材料力学复习提纲.
- 格式:pdf
- 大小:551.30 KB
- 文档页数:16
《材料力学》综合复习资料第一章绪论一、什么是强度失效、刚度失效和稳定性失效?答案:略二、如图中实线所示构件内正方形微元,受力片变形为图屮虚线的菱形,则微元的剪应变了为_________________________ ?A^ a B、90° -aC、90° - 2aD、la答案:D三、材料力学中的内力是指()。
A、物体内部的力。
B、物体内部各质点间的相互作用力。
C、由外力作用引起的各质点间相互作用力的改变量。
D、由外力作用引起的某一截面两侧各质点I'可相互作用力的合力的改变量。
答案:B四、为保证机械和工程结构的正常工作,其中各构件一般应满足_______________ ______________ 和 ___________ 三方面的要求。
答案:强度、刚度、稳定性五、截面上任一点处的全应力一般可分解为________________ 方向和______________________________________________________ 方向的分量。
前者称为该点的________ ,用______ 表示;后者称为该点的_________ ,用 ______ 表示。
答案:略第二章内力分析画出图示各梁的Q、M图。
2・5kN7・5kN2qaQ图2.5kN.m答案:a> c、c4、影响杆件工作应力的因素有(因索有()o );影响极限应力的因索有();影响许川应力的第三章拉伸与压缩一、概念题1、画出低碳钢拉伸吋:曲线的人致形状,并在图上标出相应地应力特征值。
2、a、b、c三种材料的应力〜应变曲线如图所示。
其屮强度最高的材料是_____________ ;弹性模最最小的材料是 ________ :須性最好的材料是____________3、延伸率公式<5 = (/, -/)//xlOO%中厶指的是 _________________ ?答案:DA、断裂时试件的长度;B、断裂片试件的长度;C、断裂时试验段的长度;D、断裂后试验段的长度。
1.包申格效应:金属材料经过预先加载产生少量塑性变形(残余应变为1%~2%),卸载后再同向加载,规定残余应力(弹性极限或屈服强度)增加;反向加载,规定残余应力降低(特别是弹性极限在反向加载时几乎降低到零)的现象,称为包申格效应。
2.用低密度可动位错理论解释屈服现象产生的原因金属材料3.答:塑性变形的应变速率与可动位错密度、位错运动速率及柏氏矢量成正比欲提高v就需要有较高应力τ这就是我们在实验中看到的上屈服点。
一旦塑性形变产生,位错大量增值,ρ增加,则位错运动速率下降,相应的应力也就突然降低,从而产生了屈服现象。
(回答不完整,尤其是上屈服点产生的原因回答的不好)3.塑性:材料受力,应力超过屈服点后,仍能继续变形而不发生断裂的性质。
强度:金属材料在外力作用下抵抗永久变形和断裂的能力称为强度。
韧性:表示材料在塑性变形和断裂过程中吸收能量的能力脆性:材料在外力作用下(如拉伸、冲击等)仅产生很小的变形即断裂破坏的性质。
4.韧性断裂与脆性断裂的区别,为什么脆性断裂最危险?答:韧性断裂是材料断裂前产生明显宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量,韧性断裂的断裂面的断口呈纤维状,灰暗色。
脆性断裂是突然发生的断裂,断裂前基本不发生塑性变形,没有明显征兆,因而危害性极大,脆性断裂面的断口平齐而光亮,常呈放射状或结晶状。
5.试指出剪切断裂与解理断裂哪一个是穿晶断裂,哪一个是沿晶断裂?哪一个属于韧性断裂,哪一个属于脆性断裂?为什么?答:都是穿晶断裂,剪切断裂是材料在切应力作用下沿滑移面发生滑移分离而造成的断裂,断裂面为穿晶型,在断裂前会发生明显的塑性变形,为韧性断裂;而解理断裂是材料在正应力作用下沿一定的晶体学平面产生的断裂,也为穿晶断裂,但断裂面前无明显的塑性变形,为脆性断裂。
6.拉伸断口的三要素:纤维区、放射区、剪切唇7. 理论断裂强度的推导过程是否存在问题?为什么?为什么理论断裂强度与实际的断裂强度在数值上有数量级的差别?答:(1)虽然理论断裂强度与实际材料的断裂强度在数值上存在着数量级的差别,但是理论断裂强度的推导过程是没有问题的。
σs—材料的屈服强度,用应力表示材料的屈服点或下屈服点,表征材料对微量塑性变形的抗力。
σb抗拉强度,只代表金属材料所能承受的最大拉伸应力,表征金属材料对最大均匀塑性变形的抗力。
n应变硬化指数,反映金属材料抵抗均匀塑性变形的能力,是表征金属材料应变硬化行为的性能指标。
A断后伸长率,是试样拉断后标距的残余伸长(Lu-L0)与原始标距L0之比的百分率。
表征金属材料断裂前发生塑性变形的能力。
Agt它是金属材料拉伸时产生的最大均匀塑性变形量。
Z断面收缩率,它是指试样拉断后,缩颈处横截面积的最大缩减量与原始横截面积之比的百分率。
K:冲击吸收能量,材料在冲击载荷作用下吸收塑性变形功和断裂功的能力。
KV: V型缺口的冲击吸收功。
KU: U型缺口的冲击吸收功。
NDT:Rmc:抗压强度,试样压至破坏过程中的最大应力。
σbb:抗弯强度,在三点弯曲试验中,试样弯曲至断裂前达到的最大弯曲力。
τm:抗扭强度,金属试样在扭断前承受的最大扭矩Tm与试样抗弯截面系数W的商NSR:缺口敏感度,表征材料的缺口敏感性。
HBW:压头为硬质合金球的材料的布氏硬度。
HRA:压头为金刚石圆锥的材料的洛氏硬度。
IC K 和C K:IC K 为平面应变下的断裂韧度,表示在平面应变条件下材料抵抗C K 为平面应力断裂韧度,表示平面应力条件下材料抵抗裂纹失稳扩展的能力。
同属于Ⅰ型裂纹的材料断裂韧性指标,但C K 与试样厚度有关。
IC K 与试样厚度无关,是真正的材料常数。
G1C:当增加到某一临界值时,能克服裂纹失稳扩展的阻力,则裂纹失稳扩展断裂。
J1C:断裂韧度,表示材料抵抗裂纹开始扩展的能力δC:断裂韧度,表示材料阻σscc:金属材料抗应力腐蚀性能指标表示材料不发生应力腐蚀的临界应力K1scc:应力腐蚀临界应力场强度因子,即试样在特定化学介质中不发生应条件下的断裂韧度。
K1HEC:氢脆临界应力场强度因子表示试样在化学介质中不发生应力腐蚀断裂的da/dt:应力腐蚀裂纹扩展速率,即单位时间内裂纹的扩展量。
《材料力学》复习提纲一、绪论材料力学的任务和研究对象,关于变形固体的基本假定,杆件变形的基本形式。
二、轴向拉伸与压缩(1)概念,计算简图,截面法,轴力和轴力图,横截面上的应力(平面假设、应力分布和应力集度的概念),斜截面上的应力。
(2)变形,纵向变形,线应变,拉压虎克定律,拉压弹性模量,横向变形,泊桑比。
(3)材料拉伸和压缩时的力学性能(特别是低碳钢拉伸时的力学性能),安全系数,容许应力,强度条件。
(4)简单拉压超静定问题三、扭转(1)功率、转速与外扭矩之间的关系,扭矩图。
(2)薄壁圆筒扭转时的内力、应力和变形,纯剪切,剪应力,剪应力互等定理,剪切虎克定律,剪切弹性模量。
(3)圆柱扭转的横截面上的应力(平面假设),扭转角,极惯性矩,抗扭截面模量,抗扭刚度,强度条件和刚度条件。
四、弯曲内力平面弯曲的概念,梁的计算简图,剪力、弯矩及其方程,剪力图和弯矩图。
分析讨论剪力图、弯矩图的规律。
五、截面的几何性质静矩,惯性矩,惯性积,惯性半径,简单图形的形心确定及惯性矩和惯性积的计算,平行移轴公式,组合图形惯性矩的计算。
六、弯曲应力(1)纯弯曲时的平面假设及直梁弯曲正应力公式,抗弯刚度,抗弯截面模量,纯弯曲理论的推广,梁按正应力的强度计算。
(2)矩形截面等直梁的弯曲剪应力,梁按剪应力的强度条件。
七、梁弯曲时的位移(1)梁的变形和位移,挠曲线,挠度和转角,梁的挠曲线的近似微分方程。
(2)用积分法和叠加法求直梁的挠度和转角。
(3)简单超静定梁的计算。
八、应力状态分析(1)应力状态的概念,平面应力状态的分析,二向应力状态下的应力圆,三向应力图,最大剪应力。
(2)广义虎克定律,根据一点处三个方向的线应变确定平面应力状态。
九、强度理论(1)建立强度理论的重要性,脆性破坏和塑性破坏。
(2)最大拉应力理论,最大伸长线应变理论,最大切应力理论,形状改变能密度理论;相当应力的概念。
(3)各种强度理论的应用十、组合变形(1)斜弯曲的概念,斜弯曲时正应力强度计算和位移计算。
材料力学总复习第一章绪论一、教学目标和教学内容1.教学目标明确材料力学的任务,理解变形体的的基本假设,掌握杆件变形的基本形式。
2.教学内容○1材料力学的特点○2材料力学的任务○3材料力学的研究对象○4变形体的基本假设○5材料力学的基本变形形式二、重点难点构件的强度、刚度、稳定性的概念;杆件变形的基本形式、变形体的基本假设。
三、教学方式采用启发式教学,通过提问,引导学生思考,让学生回答问题。
四、建议学时1.5学时五、讲课提纲1、材料力学的任务材料力学是研究构件强度、刚度和稳定性计算的学科。
工程中各种机械和结构都是由许多构件和零件组成的。
为了保证机械和结构能安全正常地工作,必须要求全部构件和零件在外力作用时具有一定的承载能力,承载能力表现为1.1强度强度是指构件抵抗破坏的能力。
构件在外力作用下不被破坏,表明构件具有足够的强度。
1.2刚度刚度是指构件抵抗变形的能力。
构件在外力作用下发生的变形不超过某一规定值,表明构件具有足够的刚度。
1.3稳定性稳定性是指构件承受在外力作用下,保持原有平衡状态的能力,构件在外力作用下,能保持原有的平衡形态,表明构件具有足够的稳定性。
材料力学的任务:以最经济为代价,保证构件具有足够的承载能力。
通过研究构件的强度、刚度、稳定性,为构件选择合适的材料、确定合理的截面形状和尺寸提供计算理论。
2、材料力学的研究对象2.1研究对象的几何特征构件有各种几何形状,材料力学的主要研究对象是杆件,其几何特征是横向尺寸远小于纵向尺寸,如机器中的轴、连接件中的销钉、房屋中的柱、梁等均可视为杆件,材料力学主要研究等直杆。
2.2研究对象的材料特征构件都是由一些固体材料制成,如钢、铁、木材、混凝土等,它们在外力作用下会产生变形,称变形固体。
其性质是十分复杂的,为了研究的方便,抓住主要性质,忽略次要性质材料力学中对变形固体作如下假设:♦均匀连续性假设: 假设变形固体内连续不断地充满着均匀的物质,且体内各点处的力学性质相同。
材料力学考试大纲【红色】(教学进程安排)【注】1、#者考试不作要求,必要时可机动或取消;2、课堂练习需加讨论并计表现好的学生的加分成绩;3、作业在PPT或讲稿中安排,每次布置作业在3道题左右;4、平时成绩30%,期末考试70%。
【参考教材】1、刘鸿文,《材料力学》,高等教育出版社;2、景荣春,《材料力学》,清华大学出版社;3、范钦珊,《材料力学》,高等教育出版社;4、邓小青,《材料力学实验指导》,江苏科技大学出版。
【说明】(教学要求)一、课程的性质、目的和任务材料力学是一门工科类专业的重要的技术基础课程。
通过该课程的学习,要求学生掌握等直杆件的强度、刚度及轴心受压杆件的稳定性的计算;能运用强度、刚度及稳定性条件对杆件进行校核、截面设计及载荷确定等简单计算工作;初步了解材料的机械性能及材料力学实验的基本知识和操作技能。
为机械设计、机械设计原理、结构力学、船舶结构力学等后续课程的学习打下坚实的基础。
二、教学基本要求1.对材料力学的基本概念和基本分析方法有明确认识。
2.具有将一般直杆类零件简化为力学简图的初步能力。
能分析杆件的内力,并作出相应的内力图。
3.能分析杆件的应力、位移,进行强度和刚度计算,并会处理一次静不定问题。
4.对应力状态理论与强度理论有一定认识,并能进行组合变形下杆件的强度计算。
5.能分析简单压杆的临界载荷,并进行稳定性校核等计算。
6.对于常用材料的基本力学性能及其测试方法有初步认识。
对电测应力方法有初步了解。
三、教学内容第1章绪论材料力学的任务,变形固体的基本假设,杆件变形的基本形式。
第2章轴向拉伸和压缩及连接件强度计算轴向拉伸(压缩)的概念及实例。
截面法,直杆横截面和斜截面上的应力。
最大剪应力。
许用应力,强度条件。
轴向拉伸(压缩)时的变形,纵向变形、线应变。
虎克定律、弹性模量。
抗拉(压)强度。
横向变形、泊松比。
低碳钢的拉伸实验,应力-应变图及其特性,比例极限,屈服极限、强度极限。
滑移线。