人教版中职数学1.1.1集合的_概念
- 格式:ppt
- 大小:862.50 KB
- 文档页数:14
课题 1.1.1 集合的概念课型新授第几课时1~2课时教学目标(三维)1. 初步理解集合的概念;理解集合中元素的性质.2. 初步理解“属于”关系的意义;知道常用数集的概念及其记法.3. 引导学生发现问题和提出问题,培养独立思考和创造性地解决问题的意识.教学重点与难点教学重点:集合的基本概念,元素与集合的关系.教学难点:正确理解集合的概念.教学方法与手段本节课采用问题教学和讲练结合的教学方法,运用现代化教学手段,通过创设情景,引导学生自己独立地去发现、分析、归纳,形成概念.使用教材的构想☆补充设计☆环节教学内容师生互动设计意图导入师生共同欣赏图片“中国所有的大熊猫”、“我们班的所有同学”.师:“物以类聚”;“人以群分”;这些都给我们以集合的印象.引入课题.联系实际;激发兴趣.新课课件展示引例:(1) 某学校数控班学生的全体;(2) 正数的全体;(3) 平行四边形的全体;(4) 数轴上所有点的坐标的全体.1. 集合的概念.(1) 一般地,把一些能够确定的对象看成一个整体,我们就说,这个整体是由这些对象的全体构成的集合(简称为集).(2) 构成集合的每个对象都叫做集合的元素.(3) 集合与元素的表示方法:一个集合,通常用大写英文字母A,B,C,…表示,它的元素通常用小写英文字母a,b,c,…表示.2. 元素与集合的关系.(1) 如果 a 是集合 A 的元素,就说a属于A,记作a A,读作“a属于A”.(2)如果a不是集合A的元素,就说a不属于A,记作a A.读作“a不属于A”.3. 集合中元素的特性.(1) 确定性:作为集合的元素,必须是能够确定的.这就是说,不能确定的对象,就不能构成集合.(2) 互异性:对于一个给定的集合,集合中的元素是互异的.这就是说,集合中的任何两个元素都是不同的对象.师:每个例子中的“全体”是由哪些对象构成的?这些对象是否确定?你能举出类似的几个例子吗?学生回答.教师引导学生阅读教材,提出问题如下:(1) 集合、元素的概念是如何定义的?(2) 集合与元素之间的关系为何?是用什么符号表示的?(3) 集合中元素的特性是什么?(4) 集合的分类有哪些?(5) 常用数集如何表示?教师检查学生自学情况,梳理本节课知识,并强调要注意的问题.教师要把集合与元素的定义分析透彻.请同学举出一些集合的例子,并说出所举例子中的元素.教师强调:“”的开口方向,不能把a A颠倒过来写.从具体事例直观感知集合,为给出集合的定义做好准备.老师提出问题,放手让学生自学,培养自学能力,提高学生的学习能力.检查自学、梳理知识阶段,穿插讲解解难点、强调重点、举例说明疑点等环节,使学生真正掌握所学知识.课4. 集合的分类.(1) 有限集:含有有限个元素的集合叫做有限集.(2) 无限集:含有无限个元素的集合叫做无限集.5. 常用数集及其记法.(1) 自然数集:非负整数全体构成的集合,记作N;(2) 正整数集:非负整数集内排除0的集合,记作N+或N*;(3) 整数集:整数全体构成的集合,记作Z;(4) 有理数集:有理数全体构成的集合,记作Q;(5) 实数集:实数全体构成的集合,记作R.例1 判断下列语句能否构成一个集合,并说明理由.(1) 小于10 的自然数的全体;(2) 某校高一(2)班所有性格开朗的男生;(3) 英文的26 个大写字母;(4) 非常接近 1 的实数.练习1 判断下列语句是否正确:(1) 由2,2,3,3构成一个集合,此集合共有4个元素;(2) 所有三角形构成的集合是无限集;(3) 周长为20 cm 的三角形构成的集合是有限集;(4) 如果 a Q,b Q,则a+bQ.例2 用符号“”或“”填空:(1) 1 N,0 N,-4 N,0.3 N;(2) 1 Z,0 Z,-4 Z,0.3 Z;(3) 1 Q,0 Q,-4 Q,0.3 Q;教师强调集合元素的确定性.师:高一(1)班高个子同学的全体能否构成集合?生:不能构成集合.这是由于没有规定多高才算是高个子,因而“高个子同学”不能确定.教师强调:相同的对象归入同一个集合时只能算作集合的一个元素.请学生试举有限集和无限集的例子.师:说出自然数集与非负整数集的关系.生:自然数集与非负整数集是相同的.师:也就是说,自然数集包括数0.师:出示例题,引导学生讨论、思考.生:讨论,回答,明确说出理由.生:模仿练习;讨论并口答.师:点拨、解答学生疑难.通过具体例子,师生的问答,巩固集合概念及其元素特新课(4) 1 R,0 R,-4 R,0.3 R.练习2 用符号“”或“”填空:(1) -3 N;(2) 3.14 Q;(3)13Z;(4) -12R;(5) 2 R;(6) 0 Z.师:出示例题,请学生填写.生:口答各题结果.师:引导学生进行订正,并说明错误原因.学生模仿练习;老师订正、点拨.性.通过练习进一步强化学生对集合中元素特性的理解.通过例题2和练习2,加深对特殊数集的理解以及元素与集合关系的理解与表示,既突出重点又分解难点.小结本节课学习了以下内容:1. 集合的有关概念:集合、元素.2. 元素与集合的关系:属于、不属于.3. 集合中元素的特性.4. 集合的分类:有限集、无限集.5. 常用数集的定义及记法.学生畅谈本节课的收获,老师引导梳理,总结本节课的知识点.梳理总结也可针对学生薄弱或易错处强调总结.课时教学设计尾页(试用)☆补充设计☆板书设计1. 集合的有关概念:集合、元素.2. 元素与集合的关系:属于、不属于.3. 集合中元素的特性.4. 集合的分类:有限集、无限集.5. 常用数集的定义及记法.作业设计教材P4,练习A组第1~3题教学后记。
中职数学基础模块上册(人教版)全套教案第一章:集合1.1 集合的概念教学目标:理解集合的含义及集合中元素的特点。
掌握集合的表示方法,如列举法、描述法等。
教学内容:集合的定义与表示方法。
集合的性质与运算。
教学过程:1. 引入新课:通过生活中的实例引入集合的概念。
2. 讲解与演示:讲解集合的定义,展示不同类型的集合及其表示方法。
3. 练习与讨论:学生独立完成练习题,分组讨论集合的性质与运算。
1.2 集合的关系教学目标:理解集合之间的大小关系,包括子集、真子集、并集、交集等。
教学内容:集合之间的基本关系。
集合关系的表示方法。
教学过程:1. 引入新课:通过图形展示集合之间的关系。
2. 讲解与演示:讲解集合之间的子集、真子集、并集、交集等概念。
3. 练习与讨论:学生独立完成练习题,分组讨论集合关系的应用。
第二章:函数2.1 函数的概念教学目标:理解函数的定义及其表示方法。
掌握函数的性质,如单调性、奇偶性等。
教学内容:函数的定义与表示方法。
函数的性质。
教学过程:1. 引入新课:通过生活中的实例引入函数的概念。
2. 讲解与演示:讲解函数的定义,展示不同类型的函数及其表示方法。
3. 练习与讨论:学生独立完成练习题,分组讨论函数的性质。
2.2 函数的图像教学目标:理解函数图像的特点及绘制方法。
学会利用函数图像分析函数的性质。
教学内容:函数图像的特点。
绘制函数图像的方法。
教学过程:1. 引入新课:通过实例展示函数图像的特点。
2. 讲解与演示:讲解函数图像的绘制方法,展示不同类型函数的图像。
3. 练习与讨论:学生独立完成练习题,分组讨论函数图像的应用。
第三章:不等式与不等式组3.1 不等式的概念教学目标:理解不等式的定义及其性质。
学会解一元一次不等式。
教学内容:不等式的定义与性质。
一元一次不等式的解法。
教学过程:1. 引入新课:通过生活中的实例引入不等式的概念。
2. 讲解与演示:讲解不等式的定义,展示不等式的性质。
3. 练习与讨论:学生独立完成练习题,分组讨论一元一次不等式的解法。
中职数学基础模块上册(人教版)全套教案第一章:集合1.1 集合的概念【教学目标】了解集合的概念,掌握集合的表示方法,能够正确理解和运用集合的基本运算。
【教学内容】1. 集合的定义2. 集合的表示方法3. 集合的基本运算(并集、交集、补集)【教学步骤】1. 引入集合的概念,通过实例讲解集合的表示方法。
2. 讲解集合的基本运算,结合实例进行演示和练习。
【课后作业】1. 判断题:判断下列各题的真假。
(1)集合{1, 2, 3} 包含元素1, 2, 3。
(2)集合{1, 2, 3} 和集合{3, 4, 5} 的交集是{1, 2, 3}。
(3)集合{1, 2, 3} 的补集是{4, 5, 6}。
2. 选择题:选择正确答案。
(1)下列哪个选项是集合{1, 2, 3, 4, 5} 的补集?A. {1, 2, 3}B. {2, 3, 4}C. {1, 4, 5}D. {1, 2, 3, 4, 5}(2)设A = {x | x 是小于5 的正整数},B = {x | x 是大于等于2 且小于等于4 的整数},则A ∩B 是哪个集合?A. {2, 3, 4}B. {1, 2, 3, 4}C. {2, 3, 4, 5}D. {1, 2, 3}1.2 集合的关系【教学目标】理解集合之间的包含关系,掌握集合的并集、交集、补集的定义及运算方法。
【教学内容】1. 集合的包含关系2. 集合的并集3. 集合的交集4. 集合的补集【教学步骤】1. 讲解集合的包含关系,通过实例说明集合之间的包含关系。
2. 讲解集合的并集、交集、补集的定义及运算方法,结合实例进行演示和练习。
【课后作业】1. 判断题:判断下列各题的真假。
(1)集合{1, 2, 3} 包含于集合{1, 2, 3, 4, 5}。
(2)集合{1, 2, 3} 和集合{3, 4, 5} 的并集是{1, 2, 3, 4, 5}。
(3)集合{1, 2, 3} 和集合{3, 4, 5} 的交集是{3}。
1.1集合及其表示1.1.1集合的概念【学习目标】1.掌握元素与集合的概念,能在具体问题中判断是否可以组成集合.2.通过实例和阅读自学记忆常见的数集,培养自主探究意识和自学能力.【知识脉络】【基础过关】一、集合1.某些确定的对象就成为一个集合,简称.集合中的每一个对象叫做这个集合的 .2.集合中的元素属性具有:(1) 确定性 (2) (3) .【答案】1.确定的对象集元素 2. (1) 确定性(2)互异性(3)无序性.二、元素与集合的关系a A∉∈a A【答案】【分析】本题主要考查集合中元素的性质.根据元素与集合的关系和元素的性质进行求解即可.对于此类题,要注意集合中元素互异性的验证.【解答】解:因为3A ∈,所以23a -=或 3.a =当23a -=,即5a =时,满足题意;当3a =时,不满足集合元素的互异性,故舍去.综上可得a 的值为5.【综合提升】1. 下列各项中不能组成集合的是()A . 所有的正三角形B . 数学课本中的所有习题C . 所有的数学难题D . 所有无理数2. 下列各组对象能构成集合的是()A .B . 所有的正方形C . 著名的数学家D . 1,2,3,3,4,4,4,43. 给出下列关系:①13R ∈Q ;③3Z -∉;④N ,其中正确的个数为() A . 1 B . 2 C . 3 D . 44. “notebooks ”中的字母构成一个集合,该集合中的元素个数是()A. 5B. 6C. 7D. 85. 下列元素与集合的关系判断正确的是()(1)0∈N ;(2)1-∈Z ;(3)π∈Q ;.RA .(1)(2)B .(1)(3)C .(1)(4)D .(2)(4)二、填空题 6. 下列对象中,能够组成集合的有__________.①比较小的数;②不大于10的非负偶数;③所有三角形;④直角坐标平面内横坐标为零的点;⑤高个子男生;⑥某班17岁以下的学生.7. 用数学符号表示下列常见数集整数集_______ 自然数集________ 正整数集_______ 有理数集________实数集_______8. 用符号“∈”或“∉”填空:0________N 3-________N 0.5________ZZ13________Q π________R 9. 已知集合{,1}A m m =-,若1A ∈,则实数m 的值为__________.10. 仅由英语字母b ,e ,e 组成的集合中含有________个元素.三、解答题11. 数集A 中的元素由2,2x x x +组成,求x 的取值范围.12. 设集合A 是由方程220x x a +-=的解构成的,若A 是空集,求实数a 的取值范围.【素养提升】13. 已知集合A 是由0,m ,232m m -+三个元素组成的集合,且2A ∈,求实数m 的值.答案1. C2. B3. B4. C5. A6.②③④⑥7. Z N N *Q R 8. ∈ ∉ ∉ ∉ ∈ ∈ 9. 1或2 10. 2 11.解:由集合的互异性,得22x x x +≠解得0x ≠且1x ≠.12.解:∵集合A 是由方程220x x a +-=得解构成的,因为A 是空集,所以220x x a +-=无解,所以44()0a =--<,解得1a <-,所以实数a 的取值范围是(,1).-∞-13.解:由2A ∈可知,若2m =,则2320m m -+=,这与2320m m -+≠相矛盾; 若2322m m -+=,则0m =或3m =,当0m =时,与0m ≠相矛盾,当3m =时,集合A 中的三个元素互异,符合题意.故m 的值为3.。
课时教学流程课4. 集合的分类.(1) 有限集:含有有限个兀素的集合叫做有限集.(2) 无限集:含有无限个元素的集合叫做无限集.5. 常用数集及其记法.(1) 自然数集:非负整数全体构成的集合,记作N;(2) 正整数集:非负整数集内排除0 的集合,记作N +或N* ;(3) 整数集:整数全体构成的集合,记作Z;(4) 有理数集:有理数全体构成的集合,记作Q;(5) 实数集:实数全体构成的集合,记作R.教师强调集合兀素的确疋性.师:高一(1)班高个子同学的全体能否构成集合?生:不能构成集合.这是由于没有规定多高才算是高个子,因而"高个子同学”不能确定.教师强调:相同的对象归入同一个集合时只能算作集合的一个元素.请学生试举有限集和无限集的例子.师:说出自然数集与非负整数集的关系.生:自然数集与非负整数集是相同的.师:也就是说,自然数集包括数0.师:出示例题,引导学生讨论、思考.生:讨论,回答,明确说出理由.生:模仿练习;讨论并口答. 师:点拨、解答学生疑难.通过具体例子,师生的问答,巩固集合概念及其元素特例1判断下列语句能否构成一个集合,并说明理由.(1) 小于10的自然数的全体;(2) 某校高一(2)班所有性格开朗的男生;(3) 英文的26个大写字母;(4) 非常接近1的实数.练习1判断下列语句是否正确:(1) 由2, 2, 3, 3构成一个集合,此集合共有4个元素;(2) 所有三角形构成的集合是无限集;(3) 周长为20 cm的三角形构成的集合是有限集;(4) 如果a = Q, b乏Q,贝U a+ b乏Q.例2用符号“”或“”填空:(1) 1 —N , 0 —N , —4_N , 0.3 —N ;(2) 1 —Z, 0—Z , —4—Z , 0.3—Z ;课时教学流程师:出示例题,请学生填写. 生:口答各题结果.师:引导学生进行订正,并 说明错误原因.学生模仿练习; 老师订正、点拨.通过例题2和练习2,加深 对特殊数集的 理解以及练习2用符号“ ”或 “”填空:(1) - 3 N ;⑵ 3.14 Q ;11⑶3Z ; (4) - 2R ;(5) 2R ;⑹oZ .性.通过练习 进一步强化学 生对集合中元 素特性的理解.(4) 1 R , 0 R , - 4 R , 0.3 R .课时教学流程元素与集合关系的理解与表示,既突出重点又分解难点. 本节课学习了以下内容:1. 集合的有关概念:集合、元素.2. 元素与集合的关系:属于、不属于.3. 集合中元素的特性.4. 集合的分类:有限集、无限集.5. 常用数集的定义及记法.学生畅谈本节课的收获,老师引导梳理,总结本节课的知识占八、、♦梳理总结也可针对学生薄弱或易错处强调总结.课时教学设计尾页(试用)☆补充设计☆板书设计1. 集合的有关概念:集合、元素.2. 元素与集合的关系:属于、不属于.3. 集合中元素的特性.4. 集合的分类:有限集、无限集.5. 常用数集的定义及记法.作业设计教材P4,练习A组第1~3题教学后记。
中职数学基础模块上册(人教版)全套教案第一章:集合1.1 集合的概念【教学目标】1. 了解集合的概念,掌握集合的表示方法。
2. 能够运用集合的概念解决实际问题。
【教学内容】1. 集合的定义及表示方法。
2. 集合的性质。
3. 集合之间的基本关系。
【教学重点】1. 集合的概念及表示方法。
2. 集合的性质。
【教学难点】1. 集合的表示方法。
2. 集合之间的基本关系。
【教学过程】1. 引入新课:通过生活中的实例,引导学生理解集合的概念。
2. 讲解集合的定义及表示方法,如列举法、描述法等。
3. 讲解集合的性质,如无序性、确定性、互异性。
4. 讲解集合之间的基本关系,如子集、真子集、并集、交集等。
5. 课堂练习:让学生运用集合的概念解决实际问题。
1.2 集合之间的关系【教学目标】1. 掌握集合之间的基本关系,如子集、真子集、并集、交集等。
2. 能够运用集合之间的关系解决实际问题。
【教学内容】1. 集合之间的子集、真子集关系。
2. 集合之间的并集、交集关系。
3. 集合的补集概念。
【教学重点】1. 集合之间的基本关系。
2. 集合的补集概念。
【教学难点】1. 集合之间的基本关系。
2. 集合的补集概念。
【教学过程】1. 复习上节课的内容,引导学生理解集合之间的关系。
2. 讲解集合之间的子集、真子集关系。
3. 讲解集合之间的并集、交集关系。
4. 讲解集合的补集概念。
5. 课堂练习:让学生运用集合之间的关系解决实际问题。
第二章:函数与方程2.1 函数的概念【教学目标】1. 了解函数的概念,掌握函数的表示方法。
2. 能够运用函数的概念解决实际问题。
【教学内容】1. 函数的定义及表示方法。
2. 函数的性质。
【教学重点】1. 函数的概念及表示方法。
2. 函数的性质。
【教学难点】1. 函数的表示方法。
2. 函数的性质。
【教学过程】1. 引入新课:通过生活中的实例,引导学生理解函数的概念。
2. 讲解函数的定义及表示方法,如解析式、表格法等。