高考 直线
- 格式:pdf
- 大小:781.44 KB
- 文档页数:10
高考直线知识点总结高考是中国学生十分重要的考试,其中数学是高考的一门必考科目。
直线作为数学中的基础知识,是高考数学中的重点考查内容之一。
本文将对高考直线知识点进行总结,以帮助考生更好地备考和应对高考数学考试。
一、直线的一般方程直线的一般方程一般形式为Ax + By + C = 0,其中A、B、C为常数,并且A和B不同时为0。
直线的一般方程具有以下特点:1. 直线的斜率为-m,其中m为直线的斜率,m = -A/B。
2. 直线在坐标系中的截距为(-C/A, 0)和(0, -C/B)。
二、直线的点斜式直线的点斜式一般形式为y - y₁ = m(x - x₁),其中(x₁, y₁)为直线上已知的一点,m为直线的斜率。
直线的点斜式具有以下特点:1. 直线的斜率为m。
2. 直线过已知点(x₁, y₁)。
三、直线的斜截式直线的斜截式一般形式为y = mx + c,其中m为直线的斜率,c为直线在y轴上的截距。
直线的斜截式具有以下特点:1. 直线的斜率为m。
2. 直线与y轴的交点为(0, c)。
3. 直线过点(1, m + c)。
四、直线的两点式直线的两点式一般形式为(y - y₁)/(x - x₁) = (y₂ - y₁)/(x₂ - x₁),其中(x₁, y₁)和(x₂, y₂)为直线上的两个已知点。
直线的两点式具有以下特点:1. 直线过已知点(x₁, y₁)和(x₂, y₂)。
2. 直线的斜率为(y₂ - y₁)/(x₂ - x₁)。
五、直线的垂直与平行关系两条直线的斜率满足以下关系时,它们之间具有特殊的垂直或平行关系:1. 如果两条直线的斜率相等,且不为无穷大,则它们互相平行。
2. 如果两条直线的斜率乘积为-1,则它们互相垂直。
六、直线的角平分线和垂直平分线直线的角平分线和垂直平分线具有以下特点:1. 直线的角平分线将角平分为两个相等的角。
2. 直线的垂直平分线将线段平分为两个相等的部分。
3. 直线的角平分线和垂直平分线的交点即为对应的角的角平分点和线段的中点。
高考数学直线知识点总结归纳直线是高考数学中的基础知识点,是解析几何的重要组成部分。
掌握直线的性质和相关的应用是高考数学考试的关键。
本文将对高考数学中直线的相关知识点进行总结和归纳,帮助同学们更好地备考和应对考试。
1. 直线的基本概念直线是由无数个点按一定方向延伸而成的,没有宽度和厚度。
直线可以用直线上的两个点表示,也可以用解析式表示。
例如,直线AB可以用两点坐标表示为:AB: y-y₁ = (y₂-y₁)/(x₂-x₁) (x-x₁) 或 y=kx+b。
直线的方程可以是一次函数,一次函数的图像是直线。
2. 直线的斜率和倾斜角直线的斜率可以用来表示直线的倾斜程度,斜率的绝对值越大,直线越陡峭。
斜率的计算公式为:k = (y₂-y₁)/(x₂-x₁)。
斜率的倾斜方向与直线与x轴的夹角有关。
夹角为α时,tanα=k,所以α的计算公式为:α=arctan(k)。
3. 直线与坐标轴的交点直线与x轴的交点可以通过令y=0解直线方程得到。
直线与y轴的交点可以通过令x=0解直线方程得到。
这些交点的坐标分别是直线方程的解。
4. 直线的特殊情况4.1 平行于坐标轴的直线如果直线与x轴平行,斜率为0;如果与y轴平行,斜率为无穷大。
4.2 垂直于坐标轴的直线如果直线与x轴垂直,斜率为无穷大;如果与y轴垂直,斜率为0。
4.3 重合的直线如果两条直线方程相同,或者解方程得到的斜率相同,那么这两条直线是重合的。
5. 直线的性质和定理5.1 直线的点斜式和一般式直线的点斜式是指通过直线上一点P和直线的斜率k来表示直线的方程。
点斜式的表达式为:y-y₁ = k(x-x₁)。
直线的一般式是指通过直线方程Ax+By+C=0来表示直线。
两者可以相互转化。
5.2 直线的截距式和斜截式直线的截距式是指通过直线与x轴和y轴的截点坐标来表示直线的方程。
截距式的表达式为:x/a + y/b = 1。
直线的斜截式是指通过直线在y轴上的截距和直线的斜率来表示直线的方程。
高考数学知识点解析直线的方程与性质高考数学知识点解析:直线的方程与性质在高考数学中,直线的方程与性质是一个重要的知识点,它不仅在几何问题中有着广泛的应用,还与代数、三角函数等其他知识板块紧密相连。
理解和掌握直线的方程与性质,对于解决各类数学问题都具有关键作用。
一、直线的倾斜角与斜率首先,我们来了解直线的倾斜角。
直线的倾斜角是指直线与 x 轴正方向所成的角,范围是0, π)。
当直线与 x 轴平行或重合时,倾斜角为 0;当直线垂直于 x 轴时,倾斜角为π/2。
而直线的斜率则是倾斜角的正切值,通常用 k 表示。
如果已知直线上两个不同的点 P₁(x₁, y₁),P₂(x₂, y₂),那么直线的斜率 k =(y₂ y₁) /(x₂ x₁)。
需要注意的是,当直线垂直于 x 轴时,斜率不存在。
斜率的正负决定了直线的倾斜方向。
当斜率为正时,直线从左下方向右上方倾斜;当斜率为负时,直线从左上方向右下方倾斜;当斜率为 0 时,直线与 x 轴平行或重合。
二、直线的方程1、点斜式如果已知直线上一点 P₀(x₀, y₀),并且直线的斜率为 k,那么直线的点斜式方程为 y y₀= k(x x₀)。
2、斜截式如果直线的斜率为 k,且在 y 轴上的截距为 b(即直线与 y 轴交点的纵坐标),那么直线的斜截式方程为 y = kx + b。
3、两点式已知直线上两个不同的点 P₁(x₁, y₁),P₂(x₂, y₂),则直线的两点式方程为(y y₁) /(y₂ y₁) =(x x₁) /(x₂ x₁)。
4、截距式如果直线在 x 轴和 y 轴上的截距分别为 a 和 b(a ≠ 0,b ≠ 0),那么直线的截距式方程为 x / a + y / b = 1。
5、一般式直线的一般式方程为 Ax + By + C = 0(A、B 不同时为 0)。
在具体解题时,我们需要根据题目所给的条件,选择合适的直线方程形式,以便更简便地进行计算和推理。
三、直线的位置关系1、平行两条直线平行,它们的斜率相等。
高考直线运动知识点一、引言高考是每个学生人生中的一次重要考试,而物理是高考科目中的一项难点。
直线运动作为物理中的基础知识点,在高考中占据很大的比例。
本文将从直线运动的定义、速度、加速度以及相关计算等方面深入探讨,旨在帮助考生更好地掌握这一知识点。
二、直线运动的定义直线运动是指物体沿直线轨迹运动的一种运动形式。
在直线运动中,物体在空间的位置随着时间的推移而改变。
直线运动通常用位置、速度和加速度这三个物理量来描述。
三、速度的概念与计算速度是物体在单位时间内所走过的距离与所经过的时间之比。
用符号v表示,公式为v=s/t,其中s表示位移,t表示时间。
在直线运动中,速度的方向与位移的方向一致。
四、加速度的概念与计算加速度是物体单位时间内速度变化量与时间的比值。
加速度的符号为a,公式为a=(v-u)/t,其中v表示末速度,u表示初速度,t表示时间。
在直线运动中,加速度的方向与速度变化的方向一致。
五、匀速直线运动一种特殊情况是匀速直线运动,即物体在单位时间内走过的距离相等。
在匀速直线运动中,速度始终保持不变,加速度为零。
这使得计算更加简单。
六、变速直线运动另一种常见情况是变速直线运动,即物体在单位时间内速度发生变化。
在变速直线运动中,速度和加速度均不为零。
对于变速直线运动,我们需要使用速度-时间图、位移-时间图以及加速度-时间图等工具来帮助我们理解和计算。
七、直线运动的应用直线运动是物理中的基本知识点,也是很多实际问题的基础。
例如,我们可以利用直线运动的概念来计算行驶车辆的速度、位置和加速度,从而提高交通运输的效率。
此外,直线运动还与测速仪器、摄像头等设备联系紧密,为我们提供了很多实用的工具和方法。
八、总结高考直线运动知识点是物理中的重要内容,对于考生来说,掌握这一知识点是提高物理成绩的关键。
通过深入理解直线运动的定义、速度、加速度以及相关计算方法,考生可以更好地应对高考中的物理问题。
希望本文对于高考物理的备考有所帮助。
高考数学中的直线方程高考数学中的知识点众多,而直线方程是其中比较常见且基础的知识点之一。
直线方程是指在平面直角坐标系中,描述一条直线的方程式。
了解直线方程是高中数学的基础,也是在高考数学中取得好成绩的必备知识点。
下面将从什么是直线方程、直线方程的种类、怎样求直线方程三个方面对直线方程进行详细的介绍。
一、什么是直线方程在平面直角坐标系中,一条直线上任意两点的坐标(x1, y1)和(x2, y2)之间总是存在一定的关系,我们可以通过确定这种关系来描述这条直线的方程式。
通常我们使用一元一次方程式来描述一条直线,即y=ax+b的形式。
其中,a和b是常数,而x和y则是未知数。
在这种形式下,a决定了这条直线的斜率,而b则决定了这条直线和y轴的交点。
二、直线方程的种类在高考数学中,我们需要掌握三种直线方程的形式:斜截式、点斜式和一般式。
下面我们分别进行详细介绍。
1.斜截式斜截式指的是y=ax+b的形式,其中a是这条直线的斜率,而b则是这条直线和y轴的交点。
在斜截式中,a的值决定了这条直线的斜率,也就是这条直线的倾斜程度。
当a的值为正数时,这条直线呈现上升的趋势;当a的值为负数时,则呈现下降的趋势。
而当a的值为0时,则表示这条直线为水平线。
在计算斜率时,通常我们需要注意两点之间的水平距离是否为0,如果是,则斜率不存在。
2.点斜式点斜式指的是y-y1=k(x-x1)的形式,其中k是这条直线的斜率,而(x1,y1)是这条直线上的一个点的坐标。
在点斜式中,我们需要发现这条直线的斜率,以及找到该直线上的一个点,然后通过点斜式计算出直线方程。
在计算时,我们可以使用任意一个点,因此对于一条直线,可以使用多个不同的点来计算直线方程。
3.一般式一般式指的是Ax+By+C=0的形式,在一般式中,A、B和C都是常数,而x和y为未知数。
在使用一般式来求解直线方程时,我们通常需要将其转化为斜截式或者点斜式。
具体的转化方式可以通过数学公式和推导来实现,在高考数学中,我们需要掌握这些转化方式,以便快速的解决具体的问题。
高考直线必考知识点高考是众多中国学生所迎接的重要考试,其中数学科目无疑是一项关键挑战。
为了帮助学生们更好地备考数学高考,本文将列举一些直线的必考知识点,供大家参考。
一、直线的方程1.一般式方程:Ax + By + C = 0,其中A、B、C为实数且A和B不同时为0。
2.斜截式方程:y = kx + b,其中k为直线的斜率,b为y轴截距。
3.点斜式方程:y - y₁ = k(x - x₁),其中(x₁, y₁)为直线上的一点,k为直线的斜率。
4.两点式方程:(y - y₁)/(x - x₁) = (y₂ - y₁)/(x₂ - x₁),其中(x₁,y₁)和(x₂, y₂)为直线上的两点。
二、直线的性质1.斜率:直线的斜率表示为k,并可用斜率公式计算:k = (y₂ -y₁)/(x₂ - x₁)。
2.平行和垂直关系:若两条直线的斜率相等,则它们平行;若两条直线的斜率乘积为-1,则它们垂直。
3.点与直线的位置关系:设直线方程为Ax + By + C = 0,对于点P(x₀, y₀),代入方程可以判断点在直线上、直线上方或直线下方。
4.距离公式:点P(x₀, y₀)到直线Ax + By + C = 0的距离为d =|Ax₀ + By₀ + C| / √(A² + B²)。
三、直线的特殊情况1.过两点的直线方程:已知两点P₁(x₁, y₁)和P₂(x₂, y₂),可以使用两点式方程求得直线的方程。
2.过点且垂直于某条直线的直线方程:设直线L的斜率为k,直线L'垂直于L且过点P(x₀, y₀),则直线L'的斜率为-1/k,应用点斜式可以求得直线方程。
通过对这些直线的必考知识点的梳理和理解,学生们可以更好地备考高考数学,提高解题的准确性和速度。
同时,对常见题型的训练也是非常重要的,例如求直线方程、判断两条直线的关系等等。
因此,建议学生们多进行真题的练习,加深对知识点的理解和应用能力。
高考数学直线方程知识点数学是高中学业水平测试中的重要科目之一,而直线方程是数学中的基础知识点之一。
掌握直线方程的相关知识对于解题和应用数学思维具有重要意义。
本文将介绍高考数学中关于直线方程的知识点,帮助学生深入了解和掌握这一内容。
1. 直线方程的一般式和斜截式在高考数学中,直线方程通常以一般式和斜截式来表示。
一般式使用 Ax + By + C = 0 的形式,其中 A、B、C 为常数。
斜截式使用 y = kx + b 的形式,其中 k 为斜率,b 为截距。
这两种表示方式可以相互转化,但需要根据具体问题进行转换。
2. 直线方程的斜率和截距斜率和截距是直线方程中的重要概念。
斜率表示了直线的倾斜程度,可以用两个点的纵坐标之差除以横坐标之差来表示。
斜截式的斜率即为直线的斜率。
截距表示了直线与纵轴的交点在纵轴上的坐标,即直线在 y 轴上的截距。
斜截式的截距即为直线的截距。
3. 直线方程的平行和垂直关系在直线方程中,平行和垂直是两种重要的关系。
两条直线平行时,它们的斜率相等;两条直线垂直时,它们的斜率乘积为-1。
根据这些特性,可以判断两条直线是否平行或垂直,并且可以求出平行或垂直直线的方程。
4. 直线方程的应用直线方程在实际应用中有广泛的应用。
例如,在几何问题中,可以通过直线方程来描述两点之间的直线关系,计算线段的长度等;在经济学中,可以通过直线方程来表示成本与产量的关系,进行经济分析等。
掌握直线方程的应用方法,可以帮助学生解决实际问题,提高数学解题能力。
5. 直线方程的解法和图象表示解直线方程的问题通常涉及求解交点、判断位置关系等。
对于一般式的直线方程,可以通过代入和求解方程组的方法来求解;对于斜截式的直线方程,可以直接读出截距和斜率来求解。
此外,直线方程还可以通过绘制直线图象来表示,通过图象来进行可视化的解决问题。
6. 注意事项和解题技巧在学习直线方程时,需要注意以下几个方面。
首先,要熟练掌握直线方程的转化和求解方法,避免在复杂问题中出现计算错误。
高考数学直线方程知识点总结高考数学中,直线方程是一个非常重要的知识点。
直线是我们周围不可或缺的几何要素,也是许多数学问题的关键要素。
而在高考中,直线方程也经常成为考试的热点难点,理解掌握这个知识点,对我们取得好成绩也有着重要的作用。
一、直线的解析式在平面直角坐标系中,直线的解析式可以表示如下:y = kx + b其中,k为直线的斜率,b为直线在y轴上的截距,y轴截距指的是直线与y轴的交点纵坐标。
当直线不垂直于x轴时,斜率k可以表示为:k = tanθ其中,θ是直线与x轴正方向的夹角,斜率k表示的是直线的倾斜程度。
二、直线的一般式在平面直角坐标系中,直线的一般式可以表示为:Ax + By + C = 0其中,A、B、C代表实数且不全为0,A和B不同时为0。
直线的一般式与解析式的换算可以表示如下:A = -k,B = 1,C = -bk = - A/B,b = - C/B三、点斜式如果已知直线上的一点(x0,y0)和直线的斜率k,就可以求出直线的解析式:y - y0 = k(x - x0)点斜式可以根据直线的斜率和其中一个点来确定直线的解析式,因此对于已知一点和一斜率的情况下就可以确定一条直线的解析式。
四、两点式如果已知直线上的两个点(x1,y1)和(x2,y2),则可以求出直线的解析式:(y - y1)/(x - x1) = (y2 - y1)/(x2 - x1)两点式可以根据直线的两个点来确定直线的解析式,因此对于已知两点的情况下就可以确定一条直线的解析式。
五、截距式如果已知直线在x轴上的截距a和y轴上的截距b,直接就可以求出直线的解析式:y = kx + b截距式可以根据直线在x轴和y轴上的截距来确定直线的解析式,因此对于已知两个截距的情况下就可以确定一条直线的解析式。
六、平面直角坐标系中两条直线的位置关系如果两条直线的斜率相等,它们平行;如果两条直线的斜率互为相反数,则它们垂直;如果两条直线的斜率不相等也不互为相反数,则它们相交。
高考数学直线方程知识点总结高考数学直线方程是高中数学中的一项基础知识,也是高考数学试题中经常出现的考点。
直线方程的掌握程度直接影响到解题的准确性和速度。
下面将对高考数学直线方程的知识点进行总结,希望对你的学习有所帮助。
一、直线的一般式方程直线的一般式方程表示为Ax+By+C=0。
通过两个点P(x1, y1)和Q(x2, y2)的坐标可以确定一条直线的一般式方程。
当直线过点P(x1, y1)且斜率存在时,直线的一般式方程可以表示为y-y1=k(x-x1),其中k为直线的斜率。
二、直线的斜截式方程直线的斜截式方程表示为y=kx+b。
其中k为直线的斜率,b为直线在y轴上的截距。
通过直线的斜截式方程可以确定一条直线在平面直角坐标系中的位置。
三、直线的点斜式方程直线的点斜式方程表示为y-y1=k(x-x1)。
其中k为直线的斜率,(x1, y1)为直线上的一点。
通过直线的点斜式方程可以确定一条直线在平面直角坐标系中的位置。
四、直线的截距式方程直线的截距式方程表示为x/a+y/b=1。
其中a、b为直线在x轴和y轴上的截距。
通过直线的截距式方程可以确定一条直线在平面直角坐标系中的位置。
五、直线的平行和垂直关系1. 平行关系:两条直线的斜率相等时,两条直线平行。
2. 垂直关系:两条直线的斜率的乘积为-1时,两条直线垂直。
六、直线的截线式方程直线的截线式方程表示为x/a+y/b=1。
其中a、b为直线在x轴和y轴上的截距。
通过直线的截截式方程可以确定一条直线在平面直角坐标系中与坐标轴的交点。
七、直线的交点和距离1. 直线的交点:两条直线的交点可以通过联立方程求解得到。
2. 直线的距离:设直线L的一般式方程为Ax+By+C1=0,点P(x0, y0)到直线L的距离为d=|Ax0+B y0+C1|/√(A²+B²)。
八、直线的性质和常见问题1. 直线的斜率和方向角:直线的斜率k=tanθ,其中θ为直线的方向角。
专题9.1 直线与直线方程1.(福建高考真题(文))“a=1”是“直线x+y =0和直线x-ay =0互相垂直”的( )A .充分而不必要条件 B .必要而不充分条件C .充要条件 D .既不充分也不必要条件【答案】C 【解析】直线x +y =0和直线x−ay =0互相垂直的充要条件是1×(−a)+1×1=0,即a =1,故选C 2.(2020·肥东县综合高中月考(文))点(),P x y 在直线40x y +-=上,O 是坐标原点,则OP 的最小值是( )ABC.D【答案】C 【解析】原点到直线40x y +-==故选C.3.【多选题】(2021·全国高二课时练习)(多选)已知直线:1l y =-,则直线l ().A.过点)2-BC .倾斜角为60°D .在y 轴上的截距为1【答案】BC 【分析】根据直线斜截式方程的定义,依次判断,即得解【详解】点)2-的坐标不满足方程1y =-,故A 错误;根据斜截式的定义,直线l的斜率tan k θ==60°,故B ,C 正确;由1y =-,知直线l 在y 轴上的截距为1-,故D 错误.故选:BC4.【多选题】(2021·全国高二课时练习)(多选)已知直线:10l x my m -+-=,则下列说法正确的是().A .直线l 的斜率可以等于0练基础B .若直线l 与y 轴的夹角为30°,则m m =C .直线l 恒过点()2,1D .若直线l 在两坐标轴上的截距相等,则1m =或1m =-【答案】BD 【分析】讨论0m =和0m ≠时直线的斜率和截距情况,判断AD 的正误;利用倾斜角和斜率的关系判断B 的正误;将方程化为()()110x m y ---=判断直线过定点,判断C 的正误.【详解】当0m =时,直线:1l x =,斜率不存在,当0m ≠时,直线l 的斜率为1m,不可能等于0,故A 选项错误;∵直线l 与y 轴的夹角角为30°,∴直线l 的倾斜角为60°或120°,而直线l 的斜率为1m,∴1tan 60m =︒=1tan120m =︒=m =m =B 选项正确;直线l 的方程可化为()()110x m y ---=,所以直线l 过定点()1,1,故C 选项错误;当0m =时,直线:1l x =,在y 轴上的截距不存在,当0m ≠时,令0x =,得1m y m-=,令0y =,得1x m =-,令11m m m-=-,得1m =±,故D 选项正确.故选:BD .5.【多选题】(2021·全国高二课时练习)(多选)已知直线l 的方程为20ax by +-=,则下列判断正确的是().A .若0ab >,则直线l 的斜率小于0B .若0b =,0a ≠,则直线l 的倾斜角为90°C .直线l 可能经过坐标原点D .若0a =,0b ≠,则直线l 的倾斜角为0°【答案】ABD 【分析】根据直线方程与斜率,倾斜角的关系,依次讨论各选项即可得答案.【详解】对于A 选项,若0ab >,则直线l 的斜率0ab-<,A 正确;对于B 选项,若0b =,0a ≠,则直线l 的方程为2x a=,其倾斜角为90°,B 正确;对于C 选项,将()0,0代入20ax by +-=中,显然不成立,C 错误;对于D 选项,若0a =,0b ≠,则直线l 的方程为2y b=,其倾斜角为0°,D 正确.故选:ABD .6.(2021·全国高二课时练习)直线3240x y +-=的斜率为______,在x 轴上的截距为______.【答案】32-43【分析】将直线转化为斜截式即可得出斜率,令0y =可求出在x 轴上的截距.【详解】由3240x y +-=,可得322y x =-+,故该直线的斜率32k =-.令0y =,得43x =,所以该直线在x 轴上的截距为43.故答案为:32-;43.7.(2021·全国)已知直线1:1l y x =+,将直线1l 绕点()1,2按逆时针方向旋转45︒后,所得直线2l 的方程为_______,将直线1l 绕点()1,2按顺时针方向旋转45°后,所得直线3l 的方程为_______.【答案】1x = 2y =【分析】根据斜率和倾斜角的关系得出直线2l 和直线3l 的斜率再求解其直线方程即可.【详解】易知直线1l 的斜率为1,倾斜角为45︒,所以直线2l 的倾斜角为90︒,直线3l 的倾斜角为0︒,又因为直线2l 和直线3l 都经过点()1,2,所以直线2l 和直线3l 的方程分别为1x =,2y =.故答案为:1x =;2y =8.(2021·浙江衢州·高二期末)已知直线1l :3480x y +-=和2l :320x ay -+=,且12l l //,则实数a =__________,两直线1l 与2l 之间的距离为__________.【答案】-4;2【分析】根据两直线平行斜率相等求解参数即可;运用两平行线间的距离公式计算两直线之间的距离可得出答案.【详解】解:直线1:3480l x y +-=和2:320l x ay -+=,12l l //,334a -∴=,解得4a =-;∴2:3420l x y ++= 两直线1l 与2l间的距离是:2d == .故答案为:4-;2.9.(2020·浙江开学考试)已知直线1l 的方程为3420x y --=,直线2l 的方程为6810x y --=,则直线1l 的斜率为___________,直线1l 与2l 的距离为___________.【答案】34310【解析】直线1l 的方程为3420x y --=即为3142y x =-,斜率为34.因为直线2l 的方程为6810x y --=即为13402x y --=,所以直线1l 与2l 平行,则直线1l 与2l310.故答案为:34;31010.(2021·抚松县第一中学高二月考)已知A (1,0),B (﹣1,2),直线l :2x ﹣ay ﹣a =0上存在点P ,满足|PA |+|PB |=a 的取值范围是 ___________.【答案】2[,2]3-【分析】计算线段AB 的距离,得到点P 的轨迹,将点A ,B 分别代入2x ﹣ay ﹣a =0,得到a ,根据题意得到直线l 所过定点C,求出直线AC ,BC 的斜率,根结合直线l 与线段AB 始终有交点计算出a 的取值范围.【详解】因为||AB ==||||PA PB +=,由图可知,点P 的轨迹为线段AB ,将点A ,B 的坐标分别代入直线l 的方程,可得a =2,a =23-,由直线l 的方程可化为:2x ﹣a (y +1)=0,所以直线l 过定点C (0,﹣1),画出图形,如图所示:因为直线AC 的斜率为k AC =1,直线BC 的斜率为k BC =2(1)10----=﹣3,所以直线l 的斜率为k =2a ,令2123aa ⎧≥⎪⎪⎨⎪≤-⎪⎩,解得23-≤a ≤2,所以a 的取值范围是[23-,2].故答案为:[23-,2].1.(2021·绥德中学高一月考)已知0a >,0b >,直线220ax by -+=恒过点(2-,1),则14a b+的最小值为( )A .8B .9C .16D .18【答案】B 【分析】利用给定条件可得1a b +=,再借助“1”的妙用即可计算得解.【详解】因直线220ax by -+=恒过点(2-,1),则有2220a b --+=,即1a b +=,又0a >,0b >,则14144()()559b a a b a b a b a b +=++=++≥+=,当且仅当4b a a b =,练提升即2b a =时取“=”,由21b a a b =⎧⎨+=⎩得12,33a b ==,所以当12,33a b ==时,14a b+取得最小值9.故选:B2.(2019·四川高考模拟(文))已知点(3,0)P -在动直线(1)(3)0m x n y -+-=上的投影为点M ,若点3(2,2N ,那么||MN 的最小值为( )A .2B .32C .1D .12【答案】D 【解析】因为动直线()()130m x n y -+-=方程为,所以该直线过定点Q (1,3),所以动点M 在以PQ5,2=圆心的坐标为3(1,)2-,所以点N3=,所以MN 的最小值为51322-=.故答案为:D 3.(2019·湖南衡阳市八中高三月考(文))已知直线的倾斜角为且过点,其中,则直线的方程为( )C.【答案】B 【解析】,,则直线方程为:故选l θ1sin(22p q-=l 20y --=40y +-=0x -=360y +-=122sin πθ⎛⎫-= ⎪⎝⎭1cos 2θ∴=-23πθ=tan θ=1y x -=-40y +-=B4.(四川高考真题(文))设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则PA PB +的取值范围是( )A.B.C.D.【答案】B 【解析】易得(0,0),(1,3)A B .设(,)P x y ,则消去m 得:2230x y x y +--=,所以点P 在以AB 为直径的圆上,PA PB ⊥,所以222||||10PA PB AB +==,令,PA PB θθ==,则)4PA PB πθθθ+==+.因为0,0PA PB ≥≥,所以02πθ≤≤.sin()14πθ≤+≤PA PB ≤+≤.选B.法二、因为两直线的斜率互为负倒数,所以PA PB ⊥,点P 的轨迹是以AB 为直径的圆.以下同法一.5.(2020·浙江)已知点(2,1)M -,直线l 过点M 且与直线210x y -+=平行,则直线l 的方程为____________;点M 关于直线10x y -+=的对称点的坐标为_______________.【答案】240x y -+= (0,1)-【分析】根据所求直线与直线210x y -+=平行,设方程为()201x y n n -+=≠求解;设点M 关于直线10x y -+=的对称点的坐标为(),M x y ',由112211022y x x y -⎧=-⎪⎪+⎨-+⎪-+=⎪⎩求解.【详解】因为所求直线与直线210x y -+=平行,所以设方程为()201x y n n -+=≠,因为直线过点(2,1)M -,代入直线方程解得4n =,所以所求直线方程为:240x y -+=;设点M 关于直线10x y -+=的对称点的坐标为(),M x y ',则112211022y x x y -⎧=-⎪⎪+⎨-+⎪-+=⎪⎩,解得01x y =⎧⎨=-⎩,所以点M 关于直线10x y -+=的对称点的坐标为()0.1-故答案为:240x y -+=,(0,1)-6.(2019·黑龙江鹤岗·月考(文))已知直线l 经过点()4,3P ,且与x 轴正半轴交于点A ,与y 轴正半轴交于点B ,O 为坐标原点.(1)若点O 到直线l 的距离为4,求直线l 的方程;(2)求OAB ∆面积的最小值.【答案】(1)7241000x y +-=(2)24【解析】(1)由题意可设直线l 的方程为()34y k x -=-,即430kx y k --+=,则4d ,解得724k =-. 故直线l 的方程为774302424x y ⎛⎫---⨯-+= ⎪⎝⎭,即7241000x y +-=. (2)因为直线l 的方程为430kx y k --+=,所以34,0A k ⎛⎫-+ ⎪⎝⎭,()0,43B k -+, 则OAB ∆的面积为()113194431624222S OA OB k k k k ⎛⎫⎛⎫=⋅=-+⨯-+=--+ ⎪ ⎪⎝⎭⎝⎭. 由题意可知k 0<,则91624k k --≥=(当且仅当34k =-时,等号成立).故OAB ∆面积的最小值为()12424242⨯+=.7.(2021·抚松县第一中学高二月考)已知直线l 1:2x +y +3=0,l 2:x ﹣2y =0.(1)求直线l 1关于x 轴对称的直线l 3的方程,并求l 2与l 3的交点P ;(2)求过点P 且与原点O (0,0)距离等于2的直线m 的方程.【答案】(1)2x ﹣y +3=0,P (﹣2,﹣1);(2) 3x +4y +10=0或x =﹣2.【分析】(1)由对称关系求直线l 3的方程,联立l 2与l 3的方程,求点P 的坐标,(2)当直线m 的斜率存在时,设直线m 的点斜式方程,由点到直线距离公式列方程求斜率,由此可得直线m 的方程,再检验过点P 的斜率不存在的直线是否满足要求.【详解】(1)由题意,直线l 3与直线l 1的倾斜角互补,从而它们的斜率互为相反数,且l 1与l 3必过x 轴上相同点3(,0)2-,∴直线l 3的方程为2x ﹣y +3=0,由230,20,x y x y -+=⎧⎨-=⎩解得2,1.x y =-⎧⎨=-⎩∴P (﹣2,﹣1).(2)当直线m 的斜率存在时,设直线m 的方程为y +1=k (x +2),即kx ﹣y +2k ﹣1=0,∴原点O (0,0)到直线m 2=,解得34k =-,∴直线m 方程为3x +4y +10=0,当直线m 的斜率不存在时,直线x =﹣2满足题意,综上直线m 的方程为3x +4y +10=0或x =﹣2.8.(2021·宝山区·上海交大附中高一开学考试)如图,点(),4A m ,()4,B n -在反比例函数()0ky k x=>的图象上,经过点A 、B 的直线与x 轴相交于点C ,与y 轴相交于点D .(1)若2m =,求n 的值;(2)求m n +的值;(3)连接OA 、OB ,若tan tan 1AOD BOC ∠+∠=,求直线AB 的函数关系式.【答案】(1)2(2)0(3)2y x =+【分析】(1)先把A 点坐标代入()0k y k x =>求出k 的值得到反比例函数解析式为8y x=,然后把(4,)B n -代8y x=可求出n 的值;(2)利用反比例函数图象上点的坐标特征得到4m =k ,﹣4n =k ,然后把两式相减消去k 即可得到m +n 的值;(3)作AE ⊥y 轴于E ,BF ⊥x 轴于F ,如图,利用正切的定义得到tan ∠AOE 4AE mOE ==,tan 4BF n BOF OF -∠==,则144m n-+=,加上0m n +=,于是可解得2,2m n ==-,从而得到(2,4)A ,(4,2)B --,然后利用待定系数法求直线AB 的解析式.【详解】(1)当m =2,则A (2,4),把A (2,4)代入ky x=得k =2×4=8,所以反比例函数解析式为8y x=,把(4,)B n -代入8y x=得﹣4n =8,解得n =﹣2;(2)因为点A (m ,4),B (﹣4,n )在反比例函数()0ky k x=>的图象上,所以4m =k ,﹣4n =k ,所以4m +4n =0,即m +n =0;(3)作AE ⊥y 轴于E ,BF ⊥x 轴于F ,如图,在Rt △AOE 中,tan ∠AOE 4AE mOE ==,在Rt △BOF 中,tan 4BF nBOF OF -∠==,而tan ∠AOD +tan ∠BOC =1,所以144m n-+=,而m +n =0,解得m =2,n =﹣2,则A (2,4),B (﹣4,﹣2),设直线AB 的解析式为y =px +q ,把(2,4),(4,2)A B --代入得2442p q p q +=⎧⎨-+=-⎩,解得12p q =⎧⎨=⎩,所以直线AB 的解析式为y =x +2.9.(2021·全国高二课时练习)已知点()2,1P -.(1)求过点P 且与原点的距离为2的直线的方程.(2)是否存在过点P 且与原点的距离为6的直线?若存在,求出该直线的方程;若不存在,请说明理由.【答案】(1) 20x -=或34100x y --=;(2) 不存在这样的直线;理由见解析.【分析】(1)分k 存在与不存在两种情况讨论,点斜式表示直线方程,利用点到直线距离公式即得解;(2)过点P 且与原点的距离最大的直线为过点P 且与OP 垂直的直线,分析即得解【详解】(1)①当直线的斜率不存在时,直线方程为2x =,符合题意.②当直线的斜率存在时,设斜率为k ,则直线方程为()12y k x +=-,即210kx y k ---=.2,解得34k =,所以直线方程为34100x y --=.故所求直线方程为20x -=或34100x y --=.(2)不存在.理由如下:过点P 且与原点的距离最大的直线为过点P 且与OP 垂直的直线,=,而6>10.(2021·全国高三专题练习)AOB V 是等腰直角三角形,||AB =l 过点(1,1)P 与AOB V 的斜边、直角边分别交于不同的点M 、N (如图所示).(1)设直线l 的斜率为k ,求k 的取值范围,并用k 表示M 的坐标;(2)试写出表示AMN V 的面积S 的函数解析式()S k ,并求()S k 的最大值.【答案】(1)0k >,1,11kM k k ⎛⎫ ⎪++⎝⎭;(2)112(1)()012(1)k k k S k kk k ⎧⎪+⎪=⎨-⎪<<⎪+⎩…,max 1()4S k =.【分析】(1)根据题意,结合图象即可得到k 的取值范围,再联立直线方程即可得到M 的坐标;(2) 由于l 绕P 点转动,则N 点可落在OA 上,也可落在OB 上,AMN S V 的计算不一样,所以必须对l 的斜率不同的取值范围进行分类讨论,表示出()S k ,结合函数单调性即可求解.【详解】(1)由已知条件得(1,0)A 、(0,1)B ,0k >,设直线l 的方程为1y kx k =+-.由11x y y kx k +=⎧⎨=+-⎩,得1,11kM k k ⎛⎫ ⎪++⎝⎭.(2)当1k …时,点N 在直角边OA 上,1,0k N k -⎛⎫⎪⎝⎭,1111()1212(1)k S k k k k k -⎛⎫=-⋅= ⎪++⎝⎭.当01k <<时,点k 在直角边OB 上,(0,1)N k -,111()11(1)122212(1)k k S k k k k k =⨯⨯--⨯-⨯=++.∴112(1)()012(1)k k k S k k k k ⎧⎪+⎪=⎨-⎪<<⎪+⎩…,当1k …时,()S k 递减,∴max 1()(1)4S k S ==,当01k <<时,11111()22(1)244S k k =-<-=+.综上所述,当1k =时,max 1()4S k =.1.(上海高考真题(文))已知直线1l :(3)(4)10k x k y -+-+=与2l :2(3)230k x y --+=平行,则k 的值是( ).A .1或3B .1或5C .3或5D .1或2【答案】C 【解析】练真题由两直线平行得,当k-3=0时,两直线的方程分别为1y =- 和32y =,显然两直线平行.当k-3≠0时,由()k 34k1/32k 32--=≠--,可得 k=5.综上,k 的值是 3或5,故选 C .2.(2020·山东高考真题)已知直线sin cos :y x l θθ=+的图像如图所示,则角θ是()A .第一象限角B .第二象限角C .第三象限角D .第四象限角【答案】D 【分析】本题可根据直线的斜率和截距得出sin 0θ<、cos 0θ>,即可得出结果.【详解】结合图像易知,sin 0θ<,cos 0θ>,则角θ是第四象限角,故选:D.3.(2021·山东高考真题)如下图,直线l 的方程是()A 0y -=B 20y -=C 310y --=D .10x -=【答案】D 【分析】由图得到直线的倾斜角为30,进而得到斜率,然后由直线l 与x 轴交点为()1,0求解.【详解】由图可得直线的倾斜角为30°,所以斜率tan 30k =︒=,所以直线l 与x 轴的交点为()1,0,所以直线的点斜式方程可得l :)01y x -=-,即10x -=.故选:D4.(2021·湖南高考真题)点(0,1)-到直线3410x y -+=的距离为( )A .25B .35C .45D .1【答案】D 【分析】利用点到直线的距离公式即可求解.【详解】点(0,1)-到直线3410x y -+=的距离为515d =,故选:D.5.(全国高考真题(理))已知点A (﹣1,0),B (1,0),C (0,1),直线y =ax +b (a >0)将△ABC 分割为面积相等的两部分,则b 的取值范围是( ) A.(0,1) B.112⎛⎫ ⎪ ⎪⎝⎭, C.113⎛⎤⎥ ⎝⎦, D.1132⎡⎫⎪⎢⎣⎭,【答案】B 【解析】由题意可得,三角形ABC 的面积为12AB OC ⋅⋅=1,由于直线y =ax +b (a >0)与x 轴的交点为M (ba-,0),由直线y =ax +b (a >0)将△ABC 分割为面积相等的两部分,可得b >0,故ba-≤0,故点M 在射线OA 上.设直线y =ax +b 和BC 的交点为N ,则由1y ax b x y =+⎧⎨+=⎩可得点N 的坐标为(11b a -+,1a ba ++).①若点M 和点A 重合,如图:则点N 为线段BC 的中点,故N (12,12),把A 、N 两点的坐标代入直线y =ax +b ,求得a =b 13=.②若点M 在点O 和点A 之间,如图:此时b 13>,点N 在点B 和点C 之间,由题意可得三角形NMB 的面积等于12,即1122N MB y ⋅⋅=,即 111212b a b a a +⎛⎫⨯+⋅= ⎪+⎝⎭,可得a 212b b=-0,求得 b 12<,故有13<b 12<.③若点M 在点A 的左侧,则b 13<,由点M 的横坐标b a--<1,求得b >a .设直线y =ax +b 和AC 的交点为P ,则由 1y ax b y x =+⎧⎨=+⎩求得点P 的坐标为(11b a --,1a ba --),此时,由题意可得,三角形CPN 的面积等于12,即 12•(1﹣b )•|x N ﹣x P |12=,即12(1﹣b )•|1111b b a a ---+-|12=,化简可得2(1﹣b )2=|a 2﹣1|.由于此时 b >a >0,0<a <1,∴2(1﹣b )2=|a 2﹣1|=1﹣a 2 .两边开方可得(1﹣b)=1,∴1﹣b ,化简可得 b >1,故有1b 13<.综上可得b 的取值范围应是 112⎛⎫-⎪ ⎪⎝⎭,,故选:B .6.(2011·安徽高考真题(理))在平面直角坐标系中,如果与都是整数,就称点为整点,下列命题中正确的是_____________(写出所有正确命题的编号)①存在这样的直线,既不与坐标轴平行又不经过任何整点②如果与都是无理数,则直线不经过任何整点③直线经过无穷多个整点,当且仅当经过两个不同的整点④直线经过无穷多个整点的充分必要条件是:与都是有理数⑤存在恰经过一个整点的直线【答案】①③⑤【解析】①令直线为:,则其不与坐标轴平行且不经过任何整点,①正确;②令直线为:,则直线经过整点,②错误;③令直线为:,过两个不同的整点,则,两式作差得:即直线经过整点x y (,)x y k b y kx b =+l l y kx b =+k b l 12y x =+l y =-()2,0l y kx =()11,x y ()22,x y 112y kx y kx =⎧⎨=⎩()1212y y k x x -=-l ()1212,x x y y --直线经过无穷多个整点,③正确;④令直线为:,则不过整点,④错误;⑤令直线为:,则其只经过一个整点,⑤正确.本题正确结果:①③⑤∴l l 1132y x =+ll y =()0,0。