小学奥数,华数思维训练导引 计算问题
- 格式:doc
- 大小:27.50 KB
- 文档页数:4
《华罗庚学校思维训练导引》三年级《华罗庚学校思维训练导引》三年级第一节三年级上学期第01讲计算问题第01讲加法与减法【内容概述】各种加法和减法的速算与巧算方法,如凑整,运算顺序的改变,数的组合与分解,利用基准数等。
【例题分析】1.计算:1966+1976+1986+1996+2006分析1:通过仔细观察发现前面一个数都比后面一个数大10,因此可以设一个基准数。
详解:我们不妨设1986为基准数。
1966+1976+1986+1996+2006=(1986-20)+(1986-10)+1986+(1986+10)+(1986+20)=1986*5=9930评注:通过仔细观察题目后,通常会发现一些规律。
找到规律,就能轻而一举的解决问题。
分析2:等差数列的个数是奇数个时,中间数是它们的平均数详解:1966+1976+1986+1996+2006=1986×5=99302.计算:123+234+345-456+567-678+789-890答案:34分析:这些数粗略一看好象是杂乱无章,其实不然。
通过对各位数的观察,详解:先看个位:3+4+5-6+7-8+9-0=14再看十位:2+3+4-5+6-7+8-9=2 但是注意个位的进位:2+1=3(1是个位进位来的)最后看百位:1+2+3-4+5-6+7-8=0这样:我们就得到了34这个数评注:做这种有技巧的计算时,要先通过观察,找到规律后再逐一化简。
把它变成一道很容易且学过的题。
就像这道题一样,本来是3位数加减法,而我们把它变成了一位数加减法。
但需要注意的是:千万不能忘了前一位的进位。
3.计算:6472-(4476-2480)+5319-(3323-1327)+9354-(7358-5362)+6839-(4843-2847)答案:20000分析:这个题目一眼看去没有办法简单运算,但如果把括号内得数算出,便发现了一些规律。
详解:6472-(4476-2480)+5319-(3323-1327)+9354-(7358-5362)+6839-(4843-2847)=6472-1996+5319-1996+9354-1996+6839-1996=6472+5319+9354+6839-1996*4=6472+5319+9354+6839-7984=(6472+5319+6839)+(9200+154)-(7900+84)=(6472+5319+6839)+(9200-7900)+(154-84)=(6472+5319+6839)+1300+70=18630+1370=20000评注:在一道简算的大题中,有可能有好几个地方可以简便运算,一些技巧性的题目,简算会在过程中体现出来,而不让你一眼看出,大家要在解题过程中找出简算步骤,这就需加强练习,方可得心应手。
华数思维训练导引----乘除法填空格年级上学期第07讲数字谜问题第02讲乘除法填空格1、把1至9这9个不同的数字分别填在图7-1的各个方格内,可使加法和乘法两个算式都成立。
现有3个数字的位置已确定,请你填上其他数字。
解答:由两位数乘一位数得两位数可以推出应为17*4=68,那么,后面的加数个位为5,余下2、9正好满足68+25=93。
2、图7-2是一个乘法算式。
当乘积最大时,方框内所填的4个数字之和是多少?解答:一个两位数乘5得两位数,那么个位只能是1;要使乘积最大,个位当然应该是9;即算式为19*5=95;那么,所填的四个数字之和为:1+9+9+5=24。
3、请补全图-3所示的残缺算式,问其中的被乘数是多少?解答:由个位往前分析,容易得到被乘数个位为8,积十位为7,被乘数百位为5,万位为4,积万位为3;即整个算式为:47568*7=332976。
所以,被乘数为47568。
4、图7-4是一个残缺的乘法竖式,那么乘积是多少?解答:由乘积的最高位不难看出积应该是10?2,且在它上面的乘积应该是9?;因为加2后有进位,所以,个位只有8、9两种可能;又第一个乘积的十位为2,个位也是2,说明被乘数为22,乘数个位为1;或者被乘数为11,乘数个位为2;如果被乘数为22,乘数个位为1,乘数的个位只能是4,显然不行;那么,被乘数为11,乘数个位为2,这样,乘数个位就为9,即整个算式为11*92=1012。
所以,乘积是1012。
5、图7-5是一个残缺的乘法算式,只知道其中一个位置上数字为8,那么这个算式的乘积是多少?解答:由被乘数乘8后得两位数容易得出被乘数应该为12,乘数个位则必定为9,那么结果为12*89=1068。
6、图7-6是一个残缺的乘法算式,补全后它的乘积是多少?解答:由乘积个位得5,那么被乘数的个位也必定是5;由乘数的十位乘被乘数时十位为0,可知乘数的十位是4或8;由积的千位为5,推得被乘数百位为3,并由此推出乘数十位为4;所以,算式为325*47=15275,即乘积是15275。
《华罗庚学校思维训练导引》三年级《华罗庚学校思维训练导引》三年级第一节三年级上学期第01讲计算问题第01讲加法与减法【内容概述】各种加法和减法的速算与巧算方法,如凑整,运算顺序的改变,数的组合与分解,利用基准数等。
【例题分析】1.计算:1966+1976+1986+1996+2006分析1:通过仔细观察发现前面一个数都比后面一个数大10,因此可以设一个基准数。
详解:我们不妨设1986为基准数。
1966+1976+1986+1996+2006=(1986-20)+(1986-10)+1986+(1986+10)+(1986+20)=1986*5=9930评注:通过仔细观察题目后,通常会发现一些规律。
找到规律,就能轻而一举的解决问题。
分析2:等差数列的个数是奇数个时,中间数是它们的平均数详解:1966+1976+1986+1996+2006=1986×5=99302.计算:123+234+345-456+567-678+789-890答案:34分析:这些数粗略一看好象是杂乱无章,其实不然。
通过对各位数的观察,详解:先看个位:3+4+5-6+7-8+9-0=14再看十位:2+3+4-5+6-7+8-9=2 但是注意个位的进位:2+1=3(1是个位进位来的)最后看百位:1+2+3-4+5-6+7-8=0这样:我们就得到了34这个数评注:做这种有技巧的计算时,要先通过观察,找到规律后再逐一化简。
把它变成一道很容易且学过的题。
就像这道题一样,本来是3位数加减法,而我们把它变成了一位数加减法。
但需要注意的是:千万不能忘了前一位的进位。
3.计算:6472-(4476-2480)+5319-(3323-1327)+9354-(7358-5362)+6839-(4843-2847)答案:20000分析:这个题目一眼看去没有办法简单运算,但如果把括号内得数算出,便发现了一些规律。
详解:6472-(4476-2480)+5319-(3323-1327)+9354-(7358-5362)+6839-(4843-2847)=6472-1996+5319-1996+9354-1996+6839-1996=6472+5319+9354+6839-1996*4=6472+5319+9354+6839-7984=(6472+5319+6839)+(9200+154)-(7900+84)=(6472+5319+6839)+(9200-7900)+(154-84)=(6472+5319+6839)+1300+70=18630+1370=20000评注:在一道简算的大题中,有可能有好几个地方可以简便运算,一些技巧性的题目,简算会在过程中体现出来,而不让你一眼看出,大家要在解题过程中找出简算步骤,这就需加强练习,方可得心应手。
华数思维训练导引――计算问题(二)乘法与除法1.算式333×625×125×25×5×16×8×4×2的结果中末尾有多少个零?解答:找出算式中含有5的是:625×125×25×5=(5×5×5×5)×(5×5×5)×(5×5)×5,共10个5;找出算式中含有2的是:16×8×4×2=(2×2×2×2)×(2×2×2)×(2×2)×2,共10个2。
每一组5×2=10,产生1个0,所以共有10个0。
答:结果中末尾有10个零。
2.如果n=2×3×5×7×11×13×17×125。
那么n的各位数字的和是多少?解答:2×3×5×7×11×13×17×125=(7×11×13) ×(3×17) ×(2×5×125)=1001×51×1250=1001×(50×1250+1×1250)=1001×(12500÷2+1250)=1001×(62500+1250)=(1000+1)×63750=63750000+63750=638137506+3+8+1+3+7+5+0=33答:n的各位数字的和是33.3.(1)计算:5÷(7÷11)÷(11÷15)÷(15÷21),(2)计算:(11×10×9…×3×2×1)÷(22×24×25×27).解答:(1)5÷(7÷11)÷(11÷15)÷(15÷21)=5×11÷7×15÷11×21÷15=5×11÷11×15÷15×21÷7=5×21÷7=5×3×7÷7=5×3=15(2)(11×10×9…×3×2×1)÷(22×24×25×27)=(11×10×9…×3×2×1)÷22÷24÷25÷27)=(11×2÷22) ×(10×5÷25) ×(9×6 ÷27) ×(8×3÷24) ×7×4=1×2×2×1×7×4=4×28=1124.在算式(□□-7×□)÷16=2的各个方框内填入相同的数字后可使等式成立,求这个数字.解答:□□-7×□=11×□-7×□=□×(11-7)=□×4,因为□×4÷16=2,所以□×4=32,□=8答:□=8.5. 计算:9×17+91÷17-5×17+45÷17.解答:9×17+91÷17-5×17+45÷17=9×17-5×17+91÷17+45÷17=(9-5)×17+(91+45)÷17=4×17+136÷17=68+8=766. 计算:567×142+426×811-8520×50.解答:567×142+426×811-8520×50=567×142+3×142×811-8520×100÷2 .=142×(567+3×811)-852000÷2=142×3000-426000=426000-426000=07. 计算:28×5+2×4×35+21×20+14×40+8×62.解答:28×5+2×4×35+21×20+14×40+8×62=2×2×7×5+2×4×5×7+3×7×4×5+2×7×5×2×4+8×62=2×2×7×5×(1+2+3+4)+496=10×14×10+496=1400+496=18968. 计算:55×66+66×77+77×88+88×99.解答:55×66+66×77+77×88+88×99=(11×5)×(11×6)+(11×6)×(11×7)+(11×7)×(11×8)+(11×8)×(11×9)=11×11×(5×6+6×7+7×8+8×9)=11×(10+1)×(30+42+56+72)=(110+11)×200=121×200=242009. 计算:(123456+234561+345612+456123+561234+612345) ÷7.解答:(123456+234561+345612+456123+561234+612345) ÷7=[(1×100000+2×10000+3×1000+4×100+5×10+6)+(2×100000+3×10000+4×1000+5×100+6×10+1)+(3×100000+4×10000+5×1000+6×100+1×10+2)+(4×100000+5×10000+6×1000+1×100+2×10+3)+(5×100000+6×10000+1×1000+2×100+3×10+4)+(6×100000+1×10000+2×1000+3×100+4×10+5)] ÷7=[1+2+3+4+5+6]×100000+(2+3+4+5+6+1)×10000+(3+4+5+6+1+2)×1000+(4+5+6+1+2+3)×100+(5+6+1+2+3+4)×10+(6+1+2+3+4+5)×1] ÷7=(21×100000+21×10000+21×1000+21×100+21×10+21×1)÷7=21×100000÷7+21×10000÷7+21×1000÷7+21×100÷7+21×10÷7+21×1÷7=300000+30000+3000+300+30+3=33333310. (87+56+73+75+83+63+57+53+67+78+65+77+84+62) ÷14.解答:(87+56+73+75+83+63+57+53+67+78+65+77+84+62) ÷14=[(8+5+7+7+8+6+5+5+6+7+6+7+8+6)×10+(7+6+3+5+3+3+7+3+7+8+5+7+4+2)]÷14=[(14×7-7)×10+(14×7-28)] ÷14=[(13×7)×10+(10×7)]÷14=(130+10)×7÷14=140×7÷14=10×7=7011.在算是12345679×□=888888888,12345679×○=555555555的方框和圆圈内分别填入恰当的数后可使两个等式都成立,求所填的两个数之和.解答:□×9个位是8,○×9个位是5,所以□的个位是2,○的个位是5。
华数思维训练导引行程问题(一)1、甲、乙两地相距6千米,某人从甲地步行去乙地,前一半时间平均每分钟行80米,后一半时间平均每分钟行70米.问他走后一半路程用了多少分钟?分析:解法1、全程的平均速度是每分钟(80+70)/2=75米,走完全程的时间是6000/75=80分钟,走前一半路程速度一定是80米,时间是3000/80=37。
5分钟,后一半路程时间是80-37.5=42.5分钟解法2:设走一半路程时间是x分钟,则80*x+70*x=6*1000,解方程得:x=40分钟因为80*40=3200米,大于一半路程3000米,所以走前一半路程速度都是80米,时间是3000/80=37。
5分钟,后一半路程时间是40+(40—37.5)=42.5分钟答:他走后一半路程用了42。
5分钟。
2、小明从家到学校有两条一样长的路,一条是平路,另一条是一半上坡路、一半下坡路。
小明上学走两条路所用的时间一样多。
已知下坡的速度是平路的1.5倍,那么上坡的速度是平路的多少倍?分析:解法1:设路程为180,则上坡和下坡均是90.设走平路的速度是2,则下坡速度是3。
走下坡用时间90/3=30,走平路一共用时间180/2=90,所以走上坡时间是90—30=60 走与上坡同样距离的平路时用时间90/2=45 因为速度与时间成反比,所以上坡速度是下坡速度的45/60=0。
75倍.解法2:因为距离和时间都相同,所以平均速度也相同,又因为上坡和下坡路各一半也相同,设距离是1份,时间是1份,则下坡时间=0。
5/1.5=1/3,上坡时间=1-1/3=2/3,上坡速度=(1/2)/(2/3)=3/4=0.75解法3:因为距离和时间都相同,所以:1/2*路程/上坡速度+1/2*路程/1.5=路程/1,得:上坡速度=0.75答:上坡的速度是平路的0。
75倍。
3、一只小船从甲地到乙地往返一次共用2小时,回来时顺水,比去时的速度每小时多行驶8千米,因此第二小时比第一小时多行驶6千米。
华数思维训练导引五下华数思维训练导引——计算问题(六)估算与比较通分与裂项《思维训练导引》五年级下学期第11讲计算问题第06讲估算与比较通分与裂项1.除式12345678910111213÷31211101987654321计算结果的小数点后前三位数字是多少?解法一:A大于1234÷3122=0.3952??,A小于1235÷3121=0.3957??,0.3952小于A小于0.3957 答:计算结果的小数点后前三位数字是395。
解法二:1234÷3121≈0.3953≈0.395 答:计算结果的小数点后前三位数字是395。
2.计算下式的值,其中小数部分四舍五入,答案仅保留整数:33.333 -3.1415926÷0.618.解:33.333 -3.1415926÷0.618≈(100/3) -5=10000/9-5≈1111-5=1106 答:保留整数约等于1106。
3.在1,1/2,1/3,1/4,??。
1/99,1/100中选出若干个数使它们的和大于3,最少要选多少个数?解法一:1+1/2+1/3+1/4+1/5+1/6+1/7+1/8+1/9+1/101+(1/2+1/3+1/6)+(1/4+1/8)+(1/5+ 1/10)+1/8+(1/9+1/11) =1+1+(3/8+1/8)+3/10+20/99=2+4/8+3/10+20/99 >2+1/2+3/10+20/100 =3答:最少要选出11个数。
解法二:1+1/2+1/3+1/4+1/5+1/6=1+(1/2+1/3+1/6)+1/4+1/5=2+1/4+1/5=2.453 答:最少要选出11个数。
4.数1/(1/10+1/11+1/12+??+1/19)的整数部分是几?解:1/10+1/11+1/12+??+1/1910*1/20=1/2所以1/1656/657大于52/53大于8/9. 7.24/31小于80/□0,所以(4)最小,3/8+8/20=31/40 答:(4)式最小,(4)=31/40。
华数导引四年级计数问题加法原理与乘法原理第08讲计数问题第02讲加法原理与乘法原理1、如果两个四位数的差等于8921,那么就说这两个四位数组成一个数对,问这样的数对共有多少个?分析:从两个极端来考虑这个问题:最大为9999-1078=8921,最小为9921-1000=8921,所以共有9999-9921+1=79个,或1078-1000+1=79个2、一本书从第1页开始编排页码,共用数字2355个,那么这本书共有多少页?分析:按数位分类:一位数:1~9共用数字1*9=9个;二位数:10~99共用数字2*90=180个;三位数:100~999共用数字3*900=2700个,所以所求页数不超过999页,三位数共有:2355-9-180=2166,2166÷3=722个,所以本书有722+99=821页。
3、上、下两册书的页码共有687个数字,且上册比下册多5页,问上册有多少页?分析:一位数有9个数位,二位数有180个数位,所以上、下均过三位数,利用和差问题解决:和为687,差为3*5=15,大数为:(687+15)÷2=351个(351- 189)÷3=54,54+99=153页。
4、从1、2、3、4、5、6、7、8、9、10这10个数中,任取5个数相加的和与其余5个数相加的和相乘,能得到多少个不同的乘积。
分析:从整体考虑分两组和不变:1+2+3+4+5+6+7+8+9+10=55 从极端考虑分成最小和最大的两组为(1+2+3+4+5)+(6+7+8+9+10)=15+40=55 最接近的两组为27+28 所以共有27-15+1=13个不同的积。
另从15到27的任意一数是可以组合的。
5、将所有自然数,自1开始依次写下去得到:12345678910111213……,试确定第206788个位置上出现的数字。
分析:与前面的题目相似,同一个知识点:一位数9个位置,二位数180个位置,三位数2700个位置,四位数36000个位置,还剩:206788-9-180-2700-36000=167899,167899÷5=33579……4 所以答案为33579+100=33679的第4个数字7.6、用1分、2分、5分的硬币凑成1元,共有多少种不同的凑法?分析:分类再相加:只有一种硬币的组合有3种方法;1分和2分的组合:其中2分的从1枚到49枚均可,有49种方法;1分和5分的组合:其中5分的从1枚到19枚均可,有19种方法;2分和5分的组合:其中5分的有2、4、6、……、18共9种方法;1、2、5分的组合:因为5=1+2*2,10=2*5,15=1+2*7,20=2*10,……,95=1+2*47,共有2+4+7+9+12+14+17+19+22+24+27+29+32+34+37+39+42+44+47=461种方法,共有3+49+19+9+461=541种方法。
!_世界上有两种人,一种人,虚度年华;另一种人,过着有意义的生活。
在第一种人的眼里,生活就是一场睡眠,如果在他看来,是睡在既温暖又柔和的床铺上,那他便十分心满意足了;在第二种人眼里,可以说,生活就是建立功绩……人就在完成这个功绩中享到自己的幸福。
--别林斯基华数导引四年级计数问题排列组合1、“IMO”是国际数学奥林匹克的缩写,把这3个字母用3种不同颜色来写,现有5种不同颜色的笔,问共有多少钟不同的写法?分析:从5个元素中取3个的排列:P(5、3)=5×4×3=602、从数字0、1、2、3、4、5中任意挑选5个组成能被5除尽且各位数字互异的五位数,那么共可以组成多少个不同的五位数?分析:个位数字是0:P(5、4)=120;个位数字是5:P(5、4)-P(4、3)=120-24=96,(扣除0在首位的排列)合计120+96=216另:此题乘法原理、加法原理结合用也是很好的方法。
3、用2、4、5、7这4个不同数字可以组成24个互不相同的四位数,将它们从小到大排列,那么7254是第多少个数?分析:由已知得每个数字开头的各有24÷4=6个,从小到大排列7开头的从第6×3+1=19个开始,易知第19个是7245,第20个7254。
4、有些四位数由4个不为零且互不相同的数字组成,并且这4个数字的和等于12,将所有这样的四位数从小到大依次排列,第24个这样的四位数是多少?分析:首位是1:剩下3个数的和是11有以下几种情况:⑴2+3+6=11,共有P(3、3)=6个;⑵2+4+5=11,共有P(3、3)=6个;首位是2:剩下3个数的和是10有以下几种情况:⑴1+3+6=10,共有P(3、3)=6个;⑵1+4+5=10,共有P(3、3)=6个;以上正好24个,最大的易知是2631。
5、用0、1、2、3、4这5个数字,组成各位数字互不相同的四位数,例如1023、2341等,求全体这样的四位数之和。
华数思维训练导引四年级上华数思维训练导引——计算问题(三)整数与数列《思维训练导引》四年级第01讲计算问题第03讲整数与数列1、如图1-1所⽰的表中有55个数,那么它们的和加上多少才等于1994?1 7 13 19 25 31 37 43 49 55 612 8 14 20 26 32 38 44 50 56 623 9 15 21 27 33 39 45 51 57 634 10 16 22 28 34 40 46 52 58 645 11 17 23 29 35 41 47 53 59 65图1-1解:它们的和=3×5+9×5+15×5+21×5+27×5+33×5+39×5+45×5+51×5+57×5+63×5=(33×11)×5=1815[或者:它们的和=(31+32+33+34+35)×11=1815]1994-1815=179答:它们的和加上179才等于1994。
2、计算:1000+999-998-997+996+995-994-993+……+108+107-106-105+104+193-102-101。
解:1000+999-998-997+996+995-994-993+……+108+107-106-105+104+193-102-101=(1000+999-998-997)+(996+995-994-993)+……+(108+107-106-105)+(104+193-102-101)=4+4+……+4+4=[(1000-101)÷1+1]÷4×4=9003、计算:(1+3+5+……+1989)-(2+4+6+……+1988)。
解:(1+3+5+......+1989)-(2+4+6+ (1988)=1+(3-2)+(5-4)+……+(1989-1988)=1+1×(1989-1)÷2=1+994=9954、利⽤公式l×l+2×2+……+n×n=n×(n+1)×(2×n+1)÷6,计算:15×15+16×16+……+21×21。
华数思维训练导引----还原与年龄四年级上学期第03讲应用题第08讲1. 某数加上6,乘以6,减去6,除以6,其结果等于6,则这个数是多少?解答:(6×6+6)÷6-6=1,这个数是1.2. 两个两位数相加,其中一个加数是73,另一个加数不知道,只知道另一个加数的十位数字增加5,个位数字增加1,那么求得的和的后两位数字是72,问另一个加数原来是多少?解答:和的后两位数字是72,说明另一个加数是99。
十位数字增加5,个位数字增加1,那么原来的加数是99-51=48。
3. 有砖26块,兄弟二人争着去挑。
弟弟抢在前面,刚摆好砖,哥哥赶到了。
哥哥看弟弟挑的太多,就抢过一半。
弟弟不肯,又从哥哥那儿抢走一半。
哥哥不服,弟弟只好给哥哥5块,这时哥哥比弟弟多挑2块。
问最初弟弟准备挑多少块?解答:先看最后兄弟俩各挑几块:哥哥比弟弟多挑2块,这是一个和差问题,哥哥挑的块数= (26+2)÷2=14块,弟弟=26-14=12块;然后再还原:哥哥还给弟弟5块:哥哥=14-5=9块,弟弟=12+5=17块;弟弟把抢走的一半还给哥哥:哥哥=9+9=18块,弟弟=17-9=8块;哥哥把抢走的一半还给弟弟:弟弟原来是8+8=16块。
4. 甲、乙、丙三人钱数各不相同,甲最多,他拿出一些钱给乙和丙,使乙和丙的钱数都比原来增加了两倍,结果乙的钱最多;接着乙拿出一些钱给甲和丙,使甲和丙的钱数都比原来增加了两倍,结果丙的钱最多;最后丙拿出一些钱给甲和乙,使甲和乙的钱数都比原来增加了两倍,结果三人钱数一样多了。
如果他们三人共有81元,那么三人原来的钱分别是多少元?解答:三人最后一样多,那么每人都是81÷3=27元;还原:甲和乙把钱还给丙:每人增加2倍,就是原来的3倍,那么甲和乙都是27/3=9元,丙是27+2*2*9=63元;甲和丙把钱还给乙:甲=9/3=3元,丙=63/3=21元,乙=9+2*3+2*21=57元;乙和丙把钱还给甲:乙=57/3=19元,丙=21/3=7元,甲=3+2*19+2*7==55元。
华数思维训练导引四年级下第11讲计算问题第04讲多位数与小数
1.计算:1991+199.1+19.91+1.991.
解析:1991+199.1+19.91+1.991
=1991+9+199.1+0.9+19.91+0.09+1.991+0.009-(9+0.9+0.09+0.009)
=2000+200+20+2-9.999
=2222-10+0.001
=2212.001
2.计算:7142.85÷
3.7÷2.7×1.7×0.7.
解析:7142.85÷3.7÷2.7×1.7×0.7
=7142.85÷37÷27×17×7
=7142.85×7÷999×17
=49999.95÷999×17
=50.05×17
=850.85
3.光的速度是每秒30万千米,太阳离地球1亿5千万千米.问:光从太阳到地球要用几分钟?(答案保留一位小数.)
解析:150000000÷300000÷60=150÷3÷6=50÷6≈8.33≈8.3(分)
光从太阳到地球要用约8.3分钟。
4.已知10
5.5+[(40+□÷2.3) ×0.5-1.53] ÷(53.6÷2
6.8×0.125)=18
7.5,那么□所代表的数是多少?
解析:105.5+[(40+□÷2.3) ×0.5-1.53] ÷(53.6÷26.8×0.125)
=105.5+(20+□÷4.6-1.53)÷(2×26.8÷26.8×0.125)
=105.5+(18.47+□÷4.6) ÷0.25
=105.5+18.47÷0.25+□÷4.6÷0.25
=105.5+73.88+□÷1.15
因为105.5+73.88+□÷1.15=187.5
所以□=(187.5-105.5-73.88) ×1.15=8.12×1.15=8.12+0.812+0.406=9.338
答:□=9.338
5.22.5-(□×32-24×□) ÷3.2=10 在上面算式的两个方框中填入相同的数,使得等式成立。
那么所填的数应是多少?
解析:22.5-(□×32-24×□) ÷3.2
=22.5-□×(32-24) ÷3.2
=22.5-□×8÷3.2
=22.5-□×2.5
因为22.5-□×2.5=10,所以□×2.5=22.5-10,□=(22.5-10) ÷2.5=5 答:所填的数应是5。
6.计算:0.1+0.3+0.5+0.7+0.9+0.11+0.13+0.15+0.17+0.19+0.21+…+0.99.
解析:0.1+0.3+0.5+0.7+0.9+0.11+0.13+0.15+0.17+0.19+0.21+…+0.99 =(0.1+0.9) ×5÷2+(0.11+0.99) ×45÷2
=2.5+24.75
=27.25
7.计算:37.5×21.5×0.112+35.5×12.5×0.112.
解析:37.5×21.5×0.112+35.5×12.5×0.112
=0.112×(37.5×21.5+35.5×12.5)
=0.112×(12.5×3×21.5+35.5×12.5)
=0.112×12.5×(3×21.5+35.5)
=0.112×12.5×100
=1250×(0.1+0.01+0.002)
=125+12.5+2.5
=140
8.计算:3.42×76.3+7.63×57.6+9.18×23.7.
解析:3.42×76.3+7.63×57.6+9.18×23.7
=7.63×(34.2+57.6)+9.18×23.7
=7.63×91.8+91.8×2.37
=(7.63+2.37) ×91.8
=10×91.8
=918
9.计算:(32.8×91-16.4×92-1.75×656) ÷(0.2×0.2).
解析:(32.8×91-16.4×92-1.75×656) ÷(0.2×0.2)
=(16.4×2×91-16.4×92-16.4×40×1.75) ÷(0.2×0.2)
=16.4×(182-92-70) ÷(0.2×0.2)
=16.4×20÷0.2÷0.2
=82×100
=8200
10.计算:(2+3.15+5.87) ×(3.15+5.87+7.32)-(2+3.15+5.87+7.32) ×(3.15+5.87).
解析:(2+3.15+5.87) ×(3.15+5.87+7.32)-(2+3.15+5.87+7.32) ×(3.15+5.87) =(2+3.15+5.87) ×(3.15+5.87+7.32)-2×(3.15+5.87) -(3.15+5.87+7.32) ×(3.15+ 5.87)
=(3.15+5.87+7.32) ×(2+3.15+5.87-3.15-5.87) -2×(3.15+5.87)
=(3.15+5.87+7.32) ×2-2×(3.15+5.87)
=(3.15+5.87) ×2+7.32 ×2-2×(3.15+5.87)
=7.32×2
=14.64
11.求和式3+33+333+…+33…3(10个3)计算结果的万位数字.
解析:个位10个3相加,和为30,向十位进3;十位9个3相加,和为27,加上个位的进位3得30,向百位进3;百位8个3相加,和为24,加上十位的进位3得27,向千位进2;千位7个3相加,和为21,加上百位的进位2得23,向万位进2;万位6个3相加,和为18,加上千位的进位2得20,万位得数是0。
答:计算结果的万位数字是0。
12.计算:19+199+1999+…+199…9(1999个9).
解析:19+199+1999+…+199…9(1999个9)
=(20-1)+(200-1)+(2000-1)+…+(200…0(1999个0)-1)
=22…20(1999个2)-1999×1
=22…2(1996个2)0221
13.算式99…9(1992个9)×99…9(1992个9)+199…9(1992个9)的计算结果的末位有多少个零?
解析:99…9(1992个9)×99…9(1992个9)+199…9(1992个9)
=99…9(1992个9)×(100…0-1)(1992个0)+199…9(1992个9)
=99…9(1992个9) 0(1992个0) - 99…9(1992个9)+199…9(1992个9)
=99…9(1992个9) 0(1992个0)+100…0(1992个0)
=100…0(3984个0)
14.计算:33…3(10个3)×66…6(10个6).
解析:33…3(10个3)×66…6(10个6)
=33…3(10个3)×3×22…2(10个2)
=99…9(10个9)×22…2(10个2)
=(100…0(10个0)-1) ×22…2(10个2)
=22…2(10个2)00…0(10个0)-22…2(10个2)
=22…2(9个2)177(9个7)8
15.求算式99…9(1994个9)×88…8(1994个8)÷66…6(1994个6)的计算结果的各位数字之和.
解析:99…9(1994个9)×88…8(1994个8)÷66…6(1994个6)=9×11…1(1994个1)×8×11…1(1994个1)÷6÷11…1(1994个1)
=9×8÷6×11…1(1994个1)
=12×11…1(1994个1)
=(10+2)×11…1(1994个1)
=11…1(1995个1)+22…2(1994个1)
=13333…3(1993个1) 2
各位数字之和=1+1993×3+2=5982
答:计算结果的各位数字之和5982。