具饱和传染率的脉冲免疫接种SIRS模型
- 格式:pdf
- 大小:361.35 KB
- 文档页数:10
一类非线性脉冲免疫接种 SIR 传染病模型的周期解与分支赵文才;刘雨林【摘要】Due to limited medical resources,vaccine immunization rates are not often constant.To adapt nonlinear pulse vaccination function,an SIR epidemic model with lifelong immunity and pulse vaccination is stablished.By using stroboscopic map and fixed point of difference equations,the existence of disease free periodic solution in the model is discussed.The global asymptotically stability of disease free periodic solution is proved by applying Floquet multiplier theory and differential pulse comparison theorem.By choosing the pulse vaccination period as a bifurcation parameter,a sufficient condition under which the system has a positive periodic solution is obtained by using the bifurcation theorem.%由于受到医疗资源的限制,疫苗的免疫接种率一般不是常数。
采用非线性脉冲免疫接种函数,建立了一类具有终身免疫的脉冲预防接种 SIR 模型,利用频闪映射及差分方程的不动点,讨论了模型无病周期解的存在性;运用 Floquet 乘子理论和脉冲微分方程比较定理,证明了模型无病周期解的全局渐近稳定性;选取脉冲免疫接种周期为分支参数,利用分支定理,给出了系统存在正周期解的充分条件。
J.Sys.Sci.&Math.Scis.27(4)(2007,8),563–572∗SIRS (116024;537000)(116024)SIRSSIRSMR(2000)34D05,34D201M.G.Roberts,R.R.Kao SI[1];B.Shulgin,L.Stone SIR[2];Alberto d’Onofrio SIRSEIR[3,4];SIRS[5].SIRS*(10471117,10526015),(0728249),(200607LX138)(2007YJZD08)2005-10-09,2006-04-10.56427SIRS⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩d Sd t=−βSI(1+αS)+ωR+µ(1−S),d Id t=βSI(1+αS)−λI−µI,d Rd t=λI−ωR−µR,⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭t=kτ,S(t+)=(1−θ)S(t),I(t+)=I(t),R(t+)=R(t)+θS(t),⎫⎪⎪⎪⎬⎪⎪⎪⎭t=kτ.(1)N S,I R NN=S+I+R=1.β(1+αS)λωµθτk∈Z+,α,β,ω,λ,µ,θ(1)Ω={(S,I,R)∈R3|0≤S,I,R≤1, S+I+R=1}.S+I+R=1,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩d Sd t=−βSI(1+αS)−AS−ωI+A,d Id t=βSI(1+αS)−λI−µI,⎫⎪⎪⎪⎬⎪⎪⎪⎭t=kτ,S(t+)=(1−θ)S(t),I(t+)=I,(t)t=kτ.(2)A=ω+µ.(2)D={(S,I)∈R2|0≤S,I≤1,S+I≤1}. 21⎧⎨⎩d wd t=a−bw,t=kτ,w(t+)=(1−θ)w(t),t=kτ,(3)a,b>0,0<θ<1.(3)τw(t)=ab1−θexp(−b(t−kτ))1−(1−θ)exp(−bτ),kτ<t≤(k+1)τ.(3)w(t)=ab−(ab−w(kτ))exp(−b(t−kτ)),kτ<t≤(k+1)τ,4SIRS565w (kτ)wkt =kτ(3)F ,w ((k +1)τ)=F (w (kτ))=(1−θ)a b−a b−w (kτ) exp(−bτ),w ∗=a b (1−θ)(1−exp(−bτ))1−(1−θ)exp(−bτ).w ∗>w >0w ∗>F (w )>w ;w >w ∗w >F (w )>w ∗.w ∗(3)τw (t )=a b 1−θexp(−b (t −kτ))1−(1−θ)exp(−bτ),kτ<t ≤(k +1)τ.(2),I =0⎧⎨⎩d S d t =A (1−S )t =kτS (t +)=(1−θ)S (t )t =kτ.(4)1,(4)S ∗=(1−θ)(1−exp(−Aτ))1−(1−θ)exp(−Aτ),(5)(4)τS(t )=1−θexp(−A (t −kτ))1−(1−θ)exp(−Aτ),kτ<t ≤(k +1)τ.(6)(2)τ( S(t ),0)2R <1(2)τ( S(t ),0)R =βλ+µ1−exp(−Aτ)(1+α)(1−exp(−Aτ))+θexp(−Aτ).x (t )=S (t )− S(t ),y (t )=I (t ),t =kτ(2)τ( S(t ),0)⎛⎜⎜⎝d xd t d y d t⎞⎟⎟⎠=⎛⎜⎜⎜⎜⎝−A −β S(t )1+α S (t )−ω0β S(t )1+α S (t )−λ−µ⎞⎟⎟⎟⎟⎠x y.(7)Φ(t )(7)Φ(t )d Φ(t )d t =⎛⎜⎜⎜⎜⎝−A −β S(t )1+α S (t )−ω0β S(t )1+α S(t )−λ−µ⎞⎟⎟⎟⎟⎠Φ(t ).56627 t=kτ(2)x(t+)y(t+)=1−θ001x(t)y(t).(7)M=1−θ001Φ(τ)=⎛⎜⎜⎜⎜⎝(1−θ)exp(−Aτ)(1−θ)expτ(−β S(t)1+α S(t)−ω)d t)0expτ(β S(t)1+α S(t)−λ−µ)d t⎞⎟⎟⎟⎟⎠.(7)Floquet(M)λ1=(1−θ)exp(−Aτ)<1,λ2=expτ(β S(t)1+α S(t)−λ−µ)d t.R =βλ+µ1−exp(−Aτ)(1+α)(1−exp(−Aτ))+θexp(−Aτ)<1λ2<1.Floquet[6],τ( S(t),0)1R0<1(2)τ( S(t),0)R0=βS∗(λ+µ)(1−θ).(2)⎧⎪⎨⎪⎩d Sd t≤A(1−S),t=kτ, S(t+)=(1−θ)S(t),t=kτ.⎧⎪⎨⎪⎩d xd t=A(1−x),t=kτ, x(t+)=(1−θ)x(t),t=kτ.1(6)x(t)= S(t)=1−θexp(−A(t−kτ))1−(1−θ)exp(−Aτ),kτ<t≤(k+1)τ.[7],ε,N1∈Z+,k≥N1S(t)≤x(t)< S(t)+ε,kτ<t≤(k+1)τ,(8) (5)(6)S(t)<1−exp(−Aτ)1−(1−θ)exp(−Aτ)+ε=S∗1−θ+ε.4SIRS567(2)d I d t ≤βS∗1−θ+ε−λ−µI,d y d t =βS∗1−θ+ε−λ−µy,R0=βS∗(λ+µ)(1−θ)<1ε,β(S∗1−θ+ε)<λ+µ,limt→∞y(t)=0,lim t→∞I(t)=0,ε,N2≥N1,k≥N2I(t)<ε.(2)d Sd t≥(A−ωε)−(A+βε)S,⎧⎨⎩d ud t=(A−ωε)−(A+βε)u,t=kτ,u(t+)=(1−θ)u(t),t=kτ,1,kτ<t≤(k+1)τu(t)=A−ωεA+βε1−θexp(−(A+βε)(t−kτ))1−(1−θ)exp(−(A+βε)τ).[7],ε>0,N3≥N2,k≥N3S(t)≥u(t)> u(t)−ε,kτ<t≤(k+1)τ(9) (8)(9) u(t)−ε<S(t)< S(t)+ε.εlimt→∞S(t)= S(t).R0<1(2)τ( S(t),0)2,R <1( S(t),0) R <R0,R0<1( S(t),0)32R =β(λ+µ)(1+α)(1−θ)(1−exp(−Aτ))(1−(1−θ)exp(−Aτ))>1,(2)(S(t),I(t))D(2)t>0, S(t)≤1,I(t)≤1.m S,m I,t S(t)≥m S,I(t)≥m I.m S,t S(t)≥m S.I(t)≤1,(2)d Sd t≥µ−BS,B=β+ω+µ.⎧⎪⎨⎪⎩d Vd t=µ−BV,t=kτ,V(t+)=(1−θ)V(t),t=kτ,(10)56827 1[7],ε,k1∈Z+,k≥k1S(t)≥V(t)> V(t)−ε>µB(1−θ)(1−exp(−Bτ))1−(1−θ)exp(−Bτ)−ε>µBV∗−ε∆m S>0.V∗=(1−θ)(1−exp(−Bτ))1−(1−θ)exp(−Bτ)(10) V(t)=µB(1−θexp(−B(t−kτ))1−(1−θ)exp(−Bτ))(10)kτ<t≤(k+1)ττm I>0,t I(t)≥m I.1R =β(λ+µ)(1+α)(1−θ)(1−exp(−Aτ))(1−(1−θ)exp(−Aτ))>1,m I>0,ε>0m I<ω+µβ+ω<1,p=βξ1+α−λ−µ>0,ξ=(A−βm I−ωm I)A(1−θ)(1−exp(−Aτ))(1−(1−θ)exp(−Aτ))−ε,t1∈(0,∞)I(t1)≥m I.t∈(0,∞),I(t)<m I.(2)d Sd t≥(A−βm I−ωm I)−AS∆q−AS,⎧⎪⎨⎪⎩d zd t=q−Az,t=kτ,z(t+)=(1−θ)z(t),t=kτ.(11)1,(11)z∗=q A(1−θ)(1−exp(−Aτ))[1−(1−θ)exp(−Aτ)],kτ<t≤(k+1)ττz(t)=qA (1−θexp(−A(t−kτ))1−(1−θ)exp(−Aτ)),kτ<t≤(k+1)τ.[7],ε,k ∈Z+,k≥kS(t)≥z(t)> z(t)−ε≥(A−βm I−ωm I)A(1−θ)(1−exp(−Aτ))(1−(1−θ)exp(−Aτ))−ε∆ξ.(2),d I d t ≥β( z−ε)1+α−λ−µI≥βξ1+α−λ−µI∆pI,[kτ,(k+1)τ],k≥k I((k+1)τ)≥I(kτ)exp(pτ).k→∞I((k+k )τ)≥I(k τ)exp(kpτ)→∞,2t≥t1,I(t)≥m I,t>t1I(t)<m I.t∗=inft>t1{I(t)<m I},t∗∈(n1τ,(n1+1)τ],n1∈Z+.t∈[t1,t∗)I(t)≥m I.t∗I(t)I(t∗)=m I.t∗n0∈Z+ t∗=n0τ,t∗∗=t∗−ε∗,ε∗I(t∗∗)≥m I.t∗t∗t∗∗n2,n3∈Z+n2τ>1Aln1+z∗ε,exp(−(λ+µ)(n2+1)τ)exp(n3pτ)>1,4SIRS569[(n 1+1)τ,(n 1+1)τ+n 2τ+n 3τ]t ,I (t )≥m I .t ∈[(n 1+1)τ,(n 1+1)τ+n 2τ+n 3τ],I (t )<m I .(11),t ∈[kτ,(k +1)τ),n 1+1≤k ≤n 1+1+n 2+n 3.|z (t )− z (t )|= q A 1−(1−A qz ((n 1+1)τ))exp(−A (t −(n 1+1)τ)) −qA (1−θexp(−A (t −(n 1+1)τ))1−(1−θ)exp(−Aτ))= z ((n 1+1)τ)−q A (1−θ)(1−exp(−Aτ))[1−(1−θ)exp(−Aτ)] exp(−A (t −(n 1+1)τ))≤ 1+q A (1−θ)(1−exp(−Aτ))[1−(1−θ)exp(−Aτ)]exp(−A (t −(n 1+1)τ))=(1+z ∗)exp(−A (t −(n 1+1)τ)).(n 1+1+n 2)τ≤t ≤(n 1+1)τ+n 2τ+n 3τ|z (t )− z (t )|<ε,z (t )−ε<z (t )<z (t )+ε.1,I ((n 1+1+n 2+n 3)τ)≥I ((n 1+1+n 2)τ)exp(n 3pτ).(2)d Id t≥−(λ+µ)I ,[t ∗,(n 1+1+n 2)τ]I ((n 1+1+n 2)τ)≥I (t ∗)exp[−(λ+µ)((n 1+1+n 2)τ−t ∗)]≥m I exp(−(λ+µ)(n 2+1)τ).I ((n 1+1+n 2+n 3)τ)≥m I exp(−(λ+µ)(n 2+1)τ)exp(n 3pτ)>mI ,t =inf t ≥t∗{I (t )≥m I }.I (t )≥m I .t ∈[t ∗,t ),(2)d Id t≥−(λ+µ)I ,I (t )≥I (t ∗)exp(−(λ+µ)(t −t ∗))≥m I exp(−(λ+µ)(1+n 2+n 3)τ)∆m I .t >t ,I (t )≥m I ,2.m I >0,t ≥t 1I (t )≥m I .41,(2)( S(t ),0).τ[8]( S(t ),0)x 1(t )=S (t ),x 2(t )=I (t ),(2)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩x 1(t )=−βx 1(t )x 2(t )1+αx 1(t )−Ax 1(t )−ωx 2(t )+A ∆F 1(x 1(t ),x 2(t )),x 2(t )=βx 1(t )x 2(t )1+αx 1(t )−λx 2(t )−µx 2(t )∆F 2(x 1(t ),x 2(t )),⎫⎪⎪⎪⎬⎪⎪⎪⎭t =kτ,x 1(t +)=(1−θ)x 1(t )∆θ1(x 1(t ),x 2(t )),x 2(t +)=x 2(t )∆θ2(x 1(t ),x 2(t )),⎫⎬⎭t =kτ.57027ζ(t )=( S (t ),0)=( x 1(t ),0),∂Φ1(τ0,x 0)∂x 1=exp τ00∂F 1(ζ(r ))∂x 1d r ,∂Φ2(τ0,x 0)∂x 2=exp τ00∂F 2(ζ(r ))∂x 2d r ,∂Φ1(τ0,x 0)∂x 2= τ00 expτ0u∂F 1(ζ(r ))∂x 1d r ∂F 1(ζ(u ))∂x 2exp u 0∂F 2(ζ(r ))∂x 2d r d u,d 0=1−∂θ2∂x 2∂Φ2∂x 2 (τ0,x 0)=1−exp τ00β x 1(r )1+α x 1(r )−λ−µ d r ,(τ0d 0=0)a 0=1−∂θ1∂x 1∂Φ1∂x 1 (τ0,x 0)=1−(1−θ)exp(−Aτ0)>0,b 0=− ∂θ1∂x 1∂Φ1∂x 2+∂θ1∂x 2∂Φ2∂x 2(τ0,x 0)=−(1−θ) τ00exp(−A (τ0−u )) −β x 1(u )1+α x 1(u )−ω exp u 0β x 1(r )1+α x 1(r )d r d u >0,∂2Φ2(τ0,x 0)∂x 1∂x 2= τ00exp τ0u∂F 2(ζ(r ))∂x 2d r ∂2F 2(ζ(u ))∂x 1∂x 2exp u 0∂F 2(ζ(r ))∂x 2d rd u= τ00exp τ0u ∂F 2(ζ(r ))∂x 2d r β(1+α x 1(u ))2exp u 0∂F 2(ζ(r ))∂x 2d r d u >0,∂2Φ2(τ0,x 0)∂x 22= τ00exp τ0u∂F 2(ζ(r ))∂x 2d r ∂2F 2(ζ(u ))∂x 22exp u 0∂F 2(ζ(r ))∂x 2d rd u +τ00 exp τ0u∂F 2(ζ(r ))∂x 2d r ∂2F 2(ζ(u ))∂x 2∂x 1 u 0(exp u p ∂F 1(ζ(r ))∂x 1d r∂F 1(ζ(u ))∂x 2exp p 0∂F 2(ζ(r ))∂x 2d r ) d p d u= τ00 expτ0u∂F 2(ζ(r ))∂x 2d r β(1+α x 1(u ))2 u 0 expu p ∂F 1(ζ(r ))∂x 1d r −β x 1(u )1+α x (u )−ω exp p 0∂F 2(ζ(r ))∂x 2d r d p d u <0,4SIRS571∂2Φ2(τ0,x0)∂ τ∂x2=∂F2(ζ(τ0))∂x2expτ0∂F2(ζ(r))∂x2d r=β x1(τ0)1+α x(τ0)−λ−µexpτ0∂F2(ζ(r))∂x2d r,∂Φ1(τ0,x0)∂ τ=˙ x1(τ0)=Aθexp(−Aτ0)1−(1−θ)exp(−Aτ0)>0,B=−∂2θ2∂x1∂x2∂Φ1(τ0,x0)∂ τ+∂Φ1(τ0,x0)∂x11a 0∂θ1∂x1∂Φ1(τ0,x0)∂ τ∂Φ2(τ0,x0)∂x2−∂θ2∂x2∂2Φ2(τ0,x0)∂ τ∂x2+∂2Φ2(τ0,x0)∂x1∂x21a 0∂θ1∂x1∂Φ1(τ0,x0)∂ τ=−β x1(τ0)1+α x1(τ0)−λ−µexpτ0∂F2(ζ(r))∂x2d r+∂2Φ2(τ0,x0)∂x1∂x21a 0(1−θ)∂Φ1(τ0,x0)∂ τ,C=−2∂2θ2∂x1∂x2−ba 0∂Φ1(τ0,x0)∂x1+∂Φ1(τ0,x0)∂x2∂Φ2(τ0,x0)∂x2−∂2θ2∂x22∂Φ2(τ0,x0)∂x22+2∂θ2∂x2b 0a 0∂2Φ2(τ0,x0)∂x2∂x1−∂θ2∂x2∂2Φ2(τ0,x0)∂x22=2b 0a 0∂2Φ2(τ0,x0)∂x2∂x1−∂2Φ2(τ0,x0)∂x22>0.Bf(t)=β1−θexp(−At)1−(1−θ)exp(−Aτ)1+α1−θexp(−At)1−(1−θ)exp(−Aτ)−λ−µ,σ=θexp(−At)1−(1−θ)exp(−Aτ),f (t)=βAσ[1+α(1−σ)]2>0,f(t)τ0d 0=0τf(t)d t=f(η)τ0=0,η∈(0,τ0),f(τ0)>0,B<0(BC<0).3τ0(2)τ>τ0τ0(2) 5(1),θ> βλ+µ−1(exp(Aτ)−1),τ<1A ln1+θ(λ+µ)β−λ−µθ<β(λ+µ)(1+α)−1(exp(Aτ)−1)1+β(λ+µ)(1+α)(exp(Aτ)−1)57227[1]Roberts M G and Kao R R.The dynamics of an infectious disease in a population with birth pules.Math.Biosci.,1998,149:23–36.[2]Stone L,Shulgin B and Agur Z.Theoretical examination of the pulse vaccination policy in the SIRepidemic puter Modeling,2000,31:207–215.[3]d’Onofrio A.Pulse vaccination strategy in the SIR epidemic model:Global asymptotic stableeradication in presence of vaccine put.Modelling,2002,36:473–489.[4]d’Onofrio A.Stability properties of pulse vaccination strategy in SEIR epidemic model.Math.Biosci.,2002,179:57–72.[5]SIRS2003,24(4):235–243.[6]Bainov D D and Simeonov P S.Impulsive Differential Equations:Periodic Solutions and Applica-tions.NewYork,John Wiley&Sons,1993.[7]Lakshmikantham V,Bainov D D and Simeonov P S.Theory of Impulsive Differential Equations.Singapore,World Scientific,1989.[8]Lakmeche A and Arino O.Bifurcation of nontrivial periodic solutions of impulsive differentialequations arising chemotherapeutic treatment.Dyn.Cont.Discr.Impul.Syst.,2000,7:265–287.THE SIRS EPIDEMIC MODEL WITH SATURATED CONTACT RATE AND PULSE VACCINATIONPang Guoping(Department of Applied Mathematics Dalian University of Technology Dalian116024;Department of Methematics and Computer Science Yulin Teachers’College Yulin537000)Chen Lansun(Department of Applied Mathematics Dalian University of Technology Dalian116024)Abstract In this paper,uniform persistence and periodic solution of the SIRS epidemic model with saturated contact rate and pulse vaccination are discussed.Sufficient conditions for global asymptotic stability of the infection-free periodic solution and uniform persistence of this model are ing bifurcation theory the bifurcation parameter for existence of the positive periodic solution is given.Key words Pulse vaccination,SIRS model,uniform persistence,periodic solution.。