九年级数学下册《30°,45°,60°角的三角函数值》综合练习2(含答案)
- 格式:doc
- 大小:529.50 KB
- 文档页数:6
学号教师填写 内容 考试类型 绝密★启用前30°,45°,60°角的三角函数值测试时间:25分钟一、选择题1. 已知∠α为锐角,且sin α=12,则∠α=( )A.30°B.45°C.60°D.90°2. 在正方形网格中,△ABC 的位置如图所示,则cos ∠B 的值为( )A.12 B.√22 C.√32 D.√333.已知α为锐角,sin(α-20°)=√32,则α=( )A.20°B.40°C.60°D.80° 4.在△ABC 中,(√3tan A -3)2+|2cos B -√3|=0,则△ABC 为( ) A.直角三角形 B.等边三角形C.含60°角的任意三角形D.顶角为钝角的等腰三角形5.(2017内蒙古赤峰宁城二模)把一把直尺与一块三角板如图所示放置,若sin ∠1=√22,则∠2的度数为( )A.120°B.135°C.145°D.150° 6. 下列计算错误的有( )①sin 60°-sin 30°=sin 30°;②sin 245°+cos 245°=1;③(tan 60°)2=13; ④tan 30°=cos30°sin30°.A.1个B.2个C.3个D.4个二、填空题7.在Rt △ABC 中,∠C=90°,AB=2BC,现给出下列结论:①sin A=√32;②cos B=12;③tan A=√33;④tan B=√3,其中正确的结论是 .(填序号)8. 比较三角函数值的大小:sin 30° tan 30°(填“>”或“<”).9. 已知α与β互为余角,且cos(115°-α+β)=√22,则α= ,β= .10. 已知α为锐角,当21-tanα无意义时,tan(α+15°)-tan(α-15°)的值是 .三、解答题11.计算下列各式的值:(1) tan 60°-sin 245°+tan 45°-2cos 30°; (2) sin60°·cos45°·tan30°tan45°-cos60°.12.如下图所示,在一次数学课外实践活动中,小文在点C 处测得树的顶端A 的仰角为30°,BC=40 m,求树的高度AB.(计算过程和结果均不取近似值)13.定义:在△ABC 中,我们把∠A 的对边与∠C 的对边的比叫做∠A 的邻弦,记作thi A,即thi A=∠A 的对边∠C 的对边=BCAB.已知:在△ABC中,∠C=30°,请解答下列问题:(1)若∠A=45°,求thi A 的值; (2)若thi A=√3,则∠A= °;(3)若∠A 是锐角,探究thi A 与sin A 的数量关系.横线以内不许答题参考答案一、选择题1.答案 A ∵∠α为锐角,且sin α=12,∴∠α=30°.故选A.2.答案 B 如图,过A 作AD ⊥BC,交BC 的延长线于D,通过网格容易看出△ABD 是等腰直角三角形,故cos ∠B=cos 45°=√22,故选B.3.答案 D ∵α为锐角,sin(α-20°)=√32,∴α-20°=60°,∴α=80°,故选D.4.答案 A ∵在△ABC 中,(√3tan A -3)2+|2cos B -√3|=0,∴√3tan A -3=0,2cos B -√3=0,∴tan A=√3,cos B=√32,∴∠A=60°,∠B=30°,∴∠C=90°,∴△ABC 为直角三角形.故选A.5.答案 B ∵sin ∠1=√22,∴∠1=45°,如图,在直角△EFG 中,∠3=90°-∠1=90°-45°=45°,∴∠4=180°-∠3=135°,又∵AB ∥CD,∴∠2=∠4=135°.故选B.6.答案 C ①sin 60°-sin 30°=√32-12,sin 30°=12,故sin 60°-sin 30°≠sin 30°,计算错误;②sin 245°+cos 245°=(√22)2+(√22)2=12+12=1,计算正确;③(tan60°)2=(√3)2=3,3≠13,计算错误;④tan30°=√33,cos30°sin30°=√3212=√3,√33≠√3,计算错误.故选C.二、填空题7.答案 ②③④解析 在Rt △ABC 中,∠C=90°,AB=2BC,∴AC=√AB 2-BC 2=√(2BC )2-BC 2=√3BC,sin A=BC AB =12,cos B=BC AB =12,∴①错误,②正确;tan A=BCAC =√3BC =√33,∴③正确;tan B=AC BC =√3BCBC =√3,∴④正确.故正确的结论是②③④.8.答案 <解析 sin 30°=12,tan 30°=√33,12<√33,即sin 30°<tan 30°. 9.答案 80°;10°解析 ∵cos(115°-α+β)=√22,∴115°-α+β=45°,即α-β=70°.又∵α与β互为余角,∴α+β=90°,解得α=80°,β=10°. 10.答案2√33解析 当21-tanα无意义时,tan α=1,∵α为锐角,∴α=45°,则tan(α+15°)-tan(α-15°)=tan 60°-tan 30°=√3-√33=2√33.三、解答题11.解析 (1)原式=√3-(√2)2+1-2×√3=√3-1+1-√3=1.(2)原式=√32×√22×√331-12=√2412=√22.12.解析 在Rt △ABC 中,tan C=AB BC,BC=40 m,∠C=30°, ∴AB=BC·tan C=40×tan 30°=40√33m.答:树的高度AB 为40√3m.13.解析 (1)如图,作BH ⊥AC,垂足为H.在Rt △BHC 中,∠C=30°,∴sin C=BH BC =12,即BC=2BH.在Rt △BHA 中,∠A=45°,∴sin A=BH AB =√22,即AB=√2BH.∴thi A=BCAB =√2.(2)60或120. ∵thi A=√3,∴BCAB=√3,当∠A 是锐角时,∵∠C=30°,∴tan C=tan 30°=√3=ABBC ,∴∠ABC=90°,∴∠A=60°.根据对称性可知,当∠A 是钝角时,∠A=120°.(3)如图,在△ABC 中,thi A=BCAB ,在Rt △BHA 中,sin A=BHAB ,在Rt △BHC 中,sin C=BH BC =12,即BC=2BH. ∴thi A=2sin A.。
北师版九年级数学下册《30°, 45°, 60°角的三角函数值》同步练习一.选择题(本大题共10 小题,每题 3 分,共 30 分)1. cos30 的°值等于 ()2 3A.2B.2 C.1 D. 32.已知∠ A = 30°,以下判断正确的选项是()1 1A . sin A =2 B. cos A=2C. tan A=1D. sin A =3 2 23. 计算: tan45 +°sin30 =°()A . 22+ 3 B. 23 1+ 3C.2D. 24.若一个三角形三个内角度数比为1∶ 2∶ 3,那么这个三角形最小角的正切值为()1 1 3 3A. 3B.2C. 3D. 25. 在△ABC 中,若 tanA =1, sinB =2,你以为最切实的判断是 ( ) 2A .△ABC 是等腰三角形B .△ABC 是等腰直角三角形C.△ABC 是直角三角形D .△ABC 是一般锐角三角形6.在△ABC 中,若 |sinA -3 |+ (1-tanB) 2= 0,则∠ C 的度数是 ( ) 2A . 45° B. 60° C. 75° D. 105 °7.菱形 OABC 在平面直角坐标系中的地点如下图,∠AOC =45°,OC=2,则点 B 的坐标为 ()A .( 2,1) B.(1, 2) C.( 2+1, 1) D.(1, 2+1)1 =3, cosA=2,则△ABC 三个角的大小关系是 ( )8.在△ABC 中,∠ A ,∠ B 都是锐角,tanB 3 2A .∠ C>∠A>∠B B.∠ B>∠C>∠A C.∠ A> ∠ B>∠C D.∠ C>∠ B>∠ A9. 以下式子错误的选项是()A . cos40 °= sin50 °B . tan15 ·°tan75 =°1C. sin2 25°+ cos225°= 1D . sin60 =°2sin30 °10.小明在学习“锐角三角函数”中发现,将如下图的矩形纸片A 落在 BC 边上的点 E 处,复原后,再沿过点 E 的直线折叠,使点就能够求出67.5 °角的正切值是() ABCD 沿过点A落在BCB 的直线折叠,使点边上的点 F 处,这样A.3+ 1B. 2+1C. 2.5 D. 5二.填空题(共 8 小题, 3*8=24 )11.在等腰△ABC 中,∠ C= 90°,则 tanA = _______.12.已知α为锐角,且知足 3tan( +α10°)= 1,则α为 _______度.13.如图,某商铺营业大厅自动扶梯 AB 的倾斜角为 30°, AB 的长为 12 米,则大厅两层之间的高度为________米.14.菱形 OABC 在平面直角坐标系中的地点如下图,∠AOC = 45°, OC= 2,则点 B 的坐标为__________ .15.如图,在等边三角形 ABC 中, D 是 BC 边上一点,延伸 AD 到 E,AE = AC ,∠ BAE 的均分线交△ABC 的高 BF 于点 O,则 tan∠ AEO =_______.16.在△ABC 中,∠ A ,∠ B 为锐角,若 sin A -1 2+3- tan B = 0,则∠ C 的度数为 ________.2 317. 在 Rt △ABC 中,∠ C = 90°, AB = 2, BC =3,则 sin A =________.218.假如 α是锐角,且3,那么 cos(90 °- α)的值为 __________.sin =α5三.解答题 (共 7 小题, 46 分)19. (6 分 ) 计算:(1) 2cos60 +°2sin30 +°4tan45 ;°(2) sin 260°+ cos 260°+ tan60 ° tan30; °20. (6 分 ) 已知 tanA 的值是方程x 2- (1+ 3)x + 3= 0 的一个根,求锐角 A 的度数.21.(6 分 ) 如图,A ,B 两地之间有一座山, 汽车本来从 A 地到 B 地经过 C 地沿折线 A → C →B 行驶,现开通地道后, 汽车直接沿直线 AB 行驶.已知 AC =10 km ,∠ A = 30°,∠ B = 45°,则地道开通后,汽车从 A 地到 B 地比本来少走多少千米? (结果保存根号 )22.(6 分)得假山坡脚45°,求楼房如图,一楼房AB 后有一假山,其坡度为i= 1∶3,山坡坡面上 E 点处有一歇息亭,测C 与楼房水平距离BC = 25 米,与亭子距离CE= 20 米,小丽从楼房顶测得 E 点的俯角为AB 的高. (注:坡度i 是指坡面的铅直高度与水平宽度的比)23. (6 分 ) 若α为锐角, sin α-cos α=22,求 sin α+cos α的值24.(8 分 )如图,为丈量一座山岳CF 的高度,将此山的某侧山坡区分为AB 和 BC 两段,每一段山坡近似是“直”的,测得坡长AB = 800 m, BC= 200 m,坡角∠ BAF = 30°,∠ CBE =45°.求:(1)AB 段山坡的高度EF;(2)山岳的高度 CF( 2≈,结果精准到 1 m).25.(8 分 ) 如图,在平面直角坐标系中,点A在第一象限内,点 B 的坐标为 (3,0),OA = 2,∠ AOB =60°.(1)求点 A 的坐标;(2)若直线 AB 交 y 轴于点 C,求△AOC 的面积.参照答案:1-5BACCB6-10 CCDDB11. 1 12. 20 13. 614. ( 2+1,1)3 15.316. 120 °117.2318.51 1 19.解: (1)原式= 2× + 2× + 4×1= 6223 21 2 + 3× 3 3 1(2) 原式= ( 2)+ (2)3= + +1=24 420. 解:方程 x 2- (1+ 3)x + 3= 0 的两根为 x 1= 1,x 2= 3,当 tanA = 1 时,∠ A = 45°;当 tanA = 3时,∠ A = 60°21. 解:过点 C 作 CD ⊥AB 于 D ,在 Rt △ACD 中,∵ AC = 10 km ,∠ A = 30°, ∴ DC = ACsin30°= 5(km) ,AD = ACcos30 °= 53(km) .在 Rt △BCD 中,∵∠ B = 45°,∴ BD = CD = 5 km , BC = 5 2 km ,∵ AC + BC - (AD +BD) =10+ 5 2- (5 3+ 5)= (5+ 5 2- 5 3) km.∴汽车从 A 地到 B 地比本来少走(5+ 5 2- 5 3)km22. 解:过点 E 作 EF ⊥ BC 的延伸线于点 F , EH ⊥ AB 于点 H ,在 Rt △CEF ,中,∵ i =EF = 1= tan ∠ ECF ,∴∠ ECF = 30°,CF313米, BH = EF = 10 米,∴ EF = CE = 10 米, CF = 102HE =BF = BC + CF = (25+ 103)米,在 Rt △AHE 中,∵∠ HAE = 45°,∴ AH = HE= (25+10 3)米,∴AB = AH +HB = (35+ 10 3)米2 23. 解:∵ sin-αcos=α 2,∴ (sin-αcosα)2=1 2,即 sin 2α+ cos2α-2sin1α cos=α.2∴ 1-1 1 2sin αcos=α,即 2sin αcos=α.2 2∴(sin2 2 2 13 +αcos α)=sin α+cosα+2sin α cos= 1α+2=2.又∵α为锐角,∴ sin α+cos α>0.∴ sin α+ cos α= 62.24. 解: (1) 如图,作 BH ⊥ AF 于 H.在 Rt△ABH 中,∵ sin∠ BAH =BH,AB1∴ BH = 800 sin 30 =°800×= 400(m) .2∴ EF= BH = 400 m.答: AB 段山坡的高度EF 为 400 m.CE,∴ CE= BC·sin∠CBE = 200sin 45 °=200×2= 1002(m).(2) 在 Rt△CBE 中,∵ sin∠ CBE =BC 2 ∴ CF= CE+ EF=100 2+ 400≈541(m).答:山岳的高度CF 约为 541 m.25.解: (1) 过点 A 作 AD ⊥ x 轴,垂足为 D,如下图.在 Rt△OAD 中, sin 60 =°AD, cos 60 °=OD,OA OA∴AD = OA·sin 60 =°2×3=3, 21OD = OA·cos 60 =°2×= 1.2∴点 A 的坐标是 (1,3).(2)设直线 AB 对应的函数表达式为 y= kx + b. ∵直线 AB 过点 A(1 ,3)和 B(3 , 0),k+ b=3,∴3k+ b= 0,3k=-2,解得3 3b=2 .33 3 ∴直线 AB 对应的函数表达式是 y=-2 x+ 2.3 3令 x= 0,则 y=2,∴OC=323.∴S△AOC =1 1 3 3 3 3 2OC·OD=2×2×1=4 .。
30°,45°,60°角的三角函数值》分层练习◆ 基础题1.2sin 60°的值等于( )A .1BCD 2.tan 45°的值为( )A .12B .1C .2 D3.计算:cos 245°+sin 245°=( )A .12B .1C .14 D4.已知∠A 是锐角,且sinA A 等于( ) A .30° B .45° C .60° D .75°5.规定sin (α﹣β)=sin α•cos β﹣cos α•sin β,则sin 15°= . 6.若锐角α满足tan (α+15°)=1,则cos α= .7.在△ABC 中,∠B =45°,cosA =12,则∠C 的度数是 .8cos 30°的值是 .9.计算:sin 30°+cos 30°•tan 60°.10.计算:cos30sin 45sin 60tan 30︒-︒︒-︒. ◆ 能力题1.在△ABC 中,若tanA =1,sinB =2,你认为最确切的判断是( ) A .△ABC 是等腰三角形 B .△ABC 是等腰直角三角形C .△ABC 是直角三角形D .△ABC 是一般锐角三角形2.在△ABC 中,若|sinA ﹣2|+(2﹣cosB )2=0,∠A ,∠B 都是锐角,则∠C 的度数是( )A .75°B .90°C .105°D .120°3.tan (α+20°)=1,你猜想锐角α的度数应是( ) A .40° B .30° C .20° D .10°4.在Rt △ABC 中,∠C =90°,AB =2,BC sin 2A = .5.在Rt △ABC 中,∠C =90°,AB =2BC ,现给出下列结论:①sinA ;②cosB =12;③tanA tanB ,其中正确的结论是 .(只需填上正确结论的序号) 6.△ABC 中,∠A 、∠B 都是锐角,且sinA =cosB =12,则△ABC 是 三角形. 7.若规定:sin (α+β)=sin α•sin β+cos α•sin β,试确定sin 75°+sin 90°的值.8.已知tan 2α﹣(tan α=0,求锐角α的度数.◆ 提升题1.如图所示,在数轴上点A 所表示的数x 的范围是( )A .32sin 30°<x <sin 60° B .cos 30°<x <32cos 45° C .32tan 30°<x <tan 45° D .32cot 45°<x <cot 30° 2.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若∠B =60°,则c a a b c b+++的值为( )A .12BC .1D 3.α为锐角,且tan α是x 2+2x ﹣3=0的一个根,则sin α等于 .4.在△ABC 中,已知两锐角A 、B ,且cos 2A B +=2,则△ABC 是 三角形.5.数学拓展课程《玩转学具》课堂中,小陆同学发现:一副三角板中,含45°的三角板的斜边与含30°的三角板的长直角边相等,于是,小陆同学提出一个问题:如图,将一副三角板直角顶点重合拼放在一起,点B ,C ,E 在同一直线上,若BC =2,求AF 的长.请你运用所学的数学知识解决这个问题.6.已知Rt △ABC 中,∠C =90°,a +b ,c =4,求锐角A 的度数.答案和解析◆ 基础题1.【答案】C解:2sin 60°=2. 2.【答案】B解:tan 45°=1,即tan 45°的值为1.3.【答案】B解:∵cos 45°=sin 45°=2,∴cos 245°+sin 245°=221112222⎛⎛+=+= ⎝⎭⎝⎭. 4.【答案】C解:∵∠A 是锐角,sinA ,∴∠A =60°.5.解:令α=45°,β=30°,则sin 15°=2×2﹣2×12=4.6.【答案】2解:∵tan (α+15°)=tan 45°=1,∴α+15°=45°,∴α=30°,∴cos α=cos 30°. 7.【答案】75°解:∵在△ABC 中,cosA =12,∴∠A =60°,∴∠C =180°﹣∠A ﹣∠B =180°﹣60°﹣45°=75°.8.cos 30°×2=2.9.解:原式=12+212+32=2.10.解:原式=32-÷==⎝⎭⎝⎭◆ 能力题1.【答案】B解:∵tanA =1,sinB ,∴∠A =45°,∠B =45°. 又∵三角形内角和为180°,∴∠C =90°.∴△ABC 是等腰直角三角形.2.【答案】C解:∵|sinA ﹣2|=0,(2﹣cosB )2=0,∴sinA ﹣2=0,2﹣cosB =0,∴sinA =2,2=cosB ,∴∠A =45°,∠B =30°,∴∠C =180°﹣∠A ﹣∠B =105°. 3.【答案】D(α+20°)=1,∴tan (α+20°),∵α为锐角,∴α+20°=30°,α=10°. 4.【答案】12解:∵sinA =BC AB A =60°,∴sin 2A =sin 30°=12. 5.【答案】②③④解:如图所示:∵在Rt △ABC 中,∠C =90°,AB =2BC ,∴sinA =BC AB =12,故①错误; ∴∠A =30°,∴∠B =60°,∴cosB =cos 60°=12,故②正确;∵∠A =30°,∴tanA =tan 30°∵∠B =60°,∴tanB =tan 60°6.【答案】直角解:由△ABC 中,∠A 、∠B 都是锐角,且sinA =cosB =12,得∠A +∠B =90°. 7.解:原式=sin (30°+45°)+sin (30°+60°)=sin 30°•cos 45°+cos 30°•sin 45°+sin 30°•cos 60°+cos 30°•sin 60°=12×2+2×2+12×12+2×2=44+8.解:原式可化为(tan α﹣1)(tan α)=0,则tan α=1或tan α 则α=45°或60°.◆ 提升题1.【答案】D解:由数轴上A 点的位置可知,32<A <2.A 、由32sin 30°<x <sin 60°可知,32×12<x <2,即34<x <2,故本选项错误;B 、由cos 30°<x <32cos 45°可知,2<x <32×2,即2<x <4,故本选项错误;C 、由32tan 30°<x <tan 45°可知,32x <1x <1,故本选项错误;D 、由32cot 45°<x <cot 30°可知,32×1<x 32<x 2.【答案】C解:过A 点作AD ⊥BC 于D ,在Rt △BDA 中,由于∠B =60°,∴DB =2c ,AD c , 在Rt △ADC 中,DC 2=AC 2﹣AD 2,∴(a ﹣2c )2=b 2﹣34c 2, 即a 2+c 2=b 2+ac ,∴()()222221c a c cb a ab a c ab bc a b c b a b c b b ac ab bc+++++++===+++++++.3.【答案】2解:解方程x 2+2x ﹣3=0得x 1=1,x 2=﹣3.∵α为锐角,tan α>0,∴tan α=1,∴α=45°,∴sin α.4.【答案】直角解:由两锐角A 、B ,且cos 2A B +=2,得2A B +=45°,两边都乘以2,得A +B =90°,∠C =180°﹣(∠A +∠B )=90°.5.解:在Rt △ABC 中,BC =2,∠A =30°,AC =tan BC A ,则EF =ACE =45°,∴FC =EF •sinE ,∴AF =AC ﹣FC .6.解:将a +b ab ,又因为a +b次方程得x 2﹣(x ,解得x 1=2,x则(1)sinA =24=12时,锐角A 的度数是30°,(2)sinA =4=2时,锐角A 的度数是60°,所以∠A=30°或∠A=60°.。
30°,45°,60°角的三角函数值一、请准确填空(每小题3分,共24分)1.如图1,在平面直角坐标系中,P 是∠α的边OA 上一点,且P 点坐标为(4,3)则sin α=______,cos α=______.2.已知α是锐角,且2cos α=1,则α=______;若tan(α+15°)=1,则tan α=______.3.如图2,B 、C 是河岸边两点,A 是对岸岸边一点,测得∠ABC=45°,∠ACB=45°,BC=60 m ,则点A 到对岸BC 的距离是_____m.ABC30ABC o图1图2 图34.要把5米长的梯子上端放在距地面3米高的阳台边沿上,猜想一下梯子摆放坡度最小为______.5.已知tan α·tan30°=1,且α为锐角,则α=______.6.设β为锐角,且x 2+2x+sin β=0的两根之差为2,则β=______.7.在△ABC 中,∠C=90°.若3AC=3BC ,则∠A 的度数是______,cosB 的值是______.8.如图3,某建筑物BC 直立于水平地面,AC=9米,要建造阶梯AB ,使每阶高不超过20 cm ,则此阶梯最少要建_____阶.(最后一阶的高度不足20 cm 时,按一阶算,3取1.732)二、相信你的选择(每小题3分,共24分)9.在△ABC 中,AB=AC=4,BC=2,则4cosB 等于( ) A.1B.2C.15D.41510.△ABC 中,∠A 、∠B 都是锐角,且sinA=21,cosB=23,则△ABC 的形状是( )A.直角三角形B.钝角三角形C.锐角三角形D.不能确定11.令a=sin60°,b=cos45°,c=tan30°,则它们之间的大小关系是( ) A.c<b<a B.b<c<a C.b<a<cD.a<c<b12.在Rt △ABC 中,∠C=90°,下列式子中不一定成立的是( ) A.tanA=AAcos sin B.sin 2A+sin 2B=1 C.sin 2A+cos 2A=1D.sinA=sinB13.在△ABC 中,若|sinA -23|+(1-tanB)2=0,则∠C 的度数是( ) A.45°B.60°C.75°D.105°14.已知△ABC 中,∠C=90°,∠A=60°,BC+AC=3+3,则BC 等于( ) A.3B.3C.23D. 3+115.若等腰三角形腰长为4,面积是4,则这个等腰三角形顶角的度数为( ) A.30° B.30°或150° C.60° D.60°或120°16.某人沿着坡度为1∶3的山坡前进了1000 m ,则这个人所在的位置升高了( )A.1000 mB.500 mC.5003 mD.331000 m 三、考查你的基本功(共24分) 17.(16分)计算或化简: (1)sin45°·cos60°-cos45°·sin30°; (2)5tan30°-2(cos60°-sin60°). (3)(23tan30°)2005·(22sin45°)2004; (4)2(2cos45°-tan45°)-(tan60°+sin30°)0-(2sin45°-1)-1.18.(8分)已知△ABC 中,∠C=90°,AC=m ,∠BAC=α(如图4),求△ABC 的面积.(用α的三角函数及m 表示)ABCm图4图5四、生活中的数学(共18分)19.(9分)“郑集中学”有一块三角形形状的花圃ABC ,现可直接测量到∠A=30°,AC= 40 m ,BC=25 m ,请求出这块花圃的面积.20.(9分)如图5,某货船以20海里/小时的速度将一批重要的物资由A 处运往正西方向的B 处,经16小时的航行到达,到达后便接到气象部门通知,一台风中心正由A 向北偏西60°方向移动,距台风中心200海里的圆形区域(包括边界)均会受到影响.在B 处的货船是否会受到台风的侵袭?说明理由.五、探究拓展与应用(共10分)21.(10分)(1)如图6中①、②,锐角的正弦值和余弦值都是随着锐角的确定而确定,变化而变化,试探索随着锐角度数的增大,它的正弦值及余弦值的变化规律.123(注:AB 1 =AB 2=AB 3 )① B 1B 2B 3 AC②图6(2)根据你探索到的规律,试分别比较18°、34°、50°、62°、88°这些锐角的正弦值的大小和余弦值的大小.参考答案一、1.53 54 2.60° 33 3.30 4.435.60°6.30°7.60° 238.26二、9.A 10.B 11.A 12.D 13.C 14.B 15.B 16.B 三、17.(1)0;(2)3338-;(3)21;(4)-22. 18.解:∵tan α=ACBC , ∴BC=AC·tan α=m·tan α.S △ABC =21AC·BC=21m 2tan α.四、19.解:作CD ⊥AB. ∵∠A=30°,∴CD=21AC=21×40=20(m),AD=22CD AC -=203(m), BD=22CD BC -=15(m).(1)当∠ACB 为钝角时,AB=AD+BD=203+15,∴S △ABC =21AB·CD=21(203+15)×20=(2003+150)(m 2).(2)当∠ACB 为锐角时,AB=AD -BD=203-15.∴S △ABC =21AB·CD=21(203-15)×20=(2003-150)(m 2).20.解:AB=16×20=320(海里), 作BD ⊥AC 垂足为D. ∵∠BAC=30°,∴sin30°=ABBD,BD=AB·sin30°=160. ∵160<200,∴B 处的货船会受到影响. 五、21.(1)由图①知 sinB 1AC 1=111AB C B ,sinB 2AC 2=222AB CB ,sinB 3AC 3=333AB C B . ∵AB 1=AB 2=AB 3且B 1C 1>B 2C 2>B 3C 3, ∴111AB C B >222AB C B >333AB C B . ∴sinB 1AC 1>sinB 2AC 2>sinB 3AC 3. 而∠B 1AC 1>∠B 2AC 2>∠B 3AC 3, 而对于cosB 1AC 1=11AB AC , cosB 2AC 2=22AB AC , cosB 3AC 3=33AB AC . ∵AC 1<AC 2<AC 3,∴cosB 1AC 1<cosB 2AC 2<cosB 3AC 3. 而∠B 1AC 1>∠B 2AC 2>∠B 3AC 3. 由图②知sinB 3AC=33AB CB , ∴sin 2B 3AC=2323AB C B . ∴1-sin 2B 3AC=1-2323AB C B =232323AB C B AB =232AB AC . 同理,sinB 2AC=22AB C B ,1-sin 2B 2AC=222AB AC , sinB 1AC=21AB C B ,1-sin 2B 1AC=212AB AC . ∵AB 3>AB 2>AB 1,∴232AB AC <222AB AC <212AB AC .∴1-sin 2B 3AC<1-sin 2B 2AC<1-sin 2B 1AC. ∴sin 2B 3AC>sin 2B 2AC>sin 2B 1AC. ∵∠B 3AC ,∠B 2AC ,∠B 1AC 均为锐角, ∴sinB 3AC>sinB 2AC>sinB 1AC. 而∠B 3AC>∠B 2AC>∠B 1AC. 而对于cosB 3AC=3AB AC, cosB 2AC=2AB AC, cosB 1AC=1AB AC. ∵AB 3>AB 2>AB 1,∴3AB AC <2AB AC <1AB AC. ∴cosB 3AC<cosB 2AC<cosB 1AC. 而∠B 3AC>∠B 2AC>∠B 1AC.结论:锐角的正弦值随角度的增大而增大,锐角的余弦值随角度的增大而减小.(2)由(1)知sin18°<sin34°<sin50°<sin62°<sin88°, cos18°>cos34°>cos50°>cos62°>cos88°.。
1.2 30°,45°,60°角的三角函数值同步练习一.选择题(共10小题)1.sin45°+cos45°的值为()A.1B.2C.D.2 2.在Rt△ABC中,∠A=90°,若∠B=30°,则sin C=()A.B.C.D.3.式子sin210°+sin220°+cos210°+cos220°的值为()A.1B.2C.3D.4 4.锐角三角函数tan30°的值是()A.1B.C.D.5.计算2cos30°的结果等于()A.B.C.D.6.计算2sin30°﹣2cos60°+tan45°的结果是()A.2B.C.D.1 7.在Rt△ABC中,∠C=90°,若cos B=,则tan A的值是()A.B.C.D.8.计算1﹣2sin245°的结果是()A.﹣1B.0C.D.1 9.在Rt△ABC中,∠C=90°,∠A=60°,则sin A+cos B的值为()A.B.C.D.10.在锐角△ABC中,,则∠A=()A.30°B.45°C.60°D.75°二.填空题(共6小题)11.计算:cos60°tan30°+cot60°=.12.计算:2tan60°+tan45°﹣4cos30°=.13.计算:tan15°•tan45°•tan75°=.14.已知tan(α+15°)=,则tanα的值为.15.cos30°的值等于.16.观察下列等式:①sin30°=,cos60°=;②sin45°=,cos45°=;③sin60°=,cos30°=.(1)根据上述规律,计算sin2α+sin2(90°﹣α)=.(2)计算:sin21°+sin22°+sin23°+…+sin289°=.三.解答题(共3小题)17.计算:(1)2sin30°+3cos60°﹣4tan45°(2)+tan260°18.计算:2sin30°+cos60°﹣tan60°tan30°+cos245°﹣sin234°﹣cos234°19.嘉琪在某次作业中得到如下结果:sin27°+sin283°≈0.122+0.992=0.9945,sin222°+sin268°≈0.372+0.932=1.0018,sin229°+sin261°≈0.482+0.872=0.9873,sin237°+sin253°≈0.602+0.802=1.0000,sin245°+sin245°=()2+()2=1.据此,嘉琪猜想:在Rt△ABC中,∠C=90°,设∠A=α,有sin2α+sin2(90°﹣α)=1.(1)当α=30°时,验证sin2α+sin2(90°﹣α)=1是否成立.(2)请你对嘉琪的猜想进行证明.参考答案1.解:原式=+=.故选:C.2.解:∵∠A=90°,∠B=30°,∴∠C=90°﹣30°=60°,∴sin C=sin60°=,故选:D.3.解:原式=sin210°+cos210°+sin220°+cos220°=1+1=2.故选:B.4.解:tan30°=.故选:B.5.解:2cos30°=2×=.故选:D.6.解:2sin30°﹣2cos60°+tan45°=2×﹣2×+1=1﹣1+1=1.故选:D.7.解:∵Rt△ABC中,∠C=90°,∴cos B==,设BC=4x,AB=5x,则AC=3x,∴tan A===.故选:D.8.解:原式=1﹣2×()2=1﹣2×=1﹣1=0.故选:B.9.解:∵∠C=90°,∠A=60°,∴∠B=30°,则sin A+cos B=+=.故选:B.10.解:∵,∴tan C=,sin B=,∴∠C=60°,∠B=45°,∴∠A=75°.故选:D.11.解:原式=×+=+=.故答案为:.12.解:原式=2+1﹣4×=2+1﹣2=1.故答案为:1.13.解:原式=tan15°•tan75°•tan45°=1×1=1.故答案为:1.14.解:∵tan60°=,∴α+15°=60°,解得:α=45°,∴tanα=1,故答案为:1.15.解:cos30°=,故答案为:.16.解:(1)由所提供的等式可得sinα=cos(90°﹣α).cosα=sin(90°﹣α),sin2α+cos2α=1,∴sin2α+sin2(90°﹣α)=sin2α+cos2α=1,故答案为:1;(2)sin21°+sin22°+sin23°+…+sin289°=sin21°+sin22°+sin23°+…+cos23°+cos22°+cos21°=(sin21°+cos21°)+(sin22°+cos22°)+(sin23°+cos23°)+…+sin245°=1+1+1+…+=44.5,故答案为:44.5.17.解:(1)原式===;(2)原式==+3=.18.解:原式==1﹣1=0.19.解:(1)当α=30°时,sin2α+sin2(90°﹣α)=sin230°+sin260°=()2+()2=+=1;(2)嘉琪的猜想成立,证明如下:如图,在△ABC中,∠C=90°,设∠A=α,则∠B=90°﹣α,∴sin2α+sin2(90°﹣α)=()2+()2===1.。
1.2 30°,45°,60°角的三角函数值一.选择题:1.在△ABC 中,∠A ,∠B 都是锐角,且 sin Acos BABC 三个角的大小关系是( ) A .∠C >∠A >∠B B .∠B >∠C >∠AC .∠A >∠B >∠CD .∠C >∠B >∠A2.若0°<<90°,且|sintan 的值等于( )A3.如图1—37所示,在△ABC 中,∠A =30°,tan BACAB 的长是 ( )A .3.2C. 5 D4.等腰三角形一腰上的高与另一腰的夹角为30°,腰长为a ,则其底边上的高是( )AB .aD二、选择题5.在Rt △ACB 中,∠C =90°,ACAB =2,则= .6.若a 为锐角,且sin a则cos a = .7.在Rt △ACB 中,若∠C =90°,sin Ab +c =6,则b = .8.(1)在△ABC 中,∠C =90°,sin Acos B =________;(2)已知为锐角,且cos(90°-) =________;(3)=________.三、计算与解答9.计算(1)sin 60°·cos 30(2) 2 cos230°-2 sin 60°·cos 45°;(3) 2 sin30°-3 tan 45°+4 cos 60°;10.如图1—38所示,在Rt△ACB中,∠BCA=90°,CD是斜边上的高,∠ACD=30°,AD=1,求AC,CD,BC,BD,AB的长.11.如图1—39所示,在相距100米的A,B两处观测工厂C,测得∠BAC=60°,∠ABC=45°,则A,B 两处到工厂C的距离分别是多少?12.在△ABC中,a,b,c分别是∠A,∠B,∠C的对边,且c若关于x的方程b)x2+2ax+b)=0有两个相等的实数根,方程2x2-(10sin A)x+5sin A=0的两个实数根的平方和为6,求△ABC的面积.参考答案1. D; 2 。
专题二 特殊角的三角函数值本专题主要是特殊角的三角函数值的有关计算,特殊角的三角函数值在解决实际问题中应用非常广泛,所以通过复习应达到以下目标:熟练掌握30°,45°,60°角的三角函数值,并能通过特殊角的锐角三角函数值进行简单的计算. 例1 tan30°的值等于( ).A .12B .2C .3D 分析:本题考查特殊角三角函数值的理解情况,解决本题需要熟练记住特殊锐角的三角函数值.解:选C .说明:如果没有记住30°的正切值,可以先画一个含有30°角的直角三角形,根据30°角所对的直角边等于斜边的一半,找到三边关系,根据定义求解. 例2 计算tan60°+2sin45°-2cos30°的结果是( ).A .2B .CD .1分析:本题是一道与锐角三角函数值有关的计算问题,解决问题的关键是先确定函数值,然后再进行实数的运算.解:tan60°+2sin45°-2cos30°22==. 故选C .说明:与特殊角三角函数值有关的运算,先写出每个锐角函数值,然后转成具体的实数运算,应注意运算的顺序和计算的方法.专题训练:1.计算:|-4sin45°|+(cos60°-tan30°)0.2.计算:sin30°+sin 245°13-tan 260°=______.3.锐角A 满足2sin (A -15°)=,则A =______.4.如果22sin sin 301α+=,那么锐角α的度数是( ).A .15°B .30°C .45°D .60°5.在△ABC 中,∠C =90°,若∠B =2∠A ,则cos B 的值等于( ).A B .3 C .2 D .12参考答案:1.1 2.0 3.75° 4.D 5.D。
1.2 30°,45°,60°角的三角函数值一.选择题:1.在△ABC 中,∠A ,∠B 都是锐角,且 sin A =21,cos B =22,则△ABC 三个角的大小关系是( )A .∠C >∠A >∠B B .∠B >∠C >∠A C .∠A >∠B >∠CD .∠C >∠B >∠A 2.若0°<<90°,且|sin-41|+223cos ⎪⎪⎭⎫ ⎝⎛-θ,则tan 的值等于( )A .3B .33 C .21 D .233.如图1—37所示,在△ABC 中,∠A =30°,tan B,AC=AB 的长是 ( )A .3B .2+ C. 5 D .924.等腰三角形一腰上的高与另一腰的夹角为30°,腰长为a ,则其底边上的高是( ) Aa B .a C.12a D .12aa 二、选择题5.在Rt △ACB 中,∠C =90°,AC,AB =2,则tan 2B= . 6.若a 为锐角,且sin a,则cos a = . 7.在Rt △ACB 中,若∠C =90°,sin A,b +c =6,则b = . 8.(1)在△ABC 中,∠C =90°,sin A =21,则 cos B =________;(2)已知为锐角,且cos(90°-)=21,则 =________;(3)若1)10(tan 3=︒+α,则锐角 =________.三、计算与解答9.计算(1)sin 60°·cos 30°-12.(2) 2 cos 230°-2 sin 60°·cos 45°;(3) 2 sin30°-3 tan 45°+4 cos 60°;10.如图1—38所示,在Rt △ACB 中,∠BCA =90°,CD 是斜边上的高,∠ACD =30°,AD =1,求AC ,CD ,BC ,BD ,AB 的长.11.如图1—39所示,在相距100米的A ,B 两处观测工厂C ,测得∠BAC =60°,∠ABC =45°,则A ,B 两处到工厂C 的距离分别是多少?12.在△ABC中,a,b,c分别是∠A,∠B,∠C的对边,且c=,若关于x的方程(+b)x2+2ax+(-b)=0有两个相等的实数根,方程2x2-(10sin A)x+5sin A=0的两个实数根的平方和为6,求△ABC的面积.参考答案 1. D ; 2 。
30°,45°,60°角的三角函数值一、请准确填空(每小题3分,共24分)1.如图1,在平面直角坐标系中,P 是∠α的边OA 上一点,且P 点坐标为(4,3)则sin α=______,cos α=______.2.已知α是锐角,且2cos α=1,则α=______;若tan(α+15°)=1,则tan α=______.3.如图2,B 、C 是河岸边两点,A 是对岸岸边一点,测得∠ABC=45°,∠ACB=45°,BC=60 m ,则点A 到对岸BC 的距离是_____m.A BC30ABC o图1图2 图34.要把5米长的梯子上端放在距地面3米高的阳台边沿上,猜想一下梯子摆放坡度最小为______.5.已知tan α·tan30°=1,且α为锐角,则α=______.6.设β为锐角,且x 2+2x+sin β=0的两根之差为2,则β=______.7.在△ABC 中,∠C=90°.若3AC=3BC ,则∠A 的度数是______,cosB 的值是______.8.如图3,某建筑物BC 直立于水平地面,AC=9米,要建造阶梯AB ,使每阶高不超过20 cm ,则此阶梯最少要建_____阶.(最后一阶的高度不足20 cm 时,按一阶算,3取1.732)二、相信你的选择(每小题3分,共24分)9.在△ABC 中,AB=AC=4,BC=2,则4cosB 等于( ) A.1B.2C.15D.41510.△ABC 中,∠A 、∠B 都是锐角,且sinA=21,cosB=23,则△ABC 的形状是( )A.直角三角形B.钝角三角形C.锐角三角形D.不能确定11.令a=sin60°,b=cos45°,c=tan30°,则它们之间的大小关系是( ) A.c<b<a B.b<c<a C.b<a<cD.a<c<b12.在Rt △ABC 中,∠C=90°,下列式子中不一定成立的是( ) A.tanA=AAcos sin B.sin 2A+sin 2B=1 C.sin 2A+cos 2A=1D.sinA=sinB13.在△ABC 中,若|sinA -23|+(1-tanB)2=0,则∠C 的度数是( ) A.45°B.60°C.75°D.105°14.已知△ABC 中,∠C=90°,∠A=60°,BC+AC=3+3,则BC 等于( ) A.3B.3C.23D. 3+115.若等腰三角形腰长为4,面积是4,则这个等腰三角形顶角的度数为( ) A.30° B.30°或150° C.60° D.60°或120°16.某人沿着坡度为1∶3的山坡前进了1000 m ,则这个人所在的位置升高了( )A.1000 mB.500 mC.5003 mD.331000 m 三、考查你的基本功(共24分) 17.(16分)计算或化简: (1)sin45°·cos60°-cos45°·sin30°; (2)5tan30°-2(cos60°-sin60°). (3)(23tan30°)2005·(22sin45°)2004; (4)2(2cos45°-tan45°)-(tan60°+sin30°)0-(2sin45°-1)-1.18.(8分)已知△ABC 中,∠C=90°,AC=m ,∠BAC=α(如图4),求△ABC 的面积.(用α的三角函数及m 表示)ABCm图4图5四、生活中的数学(共18分)19.(9分)“郑集中学”有一块三角形形状的花圃ABC ,现可直接测量到∠A=30°,AC= 40 m ,BC=25 m ,请求出这块花圃的面积.20.(9分)如图5,某货船以20海里/小时的速度将一批重要的物资由A 处运往正西方向的B 处,经16小时的航行到达,到达后便接到气象部门通知,一台风中心正由A 向北偏西60°方向移动,距台风中心200海里的圆形区域(包括边界)均会受到影响.在B 处的货船是否会受到台风的侵袭?说明理由.五、探究拓展与应用(共10分)21.(10分)(1)如图6中①、②,锐角的正弦值和余弦值都是随着锐角的确定而确定,变化而变化,试探索随着锐角度数的增大,它的正弦值及余弦值的变化规律.123(注:AB 1 =AB 2=AB 3 )① B 1B 2B 3 AC②图6(2)根据你探索到的规律,试分别比较18°、34°、50°、62°、88°这些锐角的正弦值的大小和余弦值的大小.参考答案一、1.53 54 2.60° 33 3.30 4.435.60°6.30°7.60° 238.26二、9.A 10.B 11.A 12.D 13.C 14.B 15.B 16.B 三、17.(1)0;(2)3338 ;(3)21;(4)-22. 18.解:∵tan α=ACBC , ∴BC=AC·tan α=m·tan α.S △ABC =21AC·BC=21m 2tan α.四、19.解:作CD ⊥AB. ∵∠A=30°,∴CD=21AC=21×40=20(m),AD=22CD AC =203(m), BD=22CD BC =15(m).(1)当∠ACB 为钝角时,AB=AD+BD=203+15,∴S △ABC =21AB·CD=21(203+15)×20=(2003+150)(m 2).(2)当∠ACB 为锐角时,AB=AD -BD=203-15.∴S △ABC =21AB·CD=21(203-15)×20=(2003-150)(m 2).20.解:AB=16×20=320(海里), 作BD ⊥AC 垂足为D. ∵∠BAC=30°,∴sin30°=ABBD,BD=AB·sin30°=160. ∵160<200,∴B 处的货船会受到影响. 五、21.(1)由图①知 sinB 1AC 1=111AB C B ,sinB 2AC 2=222AB CB ,sinB 3AC 3=333AB C B . ∵AB 1=AB 2=AB 3且B 1C 1>B 2C 2>B 3C 3, ∴111AB C B >222AB C B >333AB C B . ∴sinB 1AC 1>sinB 2AC 2>sinB 3AC 3. 而∠B 1AC 1>∠B 2AC 2>∠B 3AC 3, 而对于cosB 1AC 1=11AB AC , cosB 2AC 2=22AB AC , cosB 3AC 3=33AB AC . ∵AC 1<AC 2<AC 3,∴cosB 1AC 1<cosB 2AC 2<cosB 3AC 3. 而∠B 1AC 1>∠B 2AC 2>∠B 3AC 3. 由图②知sinB 3AC=33AB CB , ∴sin 2B 3AC=2323AB C B . ∴1-sin 2B 3AC=1-2323AB C B =232323AB C B AB =232AB AC . 同理,sinB 2AC=22AB C B ,1-sin 2B 2AC=222AB AC , sinB 1AC=21AB C B ,1-sin 2B 1AC=212AB AC . ∵AB 3>AB 2>AB 1,∴232AB AC <222AB AC <212AB AC .∴1-sin 2B 3AC<1-sin 2B 2AC<1-sin 2B 1AC. ∴sin 2B 3AC>sin 2B 2AC>sin 2B 1AC. ∵∠B 3AC ,∠B 2AC ,∠B 1AC 均为锐角, ∴sinB 3AC>sinB 2AC>sinB 1AC. 而∠B 3AC>∠B 2AC>∠B 1AC. 而对于cosB 3AC=3AB AC, cosB 2AC=2AB AC, cosB 1AC=1AB AC. ∵AB 3>AB 2>AB 1,∴3AB AC <2AB AC <1AB AC. ∴cosB 3AC<cosB 2AC<cosB 1AC. 而∠B 3AC>∠B 2AC>∠B 1AC.结论:锐角的正弦值随角度的增大而增大,锐角的余弦值随角度的增大而减小.(2)由(1)知sin18°<sin34°<sin50°<sin62°<sin88°, cos18°>cos34°>cos50°>cos62°>cos88°.。