干膜技术工艺及性能简介
- 格式:doc
- 大小:32.50 KB
- 文档页数:2
底片干膜工艺技术资料一、底片干膜工艺概述底片干膜工艺是一种常用于光刻技术中的工艺方法。
在硅片制造过程中,光刻技术用于制造集成电路中的微细图案。
底片干膜工艺是光刻技术的一个重要环节,其主要作用是在硅片表面形成一层薄膜,用于保护或增强光刻图案。
二、底片干膜工艺流程底片干膜工艺流程包括以下几个步骤:1. 底片准备在进行底片干膜工艺之前,需要先准备好底片。
底片是一种透明平板,通常由玻璃或石英制成。
底片表面应保持干净无尘,以免影响后续的工艺步骤。
2. 底片清洁底片在使用前需要进行清洁处理,以去除底片表面的杂质和污染物。
清洁方法可以采用化学溶液浸泡或超声波清洗。
3. 干膜涂覆底片清洁完毕后,需要进行干膜涂覆的过程。
干膜是指一种特殊的聚合物材料,可以在底片表面形成一层均匀的薄膜。
干膜涂覆可以采用旋涂法或喷涂法,在涂布的过程中需要控制好涂布速度和涂布厚度,以保证干膜的质量。
4. 烘烤干膜涂覆完成后,需要进行烘烤处理。
烘烤的目的是将干膜固化,并使其与底片表面紧密结合。
烘烤的温度和时间根据具体的干膜材料而定,需要严格控制参数,以确保烘烤效果良好。
5. 剥膜经过烘烤后,干膜与底片表面形成了牢固的结合。
为了制作光刻图案,需要将部分干膜剥离,留下所需的图案。
剥膜的方法可以采用化学溶解或机械剥离,需要根据具体情况选择合适的方法。
6. 检验剥膜完成后,需要对底片进行检验,确保干膜工艺的质量符合要求。
检验的内容可以包括干膜的厚度、表面光洁度等指标。
三、底片干膜工艺的应用底片干膜工艺广泛应用于集成电路的制造过程中。
其主要作用有:1. 保护硅片表面底片干膜可以形成一层保护膜,用于保护硅片表面不被污染或损坏。
在后续的工艺步骤中,底片上的干膜可以起到保护的作用,确保光刻图案的准确传递。
2. 增强光刻图案对比度在光刻过程中,底片上的干膜可以增强光刻图案的对比度,使其更容易识别和处理。
干膜的颜色和透明度可以根据需求来选择,以提高图案的可见度。
湿膜工艺与干膜工艺
湿膜工艺与干膜工艺是现代工业生产中常用的两种涂覆技术。
它们在涂覆材料的方法、涂层质量和应用领域等方面有着显著的差异。
湿膜工艺是指在涂覆过程中,涂料处于液体或半流动状态,通过刷涂、喷涂或浸涂等方式将涂料均匀地涂覆在基材上。
湿膜工艺具有操作简单、成本低廉、适用范围广等优点。
然而,由于涂料处于液体状态,容易出现流挂、起皱等问题,需要注意涂料的粘度和干燥时间等因素。
此外,湿膜工艺还需要进行后续的固化或干燥处理,以形成坚固的涂层。
相比之下,干膜工艺则是指在涂覆过程中,涂料处于固体状态,通过热压、热转印或粘贴等方式将干燥的薄膜覆盖在基材上。
干膜工艺具有操作简便、效率高、涂层质量稳定等优点。
涂料在固体状态下,避免了流挂和起皱等问题,同时也减少了后续的固化处理。
然而,干膜工艺对涂料的选择和控制要求较高,需要保证涂料的粘度、粘附力和耐磨性等性能。
湿膜工艺和干膜工艺在应用领域上也有所不同。
湿膜工艺常用于家具制造、建筑装饰、汽车制造等领域,涂层可以提供良好的装饰效果和表面保护。
干膜工艺则广泛应用于电子产品、印刷电路板、光学仪器等领域,涂层可提供电绝缘、防腐蚀和光学性能等功能。
湿膜工艺和干膜工艺各有优势,适用于不同的涂覆需求和应用领域。
在选择涂覆技术时,需根据具体要求综合考虑涂料性能、工艺条件和成本效益等因素,以确保涂层质量和应用效果的最佳平衡。
干膜生产工艺干膜生产工艺是一种在电子工业中广泛应用的技术,用于制作薄膜电路板和其他电子产品。
下面是一个关于干膜生产工艺的700字的介绍。
干膜生产工艺是一种先进的制造技术,它可以用于制作高品质的电路板。
干膜是一种特殊的光敏胶片,它可以与印刷电路板表面紧密结合,在光的作用下形成图形。
与传统的湿膜工艺相比,干膜工艺具有更高的精度和稳定性。
干膜生产工艺的主要步骤包括准备基板、涂敷干膜、曝光、显影、蚀刻和清洗。
首先,需要准备好需要制作电路的基板。
基板的材料可以是FR4、铜或其他导电材料。
然后,在基板表面涂敷一层干膜。
干膜有多种类型,可以根据需要选择不同的干膜来实现不同的功能。
涂敷干膜后,需要将其暴露在紫外光下,以形成所需的电路图案。
曝光的过程中,光线会通过掩膜上的图案,然后照射到干膜上。
只有暴露在光下的部分会发生化学反应,形成稳定的图案结构。
完成曝光后,接下来是显影的步骤。
显影是指将不需要的部分从干膜上去除的过程。
显影液会分解暴露在光下的部分干膜,使其变得可溶于溶剂。
而未暴露在光下的部分干膜则保持不变。
通过显影,可以形成所需的电路图案。
在显影完成后,接下来是蚀刻的步骤。
蚀刻是指将基板表面的铜或其他导电材料去除,从而形成所需的电路图案。
蚀刻液会溶解掉没有被干膜保护的铜层,使电路图案明确可见。
最后一步是清洗。
清洗的目的是去除干膜残留物和其他杂质,以保证电路板的质量和可靠性。
清洗过程通常使用酒精或其他溶剂进行。
干膜生产工艺具有许多优点。
首先,它可以实现高精度的电路图案,使电路板具有更好的性能和可靠性。
其次,与传统的湿膜工艺相比,干膜工艺更加环保,能够节约更多的水资源和能源。
此外,干膜工艺操作简单,工艺周期短,能够大大提高生产效率。
总之,干膜生产工艺是一种先进的制造技术,适用于电子行业中的薄膜电路板制造。
它具有高精度、稳定性和环保等优点,能够提高电路板的性能和可靠性,同时还能提高生产效率。
随着电子行业的快速发展,干膜生产工艺将继续在电子制造领域发挥重要作用。
干膜介绍及干膜工艺详解干膜是一种常用的覆盖材料,用于保护电子元件表面免受污染、腐蚀和机械损伤。
它由聚酰胺树脂制成,具有优异的耐温性、耐化学性和机械强度。
干膜广泛应用于电子工业、半导体制造业、汽车制造业等领域。
本文将详细介绍干膜的工艺及应用。
干膜工艺主要分为涂布、曝光、显影和固化四个步骤。
首先,将干膜涂布在待保护的基板表面,然后通过热压或UV曝光使干膜与基板紧密结合。
曝光是将覆盖了光掩膜的基板和干膜放置在紫外线曝光机中,通过控制曝光时间和光强来实现显影效果。
显影是将经过曝光的基板和干膜放入化学液中,使未曝光部分的干膜溶解,从而揭露出基板的表面。
最后,通过热固化或UV固化使干膜与基板牢固结合,形成保护层。
干膜具有许多优越的特性。
首先,干膜具有出色的耐化学性,能够抵抗酸、碱和溶剂的侵蚀,保护电子元件不受腐蚀。
其次,干膜具有良好的耐温性,能够在高温环境下保持稳定性,适用于高温焊接和其他高温工艺。
此外,干膜具有优秀的机械强度,能够抵御机械冲击和摩擦,确保元件表面的完整性。
最重要的是,干膜具有良好的电绝缘性能,能够有效隔离电子元件,保证电路的正常运行。
干膜广泛应用于各种电子元件的保护和焊接过程中。
在印制电路板(PCB)制造过程中,干膜可以作为覆盖材料,保护线路图案在酸碱腐蚀、高温焊接和表面处理中不受损坏。
在集成电路制造中,干膜可用作衬底保护层,保护器件免受机械和化学损伤。
此外,干膜还可以用于电子元件的封装和封装,提高元件的可靠性和稳定性。
总之,干膜作为一种常用的保护材料,具有优越的性能和广泛的应用领域。
通过涂布、曝光、显影和固化等工艺步骤,可以将干膜均匀附着在基板表面,形成坚固耐用的保护层。
干膜能够有效保护电子元件免受污染、腐蚀和机械损伤,提高元件的可靠性和稳定性。
在电子工业、半导体制造业和汽车制造业等领域发挥着重要作用。
干膜作为一种常用的保护材料,具有许多优越的特性,因此在各个领域得到广泛应用。
下面将进一步介绍干膜的应用以及其在电子工业、半导体制造业和汽车制造业中的具体应用。
干膜涂层工艺1. 简介干膜涂层是一种常用的涂层工艺,适用于各种材料的表面保护和装饰。
它具有无溶剂、环保、易操作等优点,广泛应用于电子、电气、通信、航天航空等领域。
本文将对干膜涂层工艺的原理、步骤、应用以及未来发展进行详细介绍。
2. 工艺原理干膜涂层工艺是利用干膜涂料在材料表面形成均匀、平滑的膜层。
其原理主要分为以下几个步骤:2.1 基片处理首先,需要对待涂基片进行处理,以确保涂层附着力和平整度。
处理包括清洗、除油、表面处理等步骤,常用的方法有化学法、机械法和物理法等。
2.2 涂料选型在干膜涂层工艺中,涂料的选型非常重要。
要根据不同材料和需求选择合适的涂料,涂料应具有良好的附着力、抗刮擦、耐磨损等性能。
常见的涂料有丙烯酸树脂、聚酰胺树脂等。
2.3 涂料施工涂料施工是干膜涂层工艺的关键步骤之一。
常见的施工方法有刮涂法、涂覆法和喷涂法等。
施工时需要掌握好涂料的数量和均匀度,避免涂层厚度不均匀或涂料过多。
2.4 干燥固化涂料施工完成后,需要进行干燥固化。
干燥固化的方法有自然干燥和烘箱干燥两种。
在干燥过程中,涂料中的溶剂会逐渐挥发,形成坚硬的膜层。
3. 工艺步骤干膜涂层工艺主要包括以下几个步骤:3.1 基片处理•清洗基片,去除表面杂质和污垢。
•除油,使用溶剂或碱性洗涤剂去除基片表面的油脂。
•表面处理,利用化学方法或机械方法增加基片表面的粗糙度,提高涂层附着力。
3.2 涂料选型•根据基片材料和涂层要求,选择合适的涂料。
•涂料应具有良好的附着力、抗刮擦、耐磨损等性能。
3.3 涂料施工•根据涂料施工方法的不同,选择刮涂法、涂覆法或喷涂法等进行施工。
•控制涂料的均匀度和施工厚度,避免涂层不均匀或涂料过多。
3.4 干燥固化•根据涂料的要求,选择自然干燥或烘箱干燥。
•在干燥过程中,涂料中的溶剂逐渐挥发,形成坚硬的膜层。
4. 应用领域干膜涂层工艺在以下领域有广泛的应用:4.1 电子电气在电子电气行业,干膜涂层广泛应用于印刷电路板(PCB)、电子元器件封装表面保护等方面。
干膜介绍及干膜工艺详解干膜是一种常用于印制电路板(PCB)制造的覆盖材料。
干膜由两层薄膜构成:基膜和感光层。
基膜是一种透明的聚酯薄膜,具有机械强度和化学稳定性,可以保护感光层免受物理和化学损害。
感光层主要用于图形图案的曝光,并通过化学反应固化在基膜上。
干膜是一种现成的覆盖材料,可以快速而准确地应用于PCB生产中,特别适用于大规模生产。
干膜工艺是一种使用干膜的制造PCB的工艺。
它的工艺包括以下几个步骤:1.准备工作:准备好所需的PCB基板、干膜、感光胶液和各种化学溶液。
2.清洁基板:将基板放入清洁溶液中浸泡,并用软刷轻轻刷洗,以去除表面的污垢和油脂。
3.干燥基板:将清洁的基板放入烘箱中,以去除水分和其他有害物质。
4.膜压:将干膜覆盖在基板上,并使用膜压机将其牢固压在基板上。
这个步骤确保干膜与基板紧密贴合。
5.曝光:将已覆盖干膜的基板放入曝光机中,通过光源照射来曝光干膜的感光层。
光线透过印刷电路板的涂层暴露感光层,仅在需要的区域固化。
6.脱敏:将曝光后的基板放入脱敏机中,去除未固化的感光胶液,以便进一步的处理。
7.脱膜:将基板放入化学溶液中浸泡一段时间,以去除固化的感光胶液。
经过脱胶的基板将暴露出具有所需电路图案的金属表面。
8.转移印刷:将脱胶后的基板放入腐蚀剂中,腐蚀掉暴露的金属区域,从而形成所需电路图案。
9.清洗和修复:将印刷完毕的PCB进行清洗,去除化学残留物,并修复可能存在的不良区域。
10.检查和测试:对印刷完毕的PCB进行视觉检查和电气测试,确保其质量达到要求。
干膜工艺具有许多优点。
首先,它适用于大规模生产,可以快速而准确地制造PCB。
其次,干膜覆盖均匀,与基板贴合度高,可以产生高精度的电路图案。
此外,干膜具有良好的化学稳定性,能够保护基板不受物理和化学损害。
最后,干膜工艺对环境友好,由于使用了现成的覆盖材料,减少了废液和废料的产生,减少了对环境的影响。
综上所述,干膜是一种常用于PCB制造的覆盖材料,干膜工艺是一种使用干膜的制造PCB的工艺。
干膜光刻胶技术干膜光刻胶技术是一种高精度微细加工技术,适用于微电子、半导体、光电、 MEMS 等领域。
该技术利用光刻胶遮光和腐蚀等特性,在平板上制备各种微细图形和结构。
干膜光刻胶技术具有成本低、加工速度快、加工精度高等优点,因此在微电子工业中得到了广泛应用。
干膜光刻胶技术的原理是在硅片表面和光刻胶之间贴上一层薄膜,使光刻胶与硅片分离,然后通过光刻制程对胶膜进行加工。
光刻制程通常包括以下步骤:(1)洗净,将硅片表面脱脂、清洗干净。
(2)光刻胶涂覆,将光刻胶均匀地涂覆在硅片上,形成厚度为 2-4μm 的光刻胶膜。
其中,光刻胶的选择对加工精度、分辨率和加工速度等方面均有影响。
(3)加热,利用高温热板或热板和光刻炉对光刻胶进行加热,控制光刻胶的光安息点和曝光时的光子剂量。
(4)曝光,通过主曝光机或光掩膜对光刻胶进行暴露,形成所需的微细图形和结构。
(5)显影,利用显影液除去暴露于光下的光刻胶,使暴露的硅片区域裸露出来。
(6)腐蚀,通过湿法或干法腐蚀来加工出所需结构。
与传统湿法光刻相比,干膜光刻胶技术具有显著优点。
首先,干膜光刻胶不需要洗涤处理,不会对环境造成污染。
其次,干膜光刻胶技术可以减少加工时间和成本,并提高了加工效率。
此外,干膜光刻胶技术的加工精度和分辨率也得到了极大的提高。
干膜光刻胶技术近年来越来越受到研究人员和工业界的高度重视。
然而,干膜光刻胶技术也面临着一些挑战。
例如,制备高材料质量的干膜光刻胶仍然是一个难题。
此外,干膜光刻胶在加工过程中容易受到机械力和热膨胀等因素的影响,这也限制了其加工精度和分辨率。
综上所述,干膜光刻胶技术是一种高精度微细加工技术,具有成本低、加工速度快、加工精度高等优点。
该技术在微电子、半导体、光电、MEMS等领域得到了广泛应用。
虽然干膜光刻胶技术面临一些挑战,但相信在不久的将来,通过不断的研究和创新,干膜光刻胶技术将会带来更大的突破和进步。
感光干膜工艺详解作者:未知来源:网络一、简介ResoPower MU系列干膜是新一代的多用途干膜,为线路板厂家提供一种操作范围广泛的新技术。
能适用于各种蚀刻、电镀(铜、镍、金、锡、锡/铅等)以及掩孔用途。
二、规格应用建议使用产品厚度(μm)蚀刻 MU-310,MU-312,MU-315 25,30,38电镀、掩孔 MU-310,MU-312,MU-315,MU-320 25,30,38,50三、特性高解像度高感光度可以大大提高产能对各种铜面有良好的附着能力快速而优良的去膜性能优良的掩孔和抗电镀能力对于曝光接触不良的敏感度低,曝光操作幅度宽在铜,锡或铅/锡电镀中不易掉膜四、铜面状态及表面处理ResoPower MU系列同各种铜表面相容性好,无脱膜现象化学镀铜表面直接金属化表面电镀铜面五、使用工艺参数1、铜面前处理磨刷研磨2、贴膜推荐贴膜参数如下表:手动贴膜机自动贴膜机预热(℃)视情况定视情况定压合温度(℃) 50-80压辘温度(℃) 110-130 110-130贴膜压力(PSI) 60-80 60-80贴膜速度(m/min) 0.6-1.5 1.5-3.0压合时间(Sec) 1-4板出温度内层板:60-70℃;外层板:45-55℃(镀铜/锡);50-65℃(镀金)建议:温度达到110℃以上后开始贴膜为减少孔破,可以适当减低压膜温度和压力贴膜前孔内应无水分或水气贴膜后的板冷却至室温后,再曝光3、静置时间:30min(15min以上)4、曝光ResoPower MU系列产品可在各种曝光机上进行曝光,灯管的波长值应分布在350-380nm推荐使用曝光参数(PSI)MU310 MU312 MU315 MU320SST(21) 7-10 7-10 7-10 7-10mJ/cm2 30-100 30-100 35-100 40-1005、静置时间:30min(15min以上)6、显影ResoPower MU系列干膜可以在Na2CO3 、K2CO3中显影,显影范围宽。
干膜技术工艺及性能简介
时间:2011-09-09 20:08:20 来源:作者:
印制电路制造者都希望选用性能良好的干膜,以保证印制板质量,稳定生产,提高效益。
近年来随着电子工业的迅速发展,印制板的精度密度不断提高,为满足印制板生产的需要,不断有推出新的干膜产品,性能和质量有了很大的改进和提高。
干膜贴膜时,先从干膜上剥下聚乙烯保护膜,然后在加热加压的条件下将干膜抗蚀剂粘贴在覆铜箔板上。
干膜中的抗蚀剂层受热后变软,流动性增加,借助于热压辊的压力和抗蚀剂中粘结剂的作用完成贴膜。
贴膜通常在贴膜机上完成,贴膜机型号繁多,但基本结构大致相同,一般贴膜可连续贴,也可单张贴。
连续贴膜时要注意在上、下干膜送料辊上装干膜时要对齐,一般膜的尺寸要稍小于板面,以防抗蚀剂粘到热压辊上。
连续贴膜生产效率高,适合于大批量生产。
贴膜时要掌握好的三个要素为压力、温度、传送速度。
压力:新安装的贴膜机,首先要将上下两热压辊调至轴向平行,然后来用逐渐加大压力的办法进行压力调整,根据印制板厚度调至使干膜易贴、贴牢、不出皱折。
一般压力调整好后就可固定使用,如生产的线路板厚度差异过大需调整,一般线压力为0.5—0.6公斤/厘米。
温度:根据干膜的类型、性能、环境温度和湿度的不同而略有不同,如果膜涂布的较干且环境温度低湿度小时,贴膜温度要高些,反之可低些,暗房内良好稳定的环境及设备完好是贴膜的良好的保证。
一般如果贴膜温度过高,那么干膜图像会变脆,导致耐镀性能差,贴膜温度过低,干膜与铜表面粘附不牢,在显影或电镀过程中,膜易起翘甚至脱落。
通常控制贴膜温度在100℃左右。
传送速度:与贴膜温度有关,温度高,传送速度可快些,温度低则将传送速度调慢。
通常传送速度为0.9一1.8米/分。
为适应生产精细导线的印制板,又发展了湿法贴膜工艺,此工艺是利用专用贴膜机在贴干膜前于铜箔表面形成一层水膜,该水膜的作用是:提高干膜的流动性;驱除划痕、砂眼、凹坑和织物凹陷等部位上滞留的气泡;在加热加压贴膜过程中,水对光致抗蚀剂起增粘作用,因而可大大改善干膜与基板的粘附性,从而提高了制作精细导线的合格率,据报导,采用此工艺精细导线合格率可提高1—9%。
感光性包括感光速度、曝光时间宽容度和深度曝光性等。
感光速度是指光致抗蚀剂在紫外光照射下,光聚合单体产生聚合反应形成具有一定抗蚀能力的聚合物所需光能量的多少。
在光源强度及灯距固定的情况下,感光速度表现为曝光时间的长短,曝光时间短即为感光速度快,从提高生产效率和保证印制板精度方面考虑,应选用感光速度快的干膜。
干膜曝光一段时间后,经显影,光致抗蚀层已全部或大部分聚合,一般来说所形成的图像可以使用,该时间称为最小曝光时间。
将曝光时间继续加长,使光致抗蚀剂聚合得更彻底,且经显影后得到的图像尺寸仍与底版图像尺寸相符,该时间称为最大曝光时间。
通常干膜的最佳曝光时间选择在最小曝光时间与最大曝光时间之间。
最大曝光时间与最小曝光时间之比称为曝光时间宽容度。
干膜的深度曝光性很重要。
曝光时,光能量因通过抗蚀层和散射效应而减少。
若抗蚀层对光的透过率不好,在抗蚀层较厚时,如上层的曝光量合适,下层就可能不发生反应,显影后抗蚀层的边缘不
整齐,将影响图像的精度和分辨率,严重时抗蚀层容易发生起翘和脱落现象。
为使下层能聚合,必须加大曝光量,上层就可能曝光过度。
干膜的显影性#e#
干膜的显影性是指干膜按最佳工作状态贴膜、曝光及显影后所获得图像效果的好坏,即电路图像应是清晰的,未曝光部分应去除干净无残胶。
曝光后留在板面上的抗蚀层应光滑,坚实。
干膜的耐显影性是指曝光的干膜耐过显影的程度,即显影时间可以超过的程度,耐显影性反映了显影工艺的宽容度。
干膜的显影性与耐显影性直接影响生产印制板的质量。
显影不良的干膜会给蚀刻带来困难,在图形电镀工艺中,显影不良会产生镀不上或镀层结合力差等缺陷。
干膜的耐显影性不良,在过度显影时,会产生干膜脱落和电镀渗镀等毛病。
上述缺陷严重时会导致印制板报废。
所谓分辨率是指在1mm的距离内,干膜抗蚀剂所能形成的线条或间距的条数,分辨率也可以用线条或间距绝对尺寸的大小来表示。
干膜的分辨率与抗蚀剂膜厚及聚酯薄膜厚度有关。
抗蚀剂膜层越厚,分辨率越低。
光线透过照相底版和聚酯薄膜对干膜曝光时,由于聚酯薄膜对光线的散射作用,使光线侧射,因而降低了干膜的分辨率,聚酯薄膜越厚,光线侧射越严重,分辨率越低。
通常能分辨的最小平行线条宽度,一级指标<0.1mm ,二级指标≤ 0.15mm。
光聚合后的干膜抗蚀层,应能耐三氯化铁蚀刻液、过硫酸铵蚀刻液、酸性氯化铜蚀刻液、硫酸——过氧化氢蚀刻液的蚀刻。
在上述蚀刻液中,当温度为50—55℃时,干膜表面应无发毛、渗漏、起翘和脱落现象。
在酸性光亮镀铜、氟硼酸盐普通锡铅合金、氟硼酸盐光亮镀锡铅合金以及上述电镀的各种镀前处理溶液中,聚合后的于膜抗蚀层应无表面发毛、渗镀、起翘和脱落现象。
曝光后的干膜,经蚀刻和电镀之后,可以在强碱溶液中去除,一般采用3—5 %的氢氧化钠溶液,加温至60℃左右,以机械喷淋或浸泡方式去除,去膜速度越快越有利于提高生产效率。
去膜形式最好是呈片状剥离,剥离下来的碎片通过过滤网除去,这样既有利于去膜溶液的使用寿命,也可以减少对喷咀的堵塞。
通常在3—5 %(重量比)的氢氧化钠溶液中,液温60土10℃,一级指标为去膜时间30—75秒,二级指标为去膜时间60—150秒,去膜后无残胶。
干膜在储存过程中可能由于溶剂的挥发而变脆,也可能由于环境温度的影响而产生热聚合,或因抗蚀剂产生局部流动而造成厚度不均匀即所谓冷流,这些都严重影响干膜的使用。
因此在良好的环境里储存干膜是十分重要的。
干膜应储存在阴凉而洁净的室内,防止与化学药品和放射性物质一起存放。
储存条件为:黄光区,温度低于27℃(5—21 ℃为最佳),相对湿度50%左右。
储存期从出厂之日算起不大于六个月,超过储存期检验合格者仍可使用。
在储存和运输过程中应避免受潮、受热、受机械损伤和受日光直接照射。
在生产操作过程中为避免漏曝光和重曝光,干膜在曝光前后颜色应有明显的变化,这就是干膜的变色性能。
当使用于膜作为掩孔蚀刻时,要求干膜具有足够的柔韧性,以能够承受显影过程、蚀刻过程液体压力的冲击而不破裂,这就是干膜的掩蔽性能。