛⎫--=≤ ⎪⎝⎭,故4T π≥,即8ω≤,0243ωππ<≤,故62ωππ≤,故3ω≤,综上所述:1ω=或3ω=,故CD 正确;1ω=或3ω=,故8k ϕππ=+或38k ϕππ=+,k Z ∈,()f x 不可能为偶函数,A 错误;当1ω=时,(0)sin sin 8f k πϕπ⎛⎫==+⎪⎝⎭,33sin sin 4488f k k ππππππ⎛⎫⎛⎫⎛⎫=++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故3(0)4f f π⎛⎫= ⎪⎝⎭; 当3ω=时,3(0)sin sin 8f k πϕπ⎛⎫==+⎪⎝⎭, 393sin sin 4488f k k ππππππ⎛⎫⎛⎫⎛⎫=++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故3(0)4f f π⎛⎫= ⎪⎝⎭, 综上所述:3(0)4f f π⎛⎫= ⎪⎝⎭,B 正确;故选:BCD. 【点睛】本题考查了三角函数的性质和参数的计算,难度较大,意在考查学生的计算能力和综合应用能力.4.设函数()sin 6f x M x πω⎛⎫=+ ⎪⎝⎭(0,0)M ω>>的周期是π,则下列叙述正确的有( )A .()f x 的图象过点10,2⎛⎫ ⎪⎝⎭B .()f x 的最大值为MC .()f x 在区间2,63ππ⎡⎤⎢⎥⎣⎦上单调递减D .5,012π⎛⎫⎪⎝⎭是()f x 的一个对称中心 【答案】BCD 【分析】已知只有周期的条件,只能求出ω,其中M 未知;A 选项代值判定;B 选项由解析式可知;C 选项由()f x 的单调递减区间在32,2,22k k k Z ππππ⎛⎫++∈ ⎪⎝⎭上化简可得;D 选项由()f x 的对称中心为(),0,k k Z π∈化简可得. 【详解】 由题可知2T ππω==,解得2ω=,即()sin 26f x M x π⎛⎫=+ ⎪⎝⎭当0x =时,()0sin 20sin 662M f M M ππ⎛⎫=⨯+== ⎪⎝⎭,故选项A 错误; 因为()sin 26f x M x π⎛⎫=+ ⎪⎝⎭,所以最大值为M ,故选项B 正确;由解析式可知()f x 在3222,262k x k k Z πππππ+≤+≤+∈ 即2,63x k k ππππ⎡⎤∈++⎢⎥⎣⎦上单调递减,当0k =时,选项C 正确; 由解析式可知()f x 的对称中心的横坐标满足26x k ππ+=,即212k x ππ=- 当1k =时,512x π=,对称中心为5,012π⎛⎫⎪⎝⎭,故选项D 正确. 故选:BCD 【点睛】本题考查()()sin f x A x =+ωϕ型三角函数的性质,其中涉及最值、对称轴、对称中心,属于较难题.5.对于函数()sin cos 2sin cos f x x x x x =++,下列结论正确的是( ) A .把函数f (x )的图象上的各点的横坐标变为原来的12倍,纵坐标不变,得到函数g (x )的图象,则π是函数y =g (x )的一个周期B .对123,,2x x ππ⎛⎫∀∈ ⎪⎝⎭,若12x x <,则()()12f x f x <C .对,44x f x f x ππ⎛⎫⎛⎫∀∈-=+ ⎪ ⎪⎝⎭⎝⎭R 成立D .当且仅当,4x k k Z ππ=+∈时,f (x )1【答案】AC 【分析】根据三角函数的变换规则化简即可判断A ;令sin cos 4t x x x π⎛⎫=+=+ ⎪⎝⎭,()21f t t t =+-,判断函数的单调性,即可判断B ;代入直接利用诱导公式化简即可;首先求出()f t 的最大值,从而得到x 的取值; 【详解】解:因为()2()sin cos 2sin cos sin cos sin cos 1f x x x x x x x x x =++=+++-,令sin cos 4t x x x π⎛⎫=+=+ ⎪⎝⎭,所以t ⎡∈⎣,所以()21f t t t =+-, 对于A :将()sin cos 2sin cos f x x x x x =++图象上的各点的横坐标变为原来的12倍,则()sin 2cos 22sin 2cos 2g x x x x x =++,所以()()()()()sin 2cos22sin 2cos2g x x x x x πππππ+=++++++()sin 2cos22sin 2cos2x x x x g x =++=,所以π是函数y =g (x )的一个周期,故A 正确;对于B :因为3,2x ππ⎛⎫∈ ⎪⎝⎭,所以57,444x πππ⎛⎫+∈ ⎪⎝⎭,则)14t x π⎛⎫⎡=+∈- ⎪⎣⎝⎭在5,4ππ⎛⎫ ⎪⎝⎭上单调递减,在53,42ππ⎛⎫⎪⎝⎭上单调递增, 又()2215124f t t t t ⎛⎫=+-=+- ⎪⎝⎭,对称轴为12t =-,开口向上,函数()21f t t t =+-在)1⎡-⎣上单调递减, 所以函数()f x 在5,4ππ⎛⎫ ⎪⎝⎭上单调递增,在53,42ππ⎛⎫⎪⎝⎭上单调递减, 故B 错误; 对于C :sin c 4os 2sin cos 4444f x x x x x πππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=----⎪ ⎪ ⎪ ⎪ ⎪⎝+⎝⎭⎝⎭⎭⎝⎭+⎝⎭sin c 4os 2sin cos 4444f x x x x x πππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+=++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝+⎝⎭⎝⎭⎭⎝⎭+⎝⎭c 2424242sin os 2sin cos 4x x x x ππππππππ⎥++⎡⎤⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-------- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎢⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦⎣⎦4444sin cos 2sin cos 4x x x x f x πππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫----=- ⎪ ⎪ ⎪ ⎪ ⎪=⎝⎭⎝⎭⎝⎭⎝⎭⎝+⎭+,故C 正确;因为()2215124f t t t t ⎛⎫=+-=+- ⎪⎝⎭,2,2t ⎡⎤∈-⎣⎦,当2t =时()f t 取得最大值()max 21f t =+,令2sin 24t x π⎛⎫=+= ⎪⎝⎭,则sin 14x π⎛⎫+= ⎪⎝⎭,所以2,42x k k Z πππ+=+∈,解得2,4x k k Z ππ=+∈,即当2,4x k k Z ππ=+∈时,函数()f x 取得最大值21+,故D 错误;故选:AC 【点睛】本题考查三角函数的综合应用,解答的关键是换元令sin cos t x x =+,将函数转化为二次函数;6.已知函数()()()2sin 0,0f x x ωϕωϕπ=+><<的部分图象如图所示,则下列说法正确的是( )A .23ϕπ=B .()f x 的最小正周期为πC .()f x 的图象关于直线12x π=对称D .()f x 的图象关于点5,06π⎛⎫⎪⎝⎭对称 【答案】BCD 【分析】利用图象,把(3代入求ϕ,利用周期求出2ω=,从而2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭,研究对称轴和对称中心. 【详解】由图可知2sin 3ϕ=3sin ϕ=,根据图象可知0x =在()f x 的单调递增区间上,又0ϕπ<<,所以3πϕ=,A 项错误;因为()2sin 3f x x πω⎛⎫=+ ⎪⎝⎭,所以结合图像,由五点法得33ωπππ+=,解得2ω=,则()f x 的最小正周期2T ππω==,B 项正确;将12x π=代入2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭,得2sin 21263f πππ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,所以()f x 的图象关于直线12x π=对称,C 项正确﹔将56x π=代入可得552sin 0633f πππ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,所以点5,06π⎛⎫ ⎪⎝⎭是()f x 图象的一个对称中心,D 项正确. 故选:BCD. 【点睛】求三角函数解析式的方法: (1)求A 通常用最大值或最小值; (2)求ω通常用周期;()求φ通常利用函数上的点带入即可求解.7.如图,已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的图象与x 轴交于点A ,B ,若7OB OA =,图象的一个最高点42,33D ⎛⎫⎪⎝⎭,则下列说法正确的是( )A .4πϕ=-B .()f x 的最小正周期为4C .()f x 一个单调增区间为24,33⎛⎫-⎪⎝⎭ D .()f x 图象的一个对称中心为5,03⎛⎫- ⎪⎝⎭【答案】BCD 【分析】先利用7OB OA =设0OA x =,得到点A 处坐标,结合周期公式解得选项A 错误,再利用最高点42,33D ⎛⎫⎪⎝⎭解出0x 得到周期,求得解析式,并利用代入验证法判断单调区间和对称中心,即判断选项BCD 正确. 【详解】由7OB OA =,设0OA x =,则07OB x =,06AB x =,选项A 中,点A ()0,0x 处,()0sin 0x ωϕ+=,则00x ωϕ+=,即0x ϕω=-,0612262T x AB ϕπωω-==⋅==,解得6πϕ=-,A 错误; 选项B 中,依题意0004343D x x x x =+==,得013x =,故1,03A ⎛⎫⎪⎝⎭, 最小正周期414433T ⎛⎫=-= ⎪⎝⎭,B 正确;选项C 中,由24T πω==,得2πω=,结合最高点42,33D ⎛⎫⎪⎝⎭,知43A =,即()4sin 326f x x ππ⎛⎫=- ⎪⎝⎭,当24,33x ⎛⎫∈- ⎪⎝⎭时,,2622x ππππ⎛⎫-∈- ⎪⎝⎭,故24,33⎛⎫- ⎪⎝⎭是()f x 的一个单调增区间,C 正确;选项D 中,53x =-时()5454sin sin 0332363f πππ⎡⎤⎛⎫⎛⎫-=⨯--=-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故5,03⎛⎫- ⎪⎝⎭是()f x 图象的一个对称中心,D 正确.故选:BCD. 【点睛】 思路点睛:解决三角函数()sin y A ωx φ=+的图象性质,通常利用正弦函数的图象性质,采用整体代入法进行求解,或者带入验证.8.函数()cos |cos |f x x x =+,x ∈R 是( ) A .最小正周期是π B .区间[0,1]上的减函数 C .图象关于点(k π,0)()k Z ∈对称 D .周期函数且图象有无数条对称轴 【答案】BD【分析】根据绝对值的意义先求出分段函数的解析式,作出函数图象,利用函数性质与图象关系分别对函数的周期、单调区间、对称中心和对称轴进行判断求解. 【详解】2cos (22)22()30(22)22x k x k f x k x k ππππππππ⎧-+⎪⎪=⎨⎪+<≤+⎪⎩,则对应的图象如图:A 中由图象知函数的最小正周期为2π,故A 错误,B 中函数在[0,]2π上为减函数,故B 正确,C 中函数关于x k π=对称,故C 错误,D 中函数由无数条对称轴,且周期是2π,故D 正确 故正确的是B D 故选:BD【点睛】本题考查由有解析式的函数图象的性质. 有关函数图象识别问题的思路:①由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置; ②由函数的单调性,判断图象的变化趋势; ③由函数的奇偶性,判断图象的对称性; ④由函数的周期性,判断图象的循环往复.二、数列多选题9.已知n S 是等差数列{}n a 的前n 项和,201920212020S S S <<,设12n n n n b a a a ++=,则数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,则下列结论中正确的是( ) A .20200a >B .20210a <C .2019202020212022a a a a ⋅>⋅D .2019n =时,n T 取得最大值【答案】ABC【分析】 根据题设条件,得到2021202020212020201920200,0S S a S S a -=<-=>,进而求得201920220a a >->,20192020a a >20212022a a ,再结合“裂项法”求得12121112n n n T d a a a a ++⎫⎛=-⎪ ⎝⎭,结合0d <,即可求解. 【详解】设等差数列{}n a 的公差为d ,因为201920212020S S S <<,可得2021202020210S S a -=<,2020201920200S S a -=>, 20212019S S -=202120200a a +>,即202020210a a >->,202020210a d a d ->-->,即201920220a a >->,所以20192020a a >20212022a a ,0d <,即数列{}n a 递减,且10a >,20a >,…,20200a >,20210a <,又由12n n n n b a a a ++=,可得1211n n n n b a a a ++==1121112n n n n d a a a a +++⎛⎫- ⎪⎝⎭, 则122323341121211111111122n n n n n T d a a a a a a a a a a a a d a a +++⎛⎫⎛=-+-+⋅⋅⋅+-=- ⎪ ⎝⎝⎭121n n a a ++⎫⎪⎭,由0d <,要使n T 取最大值,则121211n n a a a a ++⎛⎫-⎪⎝⎭取得最小值, 显然1210n n a a ++>,而23a a >34201920202021202220222023a a a a a a a a >⋅⋅⋅>><<⋅⋅⋅, 所以当2020n =时,121211n n a a a a ++⎛⎫- ⎪⎝⎭取得最小值. 综上可得,正确的选项为ABC.故选:ABC.【点睛】本题主要考查了数列的综合应用,其中解答中熟练应用通项n a 和n S 的关系式,数列的“裂项法”求和,以及数列的单调性进行求解是解答的关键,着重考查推理与运算能力.10.将2n 个数排成n 行n 列的一个数阵,如图:该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中0m >).已知112a =,13611a a =+,记这2n 个数的和为S .下列结论正确的有( )A .3m =B .181********kk i a =⨯+=∑C .(31)3ij j a i =-⨯D .()1(31)314n S n n =+- 【答案】ABD【分析】 根据第一列成等差,第一行成等比可求出1361,a a ,列式即可求出m ,从而求出通项ij a ,进而可得ii a ,根据错位相减法可求得181kk i a =∑,再按照分组求和法,每一行求和可得S ,由此可以判断各选项的真假.【详解】∵a 11=2,a 13=a 61+1,∴2m 2=2+5m +1,解得m =3或m 12=-(舍去),A 正确; ∴()()11113213313j j j ij i a a i m i ---⎡⎤=⋅=+-⨯⋅=-⋅⎣⎦,C 错误; ∴()1313i ii a i -=-⋅, 0171811223318182353533S a a a a =+++⋯+=⨯+⨯+⋯+⨯① 12181832353533S =⨯+⨯+⋯+⨯②,①-②化简计算可得:1818103354S ⨯+=,B 正确; S =(a 11+a 12+a 13+……+a 1n )+(a 21+a 22+a 23+……+a 2n )+……+(a n 1+a n2+a n 3+……+a nn ) ()()()11211131313131313n n n n a a a ---=+++--- ()()231131.22n n n +-=- ()1=(31)314n n n +-,D 正确; 故选:ABD.【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法; (4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.。
决胜3.在中,角,,所对的边分别为,,,且,.ABC A B C a b c 23a c b +=3A C π-=(1)求;cos B (2)若,求的面积.5b =ABC 4.设()()()()πsin 2πcos 2cos sin πf ααααα⎛⎫++ ⎪⎝⎭=---(1)将化为最简形式;()f α(2)已知,求的值.()3f θ=-()sin 1sin2sin cos θθθθ++5.已知函数.()π1sin 232f x x ⎛⎫=-- ⎪⎝⎭(1)求函数的单调递增区间,并解不等式;()f x ()0f x ≥(2)关于的方程在上有两个不相等的实数解,求实数的取x 11022m f x +⎛⎫+= ⎪⎝⎭[]0,πx ∈12,x x m 值范围及的值.()12f x x +6.已知角为第四象限角,且角的终边与单位圆交于点.αα1,3P y ⎛⎫ ⎪⎝⎭(1)求的值;sin α(2)求的值.()πtan sin 2sin cos παααα⎛⎫+ ⎪⎝⎭+7.在平面直角坐标系中,角以为始边,它的终边与单位圆交于第二象限内的点xOy αOx .(),P x y (1)若,求及的值;255y =tan α7sin 2cos sin 4cos αααα+-(2)若,求点P 的坐标.sin 11cos 2αα=-(1)若,求;3BC =ADCD (2)若,求线段的长11cos 14A =AD(1)求函数在区间上的最大值和最小值;()f x ππ[,]64-(2)若函数在区间上恰有2个零点,求的值.5()()4g x f x =-π(0,)212,x x 12cos()x x -11.在中,,点D 在AB 边上,且为锐角,,的面积为ABC 25BC =BCD ∠2CD =BCD △4.(1)求的值;cos BCD ∠(2)若,求边AC 的长.30A =︒12.记三个内角的对边分别为,已知为锐角,ABC ,,A B C ,,a b c B .sin sin sin 2sin sin a A b B c C a A B +-=(1)求;()sin A C -(2)求的最小值.sin sin A B 13.已知函数且的最小正周期为.()πsin 23f x x ω⎛⎫=+ ⎪⎝⎭()f x π(1)求函数的单调递减区间;()f x (2)若,求x 的取值范围.()22f x ≤14.已知函数在上单调递增.()sin (0)f x x ωω=>ππ,34⎡⎤-⎢⎥⎣⎦(1)求的取值范围:ω(2)当取最大值时,将的图象向左平移个单位,再将图象上所有点的横坐标变为原来ω()f x π9的3倍,得到的图象,求在内的值域.()g x ()g x ππ,32⎡⎤-⎢⎥⎣⎦15.在中,角所对的边分别为,已知.ABC ,,A B C ,,a b c sin cos cos cos cos sin sin A B C B C A B +=--(1)求;C (2)若外接圆的半径为,求的面积最大值.ABC 233ABC 16.已知函数.()()πe e sin ,32x xf x xg x --==(1)若,求;321π3f α⎛⎫+= ⎪⎝⎭32πf α⎛⎫- ⎪⎝⎭(2)设函数,证明:在上有且仅有一个零点,且()()ln h x x f x =+()h x ()0,∞+0x .()()034g f x >-17.在平面直角坐标系中,角的顶点与原点重合,始边与轴的非负半轴重合,终xOy αO x 边与单位圆交于第三象限点.525,55P ⎛⎫-- ⎪⎝⎭(1)求的值;sin cos αα-(2)若角的终边绕原点按逆时针方向旋转,与单位圆交于点,求点的坐标.αO π2Q Q 18.设函数,且.2()2cos 23sin cos (0)f x x x x m ωωωω=++>(0)1f =(1)求的值;m (2)再从条件①、条件②、条件③这三个条件中选择一个作为已知,使函数存在,求()f x 的值及的零点.ω()f x 条件①:是奇函数;()f x 条件②:图象的两条相邻对称轴之间的距离是;()f x π条件③:在区间上单调递增,在区间上单调递减.()f x π0,6⎡⎤⎢⎥⎣⎦ππ,63⎡⎤⎢⎥⎣⎦注:如果选择的条件不符合要求,第(2)问得分;如果选择多个符合要求的条件分别解答,0按第一个解答计分.答案:1.(1)1-(2)12-【分析】(1)根据点坐标求得.P tan α(2)根据点坐标求得,利用诱导公式求得正确答案.P sin ,cos αα【详解】(1)即,3π,cos π3sin 44P ⎛⎫ ⎪⎝⎭22,22P ⎛⎫- ⎪ ⎪⎝⎭所以.22tan 122α-==-(2)由(1)得,所以,22,22P ⎛⎫- ⎪ ⎪⎝⎭22222sin 22222α-==-⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭,22222cos 22222α==⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭()1617πsin πsin πsin sin 808π22αααα⎛⎫⎛⎫-+=++ ⎪ ⎪⎝⎭⎝⎭πsin sin sin cos 2αααα⎛⎫=+= ⎪⎝⎭.221222⎛⎫=-⨯=- ⎪ ⎪⎝⎭2.(1),1tan 7α=1tan 3β=(2)π4【分析】(1)先根据同角三角函数平方关系求出,再根据商数关系和两角和正切公式cos α化简得结果;(2)根据二倍角公式得,,再根据两角和余弦公式得,最后根据sin 2,cos 2ββ()cos 2αβ+范围求结果.【详解】(1)因为为锐角,,所以,,αβ2sin 10α=272cos 1sin 10αα=-=所以,2sin 110tan cos 77210ααα===又因为,所以,tan tan 1tan()1tan tan 2αβαβαβ++==-1tan 3β=(2)因为为锐角,,所以,解得,,αβ1tan 3β=22sin 1cos 3sin cos 1ββββ⎧=⎪⎨⎪+=⎩10sin 10310cos 10ββ⎧=⎪⎪⎨⎪=⎪⎩所以,sin 22sin cos 103103101052βββ==⨯=⨯,24cos 212sin 5ββ=-=所以,()724232cos 2cos cos 2sin sin 21051052αβαβαβ+=-=⨯-⨯=又因为为锐角,所以,,αβ3π022αβ<+<所以.π24αβ+=3.(1)78(2)111512【分析】(1)根据已知条件,利用正弦定理化为,结合23a c b +=sin sin 23sin A C B +=已知条件,有,,代入解三角形即可.3A C π-=32B C π=-232B A π=-sin sin 23sin A C B +=(2)根据(1)终结论,利用余弦定理,结合,,解得,利用面5b =23a c b +=443ac =积公式即可求得面积为.11115sin 212ABC S ac B ==△【详解】(1)因为,所以由正弦定理得,23a c b +=sin sin 23sin A C B +=因为,且,所以,,3A C π-=A B C π++=32B C π=-232B A π=-所以2sin sin 23sin 3232B B B ππ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭即,22sin cos cos sin sin cos cos sin 23sin 32323232B B B B B ππππ-+-=所以,所以,3cos 23sin 2B B =cos 4sin cos 222B B B =因为,所以,所以;022B π<<1sin 24B =27cos 12sin 28B B =-=(2)由余弦定理可得,2222cos b a c ac B =+-即,得,得,()27524a c ac ac =+--()2155234b ac =-443ac =因为,所以,所以7cos 8B =15sin 8B =11115sin 212ABC S ac B ==△4.(1)tan α-(2)65【分析】(1)根据三角函数的诱导公式,结合同角三角函数的商式关系,可得答案;(2)利用正弦函数的二倍角公式以及同角三角函数的平方式,整理齐次式,可得答案.【详解】(1).()()()()πsin 2πcos sin sin 2tan cos sin πcos sin f αααααααααα⎛⎫++ ⎪-⎝⎭===----(2)由,则,()tan 3f θθ=-=-tan 3θ=,()()()()()22222sin 1sin2sin (sin cos )tan (tan 1)sin cos sin cos sin cos tan 1tan 1θθθθθθθθθθθθθθθ+++==+++++.()()2223(31)34641053131⨯+⨯===⨯+⨯+5.(1)答案见解析(2)(()1212,3,2f x x ⎤--+=-⎦【分析】(1)由题意分别令,πππ2π22π,Z 232k x k k -+≤-≤+∈,解不等式即可得解.ππ5π2π22π,Z 366k x k k +≤-≤+∈(2)由题意得在上有两个不相等的实数解,结合三角()π2sin 3m x g x ⎛⎫=--= ⎪⎝⎭[]0,πx ∈12,x x 函数单调性、最值即可求出的取值范围,结合对称性代入求值即可得的值.m ()12f x x +【详解】(1)由题意令,解得,πππ2π22π,Z 232k x k k -+≤-≤+∈π5πππ,Z 1212k x k k -+≤≤+∈即函数的单调递增区间为,()f x ()π5ππ,π,Z 1212k k k ⎡⎤-++∈⎢⎥⎣⎦令,所以,()π1sin 2032f x x ⎛⎫=--≥ ⎪⎝⎭π1sin 232x ⎛⎫-≥ ⎪⎝⎭所以,解得,ππ5π2π22π,Z 366k x k k +≤-≤+∈π7πZ 412ππ,k x k k +≤≤+∈所以不等式的解集为.()0f x ≥()π7ππ,π,Z 412k k k ⎡⎤++∈⎢⎥⎣⎦(2)由题意即,11022m f x +⎛⎫+= ⎪⎝⎭πsin 032m x ⎛⎫-+= ⎪⎝⎭即在上有两个不相等的实数解,()π2sin 3m x g x ⎛⎫=--= ⎪⎝⎭[]0,πx ∈12,x x 当时,,而在上单调递减,在上单[]0,πx ∈ππ2π,333t x ⎡⎤=-∈-⎢⎥⎣⎦2sin y t =-ππ,32⎡⎤-⎢⎥⎣⎦π2π,23⎡⎤⎢⎥⎣⎦调递增,所以当即时,,ππ32t x =-=5π6x =()min 2g x =-当即时,,ππ33t x =-=-0x =()max 3g x =又即时,,π2π33t x =-=πx =()3g x =-所以若在上有两个不相等的实数解,()π2sin 3m x g x ⎛⎫=--= ⎪⎝⎭[]0,πx ∈12,x x 则实数的取值范围为,m (2,3⎤--⎦因为,所以是的对称轴,()min 5π26g x g ⎛⎫==- ⎪⎝⎭5π6x =()g x所以.()125π5ππ112sin 263322f x x f ⎛⎫⎛⎫+=⨯=⨯--=- ⎪ ⎪⎝⎭⎝⎭6.(1)223-(2)3-【分析】(1)将点代入单位圆后结合任意角三角函数定义求解即可.(2)利用诱导公式化简求值即可.【详解】(1)在单位圆中,解得,22113y ⎛⎫+= ⎪⎝⎭223y =±因为第四象限角,所以α223y =-22sin 3α∴=-(2)第四象限角22sin ,3αα=-1cos 3α∴=.()πtan sin 123sin cos πcos ααααα⎛⎫+ ⎪⎝⎭∴=-=-+7.(1),;2-2(2).34(,)55-【分析】(1)根据给定条件,求出点的坐标及,再利用齐次式法计算即得.P tan α(2)利用同角公式,结合三角函数定义求解即得.【详解】(1)角以Ox 为始边,它的终边与单位圆交于第二象限内的点,α(),P x y 当时,,则,255y =22551()55x =--=-tan 2y x α==-所以.7tan 27(2)227ta 4sin 2cos sin 42c 4os n αααααα+⨯-++==---=-(2)依题意,,sin 0,cos 0αα><由,得,代入,sin 11cos 2αα=-cos 12sin αα=-22sin cos 1αα+=于是,解得,22sin (12sin )1αα+-=2sin ,cos 1sin 5543ααα==--=-即,所以点P 的坐标为.34,55x y =-=34(,)55-8.(1);π3A =(2).2AD =【分析】(1)由正弦定理化边为角,然后由三角恒等变换求解;(2)设,利用由余弦定理求得,从而由正弦定理求得AD x =πADB ADC ∠+∠=cos ADB ∠(用表示),再代入余弦定理的结论中求得值.AC x x 【详解】(1)由正弦定理及已知得2cos cos cos 2c a A B b A =-,sin 2sin cos cos sin cos 2sin 2cos sin cos 2sin(2)C A A B B A A B B A A B =-=-=-或,C 2A B =-2πC A B +-=又,所以,A B ≤22πC A B C B B C B +-≤+-=+<所以,从而,所以;C 2A B =-2πB C A A +==-π3A =(2)由余弦定理得,,2222cos AB BD AD AD BD ADB =+-⋅∠,2222cos AC CD AD AD CD ADC =+-⋅∠又是角平分线,所以,又,则,记,因为AD 2AC CD AB BD ==3a =2,1CD BD ==AD x =,πADB ADC ∠+∠=所以,所以,2244cos 412cos x x ADC x x ADC +-∠=++∠cos 4x ADC ∠=-,则,0πADC <∠<2sin 116x ADC ∠=-由正弦定理得,sin sin AC CD ADC CAD =∠∠所以,222116π16sin 6x AC x =⋅-=-所以,解得,即.221644()4x x x x -=+-⋅-2x =2AD =9.(1)263(2)677【分析】(1)利用正弦定理及其余弦定理求解;(2)利用三角形的面积公式求解.【详解】(1)因为平分,,故,AD BAC ∠3AB BC ==2C BAC θ∠=∠=在中,由正弦定理知:,ADC △sin sin 22cos sin sin AD ACD CD DAC θθθ∠===∠由余弦定理有,2222223231cos 2cos 22323CA CB BA C CA CB θ+-+-====⋅⨯⨯又因为,所以,21cos 22cos 13θθ==-6cos 3θ=即;262cos 3AD CDθ==(2)由,得,则,11cos 14A =11cos 214θ=cos 2157cos 214θθ+==又由,()11sin 2sin 22ABC ABD ACD S AB AC S S AB AC AD θθ=⋅=+=+△△△得.()sin 21267cos sin 57AB AC AD AB AC θθθ⋅===+10.(1)最大值和最小值分别为;2,1-(2).58【分析】(1)求出函数的解析式,再利用余弦函数的性质求解即得.()f x (2)利用余弦函数图象的对称性,结合诱导公式计算.12cos()x x -【详解】(1)由函数的最小正周期为,得,解得,()f x π2ππω=π2,()2cos(2)3x f x ω==-当时,,则当,即时,,ππ[,]64x ∈-π2ππ2[,]336x -∈-π2π233x -=-π6x =-min ()1f x =-当,即时,,π203x -=π6x =max ()2f x =所以函数在区间上的最大值和最小值分别为.()f x ππ[,]64-2,1-(2)()2222252cos 25222525BD BC CD BC CD BCD =+-⨯∠=+-⨯⨯⨯,故,204816=+-=4BD =有,故,22216420BD CD BC +=+==CD AB ⊥则,即.21sin sin 302CD A AC AC ==︒==4AC =12.(1);()sin 1A C -=(2)无最小值;【分析】(1)利用正弦定理和余弦定理可得,结合为锐角可得,所sin cos A C =B π2A C =+以;()sin 1A C -=(2)利用诱导公式可得,再由导数判断出在3sin sin 2sin sin A B A A =-()32f t t t =-上单调递增,可得无最小值;2,12t ⎛⎫∈ ⎪ ⎪⎝⎭sin sin A B 【详解】(1)因为,sin sin sin 2sin sin a A b B c C a A B +-=由正弦定理得,2222sin a b c ab A +-=由余弦定理可得,2222cos a b c ab C +-=所以可得,解得或;sin cos A C =π2A C =-π2A C =+又为锐角,所以(舍),即,B π2A C =-π2A C =+因此;()πsin sin12A C -==(2)结合(1)中,又可得:π2A C =+πA B C ++=;33πsin sin sin sin 2sin cos 22sin sin 2A B A A A A A A ⎛⎫=-=-=- ⎪⎝⎭令,则,sin t A =()3sin sin 2A B f t t t ==-又为锐角,,所以,B 3ππ20,22A ⎛⎫-∈ ⎪⎝⎭π3π24A <<可得,212t <<所以,当时,恒成立,()261f t t '=-212t <<()2610f t t '=->即可得为单调递增,()32f t t t =-所以时,,所以无最值;2,12t ⎛⎫∈ ⎪ ⎪⎝⎭()()0,1f t ∈()f t 因此无最小值;sin sin A B 13.(1)答案见解析(2)答案见解析【分析】(1)根据最小正周期为求得,求出单调递减区间;π=1ω±(2)根据写出x 的取值范围.()22f x ≤【详解】(1)因为的周期为,()πsin 23f x x ω⎛⎫=+ ⎪⎝⎭π故,所以.2ππ2ω==1ω±当时,,=1ω()πsin 23f x x ⎛⎫=+ ⎪⎝⎭由,得到,ππ3π2π22π232k x k +≤+≤+π7πππ1212k x k +≤≤+故的递减区间为.()f x π7ππ,π,Z 1212k k k ⎡⎤++∈⎢⎥⎣⎦当时,,1ω=-()ππsin 2sin 233f x x x ⎛⎫⎛⎫=-+=-- ⎪ ⎪⎝⎭⎝⎭由,得到πππ2π22π232k x k -+≤-≤+π5πππ1212k x k -+≤≤+故的递减区间为.()f x π5ππ,π,Z 1212k k k ⎡⎤-++∈⎢⎥⎣⎦(2)当时,,=1ω()π2sin 232f x x ⎛⎫=+≤ ⎪⎝⎭所以,5πππ2π22π434k x k -+≤+≤+解得.19ππππ,Z 2424k x k k -+≤≤-+∈当时,,1ω=-()ππ2sin 2sin 2332f x x x ⎛⎫⎛⎫=-+=--≤ ⎪ ⎪⎝⎭⎝⎭即,π2sin 232x ⎛⎫-≥- ⎪⎝⎭所以,ππ5π2π22π434k x k -+≤-≤+解得.π19πππ2424k x k +≤≤+综上:当时,;=1ω19ππππ2424k x k -+≤≤-+当时,.1ω=-π19πππ,Z 2424k x k k +≤≤+∈14.(1)302ω<≤(2)260,4⎡⎤+⎢⎥⎣⎦【分析】(1)由题设条件,列出不等式,求解即可.,32πππ4π2ωω-≥-≤(2)根据函数图像平移变换,写出函数,再结合区间和三角函数性质求1π()sin 26g x x ⎛⎫=+ ⎪⎝⎭出值域.【详解】(1)由,得 ,ππ,34x ⎡⎤∈-⎢⎥⎣⎦ππ,34x ωωω⎡⎤∈-⎢⎥⎣⎦又函数在上单调递增,()sin (0)f x x ωω=>ππ,34⎡⎤-⎢⎥⎣⎦所以,解得,32πππ4π2ωω-≥-≤32ω≤因为,所以.0ω>302ω<≤(2)由(1)知的最大值为,此时,ω323()sin 2f x x =根据题意,,31π1π()sin sin 23926g x x x ⎡⎤⎛⎫⎛⎫=+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦当时,.ππ,32x ⎡⎤∈-⎢⎥⎣⎦1πππ02664x ≤+≤+所以,故值域为.ππ260()sin 644g x +⎛⎫≤≤+= ⎪⎝⎭260,4⎡⎤+⎢⎥⎣⎦15.(1)π3C =(2)3【分析】(1)利用正弦定理、三角恒等变换计算即可.(2)利用正余弦定理、三角形面积公式及基本不等式计算即可.【详解】(1)由已知可得:,222sin sin sin cos cos A A B B C -=-∴,()222sin sin sin 1sin 1sin A A B B C -=---∴,222sin sin sin sin sin A B C A B +-=根据正弦定理可知:,222a b c ab +-=∴.2221cos 22a b c C ab +-==又.π(0,π),3C C ∈∴=(2)∵外接圆的半径为,ABC 233r =∴,解得.432sin 3c r C==2c =又由(1)得,222a b c ab +-=故,∴,当且仅当时等号成立22424a b ab ab +-=≥-4ab ≤2a b ==∴,13sin 324ABC S ab C ab ==≤△∴的面积最大值为.ABC 316.(1)23(2)证明见解析【分析】(1)化简已知条件求得,利用诱导公式求得.πsin 3α⎛⎫+ ⎪⎝⎭32πf α⎛⎫- ⎪⎝⎭(2)先求得的表达式,然后对进行分类讨论,结合零点存在性定理证得在()h x x ()h x 上有且仅有一个零点,求得的表达式,然后利用函数的单调性证得不等()0,∞+0x()()0g f x 式成立.()()034g f x >-【详解】(1)由,则,321π3f α⎛⎫+= ⎪⎝⎭π2sin 33α⎛⎫+= ⎪⎝⎭所以32π2sin π3f αα⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭.ππ2sin πsin 333αα⎡⎤⎛⎫⎛⎫=-+=+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦(2)证明:由题意得.()πln sin 3h x x x =+①当时,,所以单调递增.30,2x ⎛⎤∈ ⎥⎝⎦ππ0,32x ⎛⎤∈ ⎥⎝⎦()h x 又,由于,而,1πsin ln226h ⎛⎫=- ⎪⎝⎭π1sin 62=1ln2ln e 2>=所以.又,102h ⎛⎫< ⎪⎝⎭()3102h =>所以由零点存在定理得在内有唯一零点,使得.()h x 30,2⎛⎤ ⎥⎝⎦0x ()00h x =当时,,所以,则在上无零点;3,32x ⎛⎤∈ ⎥⎝⎦πln 0,sin 03x x >≥()0h x >()h x 3,32⎛⎤ ⎥⎝⎦当时,,所以,则在上无零点.()3,x ∈+∞πln 1,1sin 13x x >-≤≤()0h x >()h x ()3,+∞综上,在上有且仅有一个零点.()h x ()0,∞+0x ②由①得,且,0112x <<()00ln 0x f x +=则.()()()()00000011ln ,ln 2f x x g f x g x x x ⎛⎫=-=-=- ⎪⎝⎭由函数的单调性得函数在上单调递增,()000112x x x ϕ⎛⎫=-⎪⎝⎭1,12⎛⎫ ⎪⎝⎭则,()01324x ϕϕ⎛⎫>=- ⎪⎝⎭故.()()034g f x >-求解已知三角函数值求三角函数值的问题,可以考虑利用诱导公式等三角恒等变换的公式来进行求解.判断函数零点的个数,除了零点存在性定理外,还需要结合函数的单调性来进行判断.17.(1)55-(2)255,55⎛⎫- ⎪ ⎪⎝⎭【分析】(1)直接根据三角函数的定义求解;(2)利用诱导公式求出旋转后的角的三角函数值即可.【详解】(1)由三角函数的定义可得,5sin c 5o 255s αα-=-=,所以;5s 5in 5c 2os 555αα⎛⎫--=- ⎪ ⎪⎝⎭-=-(2)角的终边绕原点O 按逆时针方向旋转,得到角,απ2π2α+则,,π5sin cos 25αα⎛⎫+==- ⎪⎝⎭π25cos sin 25αα⎛⎫+=-= ⎪⎝⎭所以点Q 的坐标为.255,55⎛⎫- ⎪ ⎪⎝⎭18.(1)1m =-(2)选择①,不存在;选择②,,;选择③,,12ω=ππ,Z 6k k -+∈1ω=ππ,Z 122k k -+∈【分析】(1)利用二倍角公式以及辅助角公式化简函数,根据,即可求解;(0)1f =(2)根据奇函数性质、三角函数图象的性质以及三角函数的单调性,即可逐个条件进行判断和求解.【详解】(1)2()2cos 23sin cos f x x x x m ωωω=++,πcos 23sin212sin 216x x m x m ωωω⎛⎫=+++=+++ ⎪⎝⎭又,所以.1(0)2112f m =⨯++=1m =-(2)由(1)知,,()π2sin 26f x x ω⎛⎫=+ ⎪⎝⎭选择①:因为是奇函数,()f x 所以与已知矛盾,所以不存在.()00f =()f x 选择②:因为图象的两条相邻对称轴之间的距离是,()f x π所以,,,π2T =2πT =2π21T ω==12ω=则,()π2sin 6f x x ⎛⎫=+ ⎪⎝⎭令,()π2sin 06f x x ⎛⎫=+= ⎪⎝⎭解得.ππ,Z 6k x k -+∈=即零点为.()f x ππ,Z 6k k -+∈选择③:对于,,()π2sin 26f x x ω⎛⎫=+ ⎪⎝⎭0ω>令,,πππ2π22π,Z 262k x k k ω-+≤+≤+∈ππ3π2π22π,Z 262k x k k ω+≤+≤+∈解得,,ππππ,Z 36k k x k ωωωω-+≤≤+∈ππ2ππ,Z 63k k x k ωωωω+≤≤+∈即增区间为,()f x ππππ,,Z 36k k k ωωωω⎡⎤-++∈⎢⎥⎣⎦减区间为,()f x ππ2ππ,,Z 63k k k ωωωω⎡⎤++∈⎢⎥⎣⎦因为在区间上单调递增,在区间上单调递减,()f x π0,6⎡⎤⎢⎥⎣⎦ππ,63⎡⎤⎢⎥⎣⎦所以时符合,0k =即在上单调递增,在上单调递减,()f x ππ,36ωω⎡⎤-⎢⎥⎣⎦π2π,63ωω⎡⎤⎢⎥⎣⎦所以且,π03ππ66ωω⎧-≤⎪⎪⎨⎪≥⎪⎩2ππ33ππ66ωω⎧≥⎪⎪⎨⎪≤⎪⎩解得,则,1ω=()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭所以令,()π2sin 206f x x ⎛⎫=+= ⎪⎝⎭解得,ππ,Z 122k x k =-+∈即零点为.()f x ππ,Z 122k k -+∈。
高中数学第五章三角函数名师选题单选题1、一个负角的绝对值被看成圆心角时,所对的弧长恰好是圆的周长的23,则该角的度数是( )A .−240°B .−120°C .120°D .240° 答案:A分析:根据扇形的弧长恰好是圆的周长的23,得到|α|r =23×2πr ,即可求解. 设该扇形所在圆的半径为r ,其圆心角为α(α<0), 因为扇形的弧长恰好是圆的周长的23,可得|α|r =23×2πr ,解得|α|=4π3,因为α<0,所以α=−4π3=−240∘.故选:A.2、f(x)=−sinx−xcosx+x 2在[−π,π]的图象大致为( )A .B .C .D .答案:C分析:先由函数为奇函数可排除A ,再通过特殊值排除B 、D 即可. 由f(−x)=−sin (−x )+x cosx+x 2=−−sinx−xcosx+x 2=−f (x ),所以f (x )为奇函数,故排除选项A.又f (π)=−sinπ−πcosπ+π2=−ππ2−1<0,则排除选项B,D故选:C3、某市一年12个月的月平均气温y与月份x的关系可近似地用函数y=a+Acos[π6(x−6)](x=1,2,3,⋅⋅⋅,12)来表示,已知该市6月份的平均气温最高,为28∘C,12月份的平均气温最低,为18∘C,则该市8月份的平均气温为()A.25.5∘C B.22.5∘C C.20.5∘C D.13∘C答案:A分析:根据已知条件列方程可求得a和A的值,可得函数解析式,将x=8代入即可求解.由题意可得:{f(6)=a+Acos[π6(6−6)]=28f(12)=a+Acos[π6(12−6)]=18即{a+A=28a−A=18,解得:{a=23A=5,所以f(x)=23+5cos[π6(x−6)],所以该市8月份的平均气温为f(8)=23+5cos[π6(8−6)]=23+5cosπ3=25.5∘C,故选:A.4、如图,为一半径为3m的水轮,水轮圆心O距离水面2m,已知水轮自点A开始1min旋转4圈,水轮上的点P到水面距离y(m)与时间x(s)满足函数关系y=A sin(ωx+φ)+2,则有()A.ω=2π15,A=3B.ω=152π,A=3C.ω=2π15,A=5D.ω=152π,A=5答案:A分析:根据最大值及半径求出A,根据周期求出ω.由题目可知最大值为5,∴ 5=A×1+2⇒A=3.T=604=15,则ω=2πT=2π15.故选:A5、《掷铁饼者》取材于希腊的现实生活中的体育竞技活动,刻画的是一名强健的男子在掷铁饼过程中具有表现力的瞬间(如图).现在把掷铁饼者张开的双臂近似看成一张拉满弦的“弓”,掷铁饼者的手臂长约为π4m ,肩宽约为π8m ,“弓”所在圆的半径约为54m ,则掷铁饼者双手之间的距离约为(参考数据:√2≈1.414,√3≈1.732)( )A .1.012mB .1.768mC .2.043mD .2.945m 答案:B分析:由题意分析得到这段弓形所在的弧长,结合弧长公式求出其所对的圆心角,双手之间的距离,求得其弦长,即可求解.如图所示,由题意知“弓”所在的弧ACB⏜ 的长l =π4+π4+π8=5π8,其所对圆心角α=5π854=π2,则两手之间的距离|AB |=2|AD |=2×54×sin π4≈1.768(m ). 故选:B .6、已知角α的终边经过点P (−3,4),则sinα−cosα−11+tanα的值为( )A .−65B .1C .2D .3 答案:A分析:由三角函数的定义可得sinα=45,cosα=−35,tanα=−43,将其代入即可求解.由√(−3)2+42=5,得sinα=45,cosα=−35,tanα=−43,代入原式得=45−(−35)−11+(−43)=−65.故选:A7、若角α的终边上一点的坐标为(1,−1),则cosα=( ) A .−1B .−√22C .√22D .1 答案:C分析:根据任意角三角函数的定义即可求解.∵角α的终边上一点的坐标为(1,−1),它与原点的距离r =√12+(−1)2=√2, ∴cosα=xr =√2=√22, 故选:C.8、设函数f (x )=cos (ωx +π6)(ω>0),在[−π,π]上的图象大致如图,将该图象向右平移m (m >0)个单位后所得图象关于直线x =π6对称,则m 的最小值为( )A .π4B .2π9C .5π18D .π3答案:C分析:根据五点作图法可构造方程求得ω,得到f (x );由三角函数平移变换可求得平移后解析式,利用代入检验的方法,根据图象关于x =π6可构造方程求得m ,由此确定最小值. 根据五点法作图知:−4π9ω+π6=−π2,解得:ω=32,∴f (x )=cos (32x +π6);将f (x )向右平移m 个单位得:f (x −m )=cos (32x +π6−32m), ∵f (x −m )图象关于x =π6对称,∴32×π6+π6−32m =kπ(k ∈Z ),解得:m=5π18−23kπ(k∈Z),由m>0,可令k=0得m的最小值5π18.故选:C.小提示:方法点睛:根据余弦型函数y=Acos(ωx+φ)的对称轴、对称中心和单调区间求解参数值时,通常采用代入检验的方式,即将x的取值代入ωx+φ,整体对应y=cosx的对称轴、对称中心和单调区间,由此求得结果.多选题9、下列函数中,是奇函数的是().A.y=x2sinx B.y=sinx,x∈[0,2π]C.y=sinx,x∈[−π,π]D.y=xcosx答案:ACD分析:先观察函数的定义域,然后计算f(x)与f(−x)之间的关系.对A,由y=f(x)=x2sinx,定义域为R,且f(−x)=(−x)2sin(−x)=−x2sinx=−f(x),故函数y=x2sinx为奇函数,故A正确对B,由函数的定义域为x∈[0,2π],故该函数为非奇非偶函数,故B错对C,y=g(x)=sinx,定义域关于原点对称,且g(−x)=sin(−x)=−sinx=−g(x),故C正确对D,y=m(x)=xcosx的定义域为R,且m(−x)=(−x)cos(−x)=−xcosx=−m(x),故该函数为奇函数,故D正确故选:ACD小提示:本题考查诱导公式的应用以及函数奇偶性的判断,对函数奇偶性的判断,需要两点:(1)定义域关于原点对称;(2)f(x)与f(−x)之间的关系,属基础题.10、下列四个关系式中错误的是().A .sin5θ+sin3θ=2sin4θcosθB .cos3θ−cos5θ=−2sin4θsinθC .sin3θ−sin5θ=−12cos4θcosθ D .sin5θ+cos3θ=2sin4θcosθ 答案:BCD分析:由5θ=4θ+θ,3θ=4θ−θ,利用两角和与差的正弦、余弦公式展开后可得相加减,实质就是和差化积公式.对D 要注意目的要求.由sin5θ=sin(4θ+θ)=sin4θcosθ+cos4θsinθ,sin3θ=sin(4θ−θ)=sin4θcosθ−cos4θsinθ,cos5θ=cos(4θ+θ)=cos4θcosθ−sin4θsinθ,cos3θ=cos(4θ−θ)=cos4θcosθ+sin4θsinθ,代入各选项, 得sin5θ+sin3θ=2sin4θcosθ,A 正确,B 错误,右边应是2sin4θsinθ;C 错误,右边应是−2cos4θsinθ;D 错误,由sin5θ与cos3θ两式相加不能得出右边结论,如果从和差化积角度考虑.左边为异名三角函数,要化积应先用诱导公式化为同名三角函数后再化积,即sin5θ+cos3θ=sin5θ+sin (π2−3θ)=2sin (θ+π4)cos (4θ−π4). 故选:BCD .小提示:本题考查各差化积公式,利用两角和与差的正弦余弦公式相加减后可得和差化积公式,注意和差化积公式是同名函数的和差才能化积.11、若角α的终边在直线y =−2x 上,则sinα的可能取值为( ) A .√55B .−√55C .2√55D .−2√55答案:CD分析:利用三角函数的定义,分情况讨论sinα的可能取值. 设角α的终边y =−2x 上一点(a,−2a ), 当a >0时,则r =√5a ,此时sinα=y r=−2√55, 当a <0时,则r =−√5a ,此时sinα=y r=2√55, 故选:CD12、关于函数f(x)=sin|x|+|sinx|,下列叙述正确的是()A.f(x)是偶函数B.f(x)在区间(π,π)单调递增2C.f(x)的最大值为2D.f(x)在[−π,π]有4个零点答案:AC分析:根据函数的奇偶性、单调性、最值,零点等概念结合正弦函数性质判断各选项.f(−x)=sin|−x|+|sin(−x)|=sin|x|+|sinx|=f(x),f(x)是偶函数,A正确;,π)时,f(x)=sinx+sinx=2sinx,单调递减,B错误;x∈(π2)=2,因此C正确;f(x)=sin|x|+|sinx|≤1+1=2,且f(π2在[−π,π]上,−π<x<0时,f(x)=sin(−x)+(−sinx)=−2sinx>0,0<x<π时,f(x)=sinx+sinx=2sinx>0,f(x)的零点只有π,0,−π共三个,D错.故选:AC.13、已知函数f(x)=|sinx|+√3|cosx|,下列结论正确的是()A.f(x)的最小正周期为πB.f(x)为偶函数对称D.函数y=f(x)的最小值为1C.函数y=f(x)的图像关于直线x=π6答案:ABD分析:画出f(x)在[0,2π]上的函数图象,数形结合,对每个选项进行逐一分析,即可判断和选择. f(x)=|sinx|+√3|cosx|在[0,2π]上的函数图像如下所示:数形结合可知:f(x)的最小正周期为π,且其不关于x=π对称,6f(x)的最小值为f(π2)=1;又f(−x)=|sin(−x)|+√3|cos(−x)|=|sinx|+√3|cosx|=f(x),又其定义域R关于原点对称,故其为偶函数.综上所述,正确的选项是:ABD.故选:ABD.填空题14、已知f(x)=sinx−3ax3+3bx−3,x∈R且f(−2π3)=−4,则f(2π3)的值为______.答案:−2分析:结合函数的奇偶性求得f(2π3)的值.由f(x)=sinx−3ax3+3bx−3,令g(x)=sinx−3ax3+3bx,g(−x)=−g(x),g(x)为奇函数,f(x)=g(x)−3,由f(−2π3)=−4,得g(−2π3)−3=−4,则g(−2π3)=−1,g(2π3)=−g(−2π3)=1,f(2π3)=g(2π3)−3=−2.所以答案是:−215、若cosα=−35,α为第二象限的角,则sin(π−α)=__________.答案:45分析:先根据同角三角函数的关系求出sinα,再结合诱导公式即可求出sin(π−α).∵cosα=−35,α为第二象限的角,∴sinα=√1−cos2α=45,∴sin(π−α)=sinα=45.所以答案是:45.小提示:本题考查同角三角函数的关系以及诱导公式的应用,属于基础题.16、与-2014°终边相同的最小正角是____.答案:146°分析:用360°的整数倍的角去相加(减)可得.实际上是化为k⋅360°+α(0°≤α<360°)形式即可.∵-2014°=-6×360°+146°,∴146°与-2014°终边相同,又终边相同的两个角相差360°的整数倍,∴在[0°,360°)上,只有146°与-2014°终边相同,∴与-2014°终边相同的最小正角是146°,所以答案是:146°.解答题17、设函数f(x)=sinx,x∈R.(1)已知θ∈[0,2π),函数f(x+θ)是偶函数,求θ的值;(2)求函数y=[f(x+π12)]2+[f(x+π4)]2的值域.答案:(1)π2,32π;(2)[1−√32,1+√32].分析:(1)由函数的解析式结合偶函数的性质即可确定θ的值;(2)首先整理函数的解析式为y=asin(ωx+φ)+b的形式,然后确定其值域即可.(1)由题意结合函数的解析式可得:f(x+θ)=sin(x+θ),函数为偶函数,则当x=0时,0+θ=kπ+π2(k∈Z),即θ=kπ+π2(k∈Z),结合θ∈[0,2π)可取k=0,1,相应的θ值为π2,32π.(2)由函数的解析式可得:y=sin2(x+π12)+sin2(x+π4)=1−cos(2x+π6)2+1−cos(2x+π2)2=1−12[cos(2x+π6)+cos(2x+π2)]=1−12(√32cos2x−12sin2x−sin2x)=1−12(√32cos2x−32sin2x)=1+√32sin(2x−π6).据此可得函数的值域为:[1−√32,1+√32]. 小提示:本题主要考查由三角函数的奇偶性确定参数值,三角函数值域的求解,三角函数式的整理变形等知识,意在考查学生的转化能力和计算求解能力.18、已知函数f(x)=Asin(ωx +φ)+B (A >0,ω>0,|φ|<π2)的部分图象如图所示.(1)求f(x)的解析式及对称中心坐标:(2)先把f(x)的图象向左平移π6个单位,再向上平移1个单位,得到函数g (x )的图象,若当x ∈[−π4,π6]时,求g (x )的值域.答案:(1)f(x)=2sin(2x +π3)−1,(kπ2−π6,−1)(k ∈Z ) (2)[0,2]分析:(1)先根据图象得到函数的最大值和最小值,由此列方程组求得A,B 的值,根据周期求得ω的值,根据f(π12)=1求得φ的值,由此求得f (x )的解析式,进而求出f (x )的对称中心; (2)根据三角变换法则求得函数g (x )的解析式,再换元即可求出g (x )的值域. (1)由图象可知:{A +B =1−A +B =−3,解得:A =,B =−1,又由于T2=7π12−π12,可得:T =π,所以ω=2πT=2由图像知f(π12)=1,sin(2×π12+φ)=1,又因为−π3<π6+φ<2π3所以2×π12+φ=π2,φ=π3.所以f(x)=2sin(2x +π3)−1 令2x +π3=kπ(k ∈Z ),得:x =kπ2−π6(k ∈Z )所以f(x)的对称中心的坐标为(kπ2−π6,−1)(k∈Z)(2)依题可得g(x)=f(x+π6)+1=2sin(2x+2π3),因为x∈[−π4,π6],令2x+2π3=t∈[π6,π],所以sint∈[0,1],即g(x)的值域为[0,2].。
2023-2024学年数学九年级下册人教版第二十八章锐角三角函数压轴题经典题型1.如图,在△ABC中,∠C=90°,∠B=30°,AC=3,动点P从点B出发,在边BC上以每秒3个单位长度的速度运动至点C,然后又在边CA上以每秒1个单位长度的速度运动至点A停止.当点P 不与△ABC的顶点重合时,过点P作其所在直角边的垂线交边AB于点Q,再以PQ为边作等边△PQM,且点M与△ABC的另一条直角边始终在PQ同侧.设△PQM与△ABC重叠部分的面积为S 平方单位,点P的运动时间为t秒.(1)当点P在边BC上运动时,求PQ的长(用含t的代数式表示);(2)当点P在边BC上运动时,求S与t的函数关系式;(3)取AB的中点K,连接CK.当点M落在线段CK上时,求t的值.2.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4.点D和点E分别为AC和BC的中点,连接DE.点P从点A出发,以每秒3个单位长度的速度沿AB向终点B运动,过点P作PF⊥AB,交折线AC-CB于点F,以PF为一边向PF的右侧作正方形PFGH.设点P的运动时间为t秒(t>0).(1)DE的长为 ;(2)当点F在AC边上,且DE=3PF时,求t的值;(3)当点E落在正方形PFGH的内部时,求t的取值范围;(4)当线段DE将正方形PFGH的边PF分成两部分的比为13时,直接写出t的值.3.今年第6号台风“烟花”登录我国沿海地区,风力强,累计降雨量大,影响范围大,有极强的破坏力.如图,台风“烟花”中心沿东西方向AB由A向B移动,已知点C为一海港,在A处测得C港在北偏东45°方向上,在B处测得C港在北偏西60°方向上,且AB=400+4003千米,以台风中心为圆心,周围600千米以内为受影响区域.(1)海港C受台风影响吗?为什么?(2)若台风中心的移动速度为20千米/时,则台风影响该海港持续的时间有多长?(结果保留整数,参考数据2≈1.41,3≈1.73,5≈2.24)4.如图,光从空气斜射入水中,入射光线AB射到水池的水面B点后折射光线BD射到池底点D处,入射角∠ABM=30°,折射角∠DBN=22°;入射光线AC射到水池的水面C点后折射光线CE射到池底点E 处,入射角∠ACM′=60°,折射角∠ECN′=40.5°.DE//BC,MN、M′N′为法线.入射光线AB、AC和折射光线BD、CE及法线MN、M′N′都在同一平面内,点A到直线BC的距离为6米.(1)求BC的长;(结果保留根号)(2)如果DE=8.72米,求水池的深.(参考数据:2取1.41,3取1.73,sin22°取0.37,cos22°取0 .93,tan22°取0.4,sin40.5°取0.65,cos40.5°取0.76,tan40.5°取0.85)5.如图,AB为⊙O的直径,C、D为圆上两点,∠ABD=2∠BAC,CE⊥BD于点E.(1)求证:CE是⊙O的切线;(2)若BC=3,BD=7,求线段BE的长:(3)在(2)的条件下,求cos∠DCA的值.6.如图,抛物线y=m x2+(m2+3)x−(6m+9)与x轴交于点A、B,与y轴交于点C,已知B(3,0).(1)请直接写出:m= ;抛物线的解析式 ;直线BC的解析式 ;tan∠OCA= ;(2)如图1,点P是抛物线上位于直线BC上方的一点,过点P作BC的垂线垂足为点G,求线段PG的最大值;(3)如图2,Q为抛物线上一点,若∠ACQ=45°,请求出点Q的坐标.7.综合与实践如图,正方形ACBF与正方形CDGE有公共顶点C,AC=3,CD=2,连接AD,BE.(1)如图①,当点E,G在正方形ACBF内时,线段BE与AD的数量关系是 ,位置关系是 ;(2)把正方形CDGE绕点C旋转到如图②的位置,(1)中的结论还成立吗?说明理由;(3)把正方形CDGE绕点C在平面内自由旋转.①当A,E,D三点在同一条直线上时,AE的长是 ;②旋转过程中,|AE−AD|的最大值为 .8.如图,在菱形ABCD中,∠ABC=60°,E是对角线AC上一点.F是线段BC延长线上一点,且CF=AE,连接BE.(1)如图1,若E是线段AC上任意一点,连接EF,DF,DE,求证:△ADE≌△CDF.(2)在第(1)题的前提下,求证:BE=EF.(3)如图2,若E是线段AC延长线上一点,其他条件不变,且BE∥AF,求tan∠AFC的值.9.如图(1)如图1,在△ABC 中,∠ACB =2∠B ,CD 平分∠ACB ,交AB 于点D ,DE //AC ,交BC 于点E .①若DE =1,BD =32,求BC 的长;②试探究AB AD −BE DE是否为定值.如果是,请求出这个定值;如果不是,请说明理由.(2)如图2,∠CBG 和∠BCF 是△ABC 的2个外角,∠BCF =2∠CBG ,CD 平分∠BCF ,交AB 的延长线于点D ,DE //AC ,交CB 的延长线于点E .记△ACD 的面积为S 1,△CDE 的面积为S 2,△BDE 的面积为S 3.若S 1⋅S 3=916S 22,求cos∠CBD 的值.10.如图(1),E ,F ,H 是正方形ABCD 边上的点,连接BE ,CF 交于点G 、连接AG ,GH ,CE =DF .(1)判断BE 与CF 的位置关系,并证明你的结论;(2)若CE =CH ,求证:∠BAG =∠CHG ;(3)如图(2),E ,F 是菱形ABCD 边AB ,AD 上的点,连接DE ,点G 在DE 上,连接AG ,FG ,CG ,∠AGD =∠BAD ,AF =AE ,DF =GF ,CD =10,CG =6,直接写出DF 的长及cos ∠ADC 的值.11.如图,直线y=−2x+10与x轴交于点A,与y轴交于点B,以OB为直径的⊙M交AB于另一点C,点D在⊙M上.分别过点O,B作直线CD的垂线段,垂足为E,F,连接OC.(1)求点A,B,C的坐标.(2)当点D在直线BC右侧时,①求证:EC⋅CF=OE⋅BF;②求证:EC=DF.(3)CD与EF的距离和是否为定值?若是,请直接写出定值;若不是,请直接写出取到最小值时直线CD的解析式.12.如图1是一种纸巾盒,由盒身和圆弧盖组成,通过圆弧盖的旋转来开关纸巾盒.如图2是其侧面简化示意图,已知矩形ABCD的长AB=16cm,宽AD=12cm,圆弧盖板侧面DC所在圆的圆心O是矩形ABCD的中心,绕点D旋转开关(所有结果保留小数点后一位).(1)求DC所在⊙O的半径长及DC所对的圆心角度数;(2)如图3,当圆弧盖板侧面DC从起始位置DC绕点D旋转90°时,求DC在这个旋转过程中扫过的的面积.参考数据:tan36.87°≈0.75,tan53.06°≈1.33,π取3.14.13.如图,笔直的海岸线l上有A、B两个观测站,A在B的正东方向.有一艘渔船在点P处,从A 处测得渔船在北偏西60°的方向,从B处测得渔船在其东北方向,且测得B、P两点之间的距离为20海里.(1)求观测站A、B之间的距离(结果保留根号);(2)渔船从点P处沿射线AP的方向航行一段时间后,到点C处等待补给,此时,从B测得渔船在北偏西15°的方向.在渔船到达C处的同时,一艘补给船从点B出发,以每小时20海里的速度前往C处,请问补给船能否在83分钟之内到达C处?(参考数据:3≈1.73)14.已知正方形ABCD的边长为4,△BEF为等边三角形,点E在AB边上,点F在AB边的左侧.(1)如图1,若D,E,F在同一直线上,求BF的长;(2)如图2,连接AF,CE,BD,并延长CE交AF于点H,若CH⊥AF,求证:2AE+2FH=BD (3)如图3,将△ABF沿AB翻折得到△ABP,点Q为AP的中点,连接CQ,若点E在射线BA上运动时,请直接写出线段CQ的最小值.答案解析部分1.【答案】(1)解:PQ =t(2)解:当0<t≤2时,S =34t 2;当2<t <3时,S =-23t 2+93t -93.(3)解:①如图①3t =332,解得t =32;②如图②,3[3-(t -3)]=32∙(t -3),解得t =5综上所述,满足条件的t 的值为32或5.2.【答案】(1)52(2)解:t =524(3)解:当点E 落在GH 上时,∵AP =3t ,PF =4t ,四边形PFGH 是正方形,∴PH =GH =PF =4t ,∠PHG =∠BHE =90°,∴BH =AB−AP−PH =5−3t−4t =5−7t . ∵cos B =BH BE =BC AB ,∴5−7t 2=45,解得t =1735;当点E 落在PF 上时,∵AP =3t ,∴BP =5−3t ,∵cos B =BP BE =BC AB ,∴5−3t 2=45,解得t =1715.综上所述,t 的取值范围是1735<t <1715.(4)解:t 的值为25或4345.3.【答案】(1)解:如下图,过点C 作 CH ⊥AB 交AB 于点H ,设 CH =x在 Rt △ACH 中, ∠A =45° , AH =CH =x在 Rt △BCH 中, ∠B =30° , BH =3x∴AB =(3+1)x =400+4003∴x=400,∴CH=400∵400<600,海港C受台风影响(2)解:如下图,以CP=600千米为半径画弧交AB于P、Q两点,此时台风在PQ之间时,海港受到影响,在Rt△PCH中,CP=600,CH=400∴PH=CP2−CH2=2005∴PQ=2PH=4005=205≈45(小时)则时间:t=400520答:台风影响该海港持续的时间有45小时.4.【答案】(1)解:作AF⊥BC,交CB的延长线于点F,则AF//MN//M′N′,∴∠ABM=∠BAF,∠ACM′=∠CAF,∵∠ABM=30°,∠ACM′=60°,∴∠BAF=30°,∠CAF=60°,∵AF=6米,∴BF=AF⋅tan30°=6×3=23(米),CF=AF⋅tan60°=6×3=63(米),3∴BC=CF−BF=63−23=43(米),即BC的长为43米;(2)解:设水池的深为x米,则BN=CN′=x米,由题意可知:∠DBN =22°,∠ECN′=40.5°.DE =8.72米,∴DN =BN ⋅tan22°≈0.4x (米),N′E =CN′⋅tan40.5°≈0.85x (米),∵DN +DE =BC +N′E ,∴0.4x +8.72=43+0.85x ,解得x ≈4,即水池的深约为4米.5.【答案】(1)解:如图,连接OC ,∵∠ABD =2∠BAC ,∠COB =2∠BAC ,∴∠ABD =∠COB ,∴OC ∥DE ,∵CE ⊥BD ,∴CE ⊥OC ,∴CE 是 ⊙O 的切线.(2)解:如图,作OF ⊥BD ,设BE =x ,∵OF ⊥BD ,BD =7,∴∠OFB =90°,BF =12BD =72,∴EF =BF +BE =72+x ,O B 2=O F 2+B F 2,∵CE ⊥BD ,CE ⊥OC ,∴∠E =∠OCE =90°,∴四边形OCEF 是矩形,C E 2=B C 2−B E 2=9−x 2,∴OF =CE ,OC =EF =72+x ,∴OB =OC =72+x ,∴(72+x )2=9−x 2+(72)2,x 1=−92(舍去),x 2=1,∴BE =1.(3)解:由(2)得x =1,∴OB =92,∴AB =2OB =9,∵∠ADB =90°,BD =7,∴cos ∠ABD =BD AB =79,∵∠DCA =∠ABD ,∴cos ∠DCA =cos ∠ABD =79.6.【答案】(1)m =−1;y =−x 2+4x−3;y =x−3;13(2)解:如图1,过点P 作PH ∥y 轴交BC 于点H ,设P(t ,−t 2+4t−3),则H(t ,t−3),∴PH =−t 2+4t−3−(t−3)=−t 2+3t ,∵OB =OC =3,∴∠BCO =∠CBO =45°,∵PH ∥y 轴,∴∠PHG =45°∵∠PGH =90°∴PG =PH ⋅sin ∠PHG =(−t 2+3t)×sin45°=−22(t−32)2+928,∴当t =32时,PG 的最大值为928;(3)解:如图2,过点B 作BE ⊥CB 交CQ 的延长线于点E ,过点E 作EF ⊥x 轴于点F ,则∠BFE =∠CBE =90°,∵∠CBO =45°,∴∠EBF =45°,∴BF =EF =22BE ,∵∠BCO =∠ACQ =45°,∴∠BCE =∠OCA ,∴tan ∠BCE =tan ∠OCA∴BE CB =OA OC,又可知A(1,0),∴OA =1,C(0,−3)∴OC =3由OB =OC =3,得BC =32∴BE 32=13,∴BE =2,∴BF =EF =22×2=1,∴OF =OB +BF =3+1=4∴E(4,−1),又C(0,−3)∴直线CE 的解析式为y =12x−3,联立方程组{y =12x−3y =−x 2+4x−3,解得:{x 1=0y 1=−3,{x 2=72y 2=−54,∴点Q 的坐标为(72,−54).7.【答案】(1)BE=AD ;BE⊥AD(2)解:成立,理由如下:如图,∵正方形ACBF,正方形CDGE,∴BC=AC,CE=CD,∠BCA=∠ECD=90°,∴∠BCA+∠ECA=∠ECD+∠ECA,即∠BCE=∠DCA,∴△BCE≅△ACD(SAS),∴BE=AD、∠CBO=∠CAD,∵∠BOC=∠AOE,∠OBC+∠BOC=90°∴∠OAD+∠AOE=90°,∴BE⊥AD;(3)7−2;228.【答案】(1)证明:在菱形ABCD中,∠ABC=60°,∴△ADC为等边三角形,∠DAC=∠DCA=∠ACB=60°,∴AD=CD,∠DAE=∠DCF=60°,∵CF=AE,∴△ADE≌△CDF(SAS)(2)证明:∵△ADE≌△CDF(SAS),∴ED=FD,∠ADE=∠CDF,∵∠ADC=60°,∴∠EDF=60°,∴△EDF为等边三角形,∴EF=DE,∵AD=AB,∠DAE=∠BAE=60°,AE是公共边,∴△ABE≌△ADE(SAS),∴BE=DE,∴BE=EF.(3)解:过A作AH⊥BF,∵BE ∥AF ,∴△BCE ∽△FCA ,∴CE AC =BC CF,设AC =1,CE =x ,可得方程x 2+x−1=0(x >0),解得,x =5−12,∵CH =12,AH =32,∴tan ∠AFC =32:(5−12+32)=15−239.【答案】(1)解:①∵CD 平分∠ACB ,∴∠ACD =∠DCB =12∠ACB ,∵∠ACB =2∠B ,∴∠ACD =∠DCB =∠B ,∴CD =BD =32,∵DE //AC ,∴∠ACD =∠EDC ,∴∠EDC =∠DCB =∠B ,∴CE =DE =1,∴△CED∽△CDB ,∴CE CD =CD CB,∴132=32CB ,解得BC =94;②∵DE //AC ,∴AB AD =BC CE,同①可得,CE =DE ,∴AB AD =BC DE,∴AB AD −BEDE=BCDE−BEDE=CEDE=1,∴AB AD −BEDE是定值,定值为1(2)解:∵DE//AC,∴S1S2=ACDE=BCBE,∵S3S2=BECE,∴S1⋅S3S22=BCCE,又∵S1⋅S3=916S22,∴BC CE =9 16,设BC=9x,则CE=16x,∵CD平分∠BCF,∴∠ECD=∠FCD=12∠BCF,∵∠BCF=2∠CBG,∴∠ECD=∠FCD=∠CBD,∴BD=CD,∵DE//AC,∴∠EDC=∠FCD,∴∠EDC=∠CBD=∠ECD,∴CE=DE,∵∠DCB=∠ECD,∴△CDB∽△CED,∴CD CE =CB CD,∴C D2=CB⋅CE=144x2,∴CD=12x,过点D作DH⊥BC于点H,∵BD =CD =12x ,∴BH =12BC =92x ,∴cos∠CBD =BH BD =92x 12x =38.10.【答案】(1)解:BE ⊥CF ,理由:∵四边形ABCD 为正方形,∴BC =CD ,∠BCE =∠CDF =90°.∵CE =DF ,∴△BCE≌△CDF (SAS ),∴∠CBE =∠DCF .∵∠CBE +∠CEB =90°,∴∠DCF +∠CEB =90°,∴∠CGE =90°,即BE ⊥CF(2)证明:∵∠CBG =∠EBC ,∠CGB =∠ECB =90°,∴△CGB ∽△ECB ,∴CG CE =BG BC. ∵CE =CH ,BC =AB ,∴CG CH =BG AB,即CG BG =CH AB .∵∠CBG +∠BCG =90°,∠ABG +∠CBG =90°,∴∠BCG =∠ABG ,即∠HCG =∠ABG ,∴△HCG ∽△ABG ,∴∠BAG =∠CHG ;(3)解:DF =154,cos ∠ADC =81511.【答案】(1)解:令x =0,则y =10;令y =0,则0=−2x +10,解得x =5; ∴A(5,0),B(0,10),∴OA =5,OB =10,AB =52+52=55,作CG ⊥OB 于点G ,∵以OB 为直径的⊙M 交AB 于另一点C ,∴∠BCO =90°,∵sin ∠CBO =OA AB =OC OB ,即555=OC 10,∴OC =25,∵cos ∠BOC =OG OC =OC OB ,即OG 25=2510,∴OG =2,∴CG =OC 2−OG 2=4,∴C(4,2);(2)证明:①∵∠BCO =90°,BF ⊥CD ,OE ⊥CD ,即∠BCO =∠BFC =∠CEO =90°, ∴∠OCE =∠CBF ,∴△OCE ∽△CBF ,∴CE BF =OE FC ,即EC ⋅CF =OE ⋅BF ;②作MN ⊥CD 于点M ,则OE ∥MN ∥BF ,且OM =BM ,∴OM BM =EN NF,∴EN =NF ,∵MN ⊥CD ,∴CN =DN ,∴EN−CN =NF−DN ,即EC =DF ;(3)解:CD 与EF 的距离和不是定值;直线CD 的解析式为y =43x−103.12.【答案】(1)解:如图,连接AC ,BD 相交于点O ,为矩形ABCD 的中心,∵AB =16,AD =12,∠BAD =90°,∴BD =AB 2+AD 2=256+144=20,∴⊙O 半径长为:OD =12BD =12×20=10.0cm ,∵tan ∠ADB =AB AD =1612≈1.33,∴∠ADB ≈53.06°,∴∠DOC =2∠ADB =2×53.06°≈106.1°;(2)解:如图,∵S 弓形DmC =S 弓形Dn C ′,∴DC 扫过的的面积:S 阴=S 扇形CD C ′=90π×162360≈201.0(c m 2).13.【答案】(1)解:过点P 作PD ⊥AB 于D 点,∴∠BDP =∠ADP =90°,在Rt △PBD 中,∠PBD =90°−45°=45°,BP =20海里,∴DP =BP·sin45°=102(海里), BD =BP·cos45°=102(海里),在Rt △PAD 中,∠PAD =90°−60°=30°,∴AD =DP tan30°=106(海里), ∴AB =BD +AD =(102+106)海里,∴观测站A ,B 之间的距离为(102+106)海里;(2)解:补给船能在82分钟之内到达C 处,理由:过点B 作BF ⊥AC ,垂足为F ,∴∠AFB =∠CFB =90°,由题意得:∠ABC =90°+15°=105°,∠PAD =90°−60°=30°,∴∠C =180°−∠ABC−∠PAD =45°,在Rt △ABF 中,∠BAF =30°,∴BF =12AB =(52+56)海里, 在Rt △BCF 中,∠C =45°,∴BC =BF sin45°=2(52+56)=(10+103)海里, ∴补给船从B 到C 处的航行时间=10+10320×60=30+303≈81.9(分钟)<83分钟, ∴补给船能在83分钟之内到达C 处.14.【答案】(1)解:∵△BEF为等边三角形,∴∠BEF=60°=∠AED,BF=BE,∵四边形ABCD是正方形,∴∠A=90°,AD=4,∴tan∠AED=ADAE=3,∴AE=433,∴BE=AB−AE=4−433;(2)证明:如图,延长AF,CB交于点G,∵四边形ABCD是正方形,∴AB=AD=BC,∠ABC=∠ABG=90°,∴BD=AB2+AD2=2AB,∵CH⊥AF,∴∠CHG=∠ABG=90°,∴∠G+∠BAG=90°=∠G+∠BCH,∴∠BAG=∠BCH,∴△ABG≌△CBE(ASA),∴BE=BG,∠G=∠BEC,∵△BEF为等边三角形,∴BE=BF=EF,∠BEF=∠BFE,∴BG=BF,∴∠G=∠BFG,∴∠BFG=∠BEC,∴∠GFE=∠CEF,∴∠HFE=∠HEF,∵CH⊥AF,∴∠HFE=∠HEF=45°,∴EH =FH ,∴EF =2FH ,∴BE =2FH ,∴BD =2AB =2AE +2BE =2AE +2FH ;(3)解:当点E 在线段AB 上时,如图,取AB 的中点N ,连接NQ ,∵将△ABF 沿AB 翻折得到△ABP ,∴∠ABF =∠ABP =60°,∵点Q 为AP 的中点,∴NQ ∥BP ,∴∠ANQ =∠ABP =60°,∴点Q 在过线段AB 的中点,且与AB 成60°角的直线上移动,∴当CQ ⊥NQ 时,CQ 有最小值,如图,延长QN ,CB 交于点H ,连接AQ ,∵点N 是线段AB 的中点,∴BN =AN =2,∵∠ANQ =60°=∠BNH ,∴tan ∠BNH =BH BN =3,∴BH =23,∴CH =23+4,∵∠H =90°−∠BNH =30°,∴CQ =12CH =2+3,HN =2BN =4,HQ =3CQ =23+3,∴NQ =23−1>2,∴∠NAQ>60°,∴此时点E不在线段AB上,∴点E在线段AB上时,CQ>2+3,当点E在线段AB的延长线上时,∵将△ABF沿AB翻折得到△ABP,∴∠ABF=∠ABP=120°,∵点Q为AP的中点,点N是线段AB的中点,∴NQ∥BP,∴∠ANQ=∠ABP=60°,∴点Q在过线段AB的中点,且与AB成60°角的直线上移动,∴当CQ⊥NQ时,CQ有最小值,同理:CQ=2−3;综上所述,CQ的最小值为2−3.。
纠错练习:三角函数、解三角形(2)
1、如果tan α.tan β是方程x 2-3x -3=0的两根,则sin(α+β)cos(α-β)
=________.
2、已知0<α<π2<β<π,cos α=35,sin(α+β)=-35
,则cos β的值为________
3、(2012苏中三市二模9)已知角ϕ的终边经过点)2,1(-P ,函数)0)(sin()(>+=ωϕωx x f 的图像的相邻两条对称轴之间的距离是
3π,则=)12(πf
4、(2012盐城二模10)函数65cos 2cos 6sin
2sin )(ππx x x f -=在]2,2[ππ-上的单调 增区间是
5、若
42x ππ<<,则函数3tan 2tan y x x =的最大值为
6、定义行列式运算:⎪⎪⎪⎪⎪⎪a 1 a 2a 3 a 4=a 1a 4-a 2a 3,将函数f (x )=⎪⎪⎪⎪
⎪⎪3 cos x 1 sin x 的图象向左平移m 个单位(m >0),若所得图象对应的函数为偶函数,则m 的最小值是________
7、对于函数x x x f sin cos )(+=,给出下列四个命题:
①存在)2
(0,π
α∈,使34)(=αf ; ②存在)(0,πα∈,使)3()(αα+=+x f x f 恒成立;
③存在∈ϕR ,使函数)(ϕ+x f 的图象关于y 轴对称; ④函数)(x f 的图象关于34(,0)π
对称.其中正确命题的序号 .
8、设函数
,其中,则导数的取值范围是
________.
9、在△ABC 中,角A 、B 、C 所对应的边为c b a ,,
(1)若,cos 2)6
sin(A A =+π 求A 的值; (2)若c b A 3,3
1cos ==,求C sin 的值.
10、已知函数2π()2sin 24f x x x ⎛⎫=+ ⎪⎝⎭,ππ42x ⎡⎤∈⎢⎥⎣⎦
,. (1)求()f x 的最大值和最小值;
(2)若不等式()2f x m -<在ππ42
x ⎡⎤∈⎢⎥⎣⎦
,上恒成立,求实数m 的取值范围.。