第五讲中值定理的证明分析
- 格式:doc
- 大小:269.50 KB
- 文档页数:7
中值定理证明方法总结中值定理(Intermediate Value Theorem)是微积分中的一项重要定理,它表明如果一个连续函数$f(x)$在闭区间$[a,b]$上取两个不同的值$f(a)$和$f(b)$,那么在开区间$(a,b)$内,函数$f(x)$必然取到介于$f(a)$和$f(b)$之间的所有值。
中值定理的证明是通过构造一个辅助函数$g(x)$,它将闭区间$[a,b]$映射到实数区间$[f(a),f(b)]$上,并利用连续函数的性质来证明中值定理。
证明过程如下:1.首先,我们定义辅助函数$g(x)=f(x)-k$,其中$k$是一个常数。
我们的目标是证明如果$g(a)$和$g(b)$异号,那么在开区间$(a,b)$内,$g(x)$必然等于$0$。
2.根据函数$g(x)$的定义,我们可以得到$g(a)=(f(a)-k)$和$g(b)=(f(b)-k)$。
由于$g(a)$和$g(b)$异号,即$(f(a)-k)$和$(f(b)-k)$异号,所以$g(x)$在$[a,b]$上一定有一个根。
3. 接下来,我们要证明在开区间$(a,b)$内,$g(x)$没有其他根。
假设在$(a,b)$内存在一个根$x=c$,即$g(c)=0$。
根据连续函数的性质,我们有$\lim_{x \to c} g(x) = g(c) = 0$。
又因为$f(x)$是连续函数,所以$\lim_{x \to c} f(x) = f(c)$。
4. 根据极限的性质,我们有$\lim_{x \to c} g(x) = \lim_{x \to c} [f(x)-k] = f(c)-k$。
由于$\lim_{x \to c} g(x) = 0$,所以$f(c)-k=0$,即$f(c)=k$。
这意味着$f(c)-k=0$是$g(x)$的唯一根。
5.综上所述,我们可以得出结论,如果$g(a)$和$g(b)$异号,那么在开区间$(a,b)$内,$g(x)$的根只有$f(c)-k=0$。
罗尔中值定理的内容及证明方法(一)定理的证明证明:因为函数)(x f 在闭区间[]b a ,上连续,所以存在最大值与最小值,分别用M 和m 表示,现在分两种情况讨论:1.若m M =,则函数)(x f 在闭区间[]b a ,上必为常数,结论显然成立。
2.若m M >,则因为)()(b f a f =使得最大值M 与最小值m 至少有一个在()b a ,内某点ξ处取得,从而ξ是)(x f 的极值点,由条件)(x f 在开区间()b a ,内可导得,)(x f 在ξ处可导,故由费马定理推知:0)('=ξf 。
(二)罗尔中值定理类问题的证明罗尔中值定理在微分学解题中有着广泛的应用,下面我们就对罗尔中值定理的应用作深入的研究,归纳出证题技巧。
1.形如“在()b a ,内至少存在一点ξ,使k f =)('ξ”的命题的证法。
(1)当0=k 时,一般这种情况下,我们只需验证)(x f 满足罗尔定理的条件,根据罗尔定理来证明命题。
在证明过程中,我们要注意区间的选取,有时候所需验证的条件并不是显而易见的。
例1 设)(x f 在闭区间[]1,0上连续,开区间()1,0内可导,⎰=132)(3)0(dx x f f 。
证明:()1,0∈∃ξ,使0)('=ξf分析:由于所需验证的罗尔中值定理的条件并不是显而易见的,而且这个问题涉及到定积分,所以我们考虑运用积分中值定理的知识,尝试在()1,0中找到一个区间()η,0,在()η,0中运用罗尔中值定理去证明。
证:因为⎥⎦⎤⎢⎣⎡∈=-==⎰1,32,)()()321(3)(3)0(132ηηηf f dx x f f 显然)(x f 在闭区间[]η,0上连续,在开区间()η,0内可导根据罗尔定理,()1,0∈∃ξ,使0)('=ξf(2)当0≠k 时,若所证明的等式中不出现端点值,则将结论化为:0)('=-k f ξ的形式,构造辅助函数)(x F ,我们就可以运用(1)中的方法证明命题。
中值定理知识点总结中值定理的表述:若函数f(x)在闭区间[a, b]上连续,在开区间(a, b)上可导,则存在一个点c∈(a, b),满足f'(c) = (f(b) - f(a))/(b - a)。
中值定理的证明比较简单,可以根据函数的连续性和可导性来进行推导。
接下来我们来详细介绍中值定理的知识点。
一、中值定理的条件中值定理的前提是函数在闭区间上连续,在开区间上可导。
这两个条件都是至关重要的,只有同时满足这两个条件,中值定理才成立。
1. 函数在闭区间上连续:闭区间[a, b]是一个包含了a和b的区间,函数在闭区间上连续意味着函数在这个区间内没有间断点,没有跳跃点,图象是一条连续的曲线。
一般来说,函数在有限区间上都是连续的,因此这个条件通常是满足的。
2. 函数在开区间上可导:开区间(a, b)是一个不含a和b的区间,函数在开区间上可导意味着函数在这个区间上具有导数。
可导性是指函数在这个区间内存在切线,即函数在这个区间内是光滑的。
这个条件比较严格,只有在一些特殊的情况下才能满足。
二、中值定理的应用中值定理主要用来描述函数在某个区间内的平均变化率与瞬时变化率之间的关系。
它可以推导出一些重要的结论和定理,对于理解函数的性质和特点有很大的帮助。
1. 平均变化率和瞬时变化率:中值定理可以用来比较函数在闭区间上的平均变化率和在开区间上的瞬时变化率。
平均变化率指的是函数在某个区间内的整体变化情况,而瞬时变化率指的是函数在某一点的瞬间变化情况。
中值定理表明,这两者之间存在着某种联系,通过中值定理可以求得函数在某个区间内的平均变化率和在某一点的瞬时变化率之间的对应关系。
2. 函数的增减性:中值定理可以用来研究函数的增减性。
通过中值定理可以求得函数在某个区间内的导数值,在这个区间上的函数是增加还是减小。
这对于研究函数的极值和拐点有很大的帮助。
3. 函数的凹凸性:中值定理可以用来研究函数的凹凸性。
通过中值定理可以求得函数在某个区间内的二阶导数值,根据二阶导数的正负性可以判断函数在这个区间上的凹凸性,这对于求解函数的拐点和凹凸区间有很大的帮助。
中值定理首先我们来看看几大定理:1、 介值定理:设函数f(x)在闭区间[a,b]上连续,且在该区间的端点取不同的函数值f(a)=A 及f(b)=B ,那么对于A 与B 之间的任意一个数C ,在开区间(a,b)内至少有一点ξ使得f(ξ)=C(a<ξ<b).Ps:c 是介于A 、B 之间的,结论中的ξ取开区间。
介值定理的推论:设函数f(x)在闭区间[a,b]上连续,则f(x)在[a,b]上有最大值M ,最小值m,若m ≤C ≤M,则必存在ξ∈[a,b], 使得f(ξ)=C 。
(闭区间上的连续函数必取得介于最大值M 与最小值m 之间的任何值。
此条推论运用较多)Ps :当题目中提到某个函数f(x),或者是它的几阶导函数在某个闭区间上连续,那么该函数或者其几阶导函数必可以在该闭区间上取最大值和最小值,那么就对于在最大值和最小值之间的任何一个值,必存在一个变量使得该值等于变量处函数值。
2、 零点定理:设函数f(x)在闭区间[a,b]上连续,且f(a)与f(b)异号,即f(a).f(b)<0,那么在开区间内至少存在一点ξ使得f(ξ)=0.Ps:注意条件是闭区间连续,端点函数值异号,结论是开区间存在点使函数值为0.3、 罗尔定理:如果函数f(x)满足:(1)、在闭区间[a,b]上连续; (2)、在开区间(a,b)内可导; (3)、在区间端点处函数值相等,即f(a)=f(b). 那么在(a,b)内至少有一点ξ(<a ξ<b),使得f`(x)=0;4、 拉格朗日中值定理:如果函数f(x)满足:(1)、在闭区间[a,b]上连续; (2)、在开区间(a,b)内可导;那么在(a,b)内至少有一点ξ(<a ξ<b),使得 f(b)-f(a)=f`(ξ).(b-a).5、 柯西中值定理:如果函数f(x)及g(x)满足(1)、在闭区间[a,b]上连续; (2)、在开区间(a,b)内可导; (3)、对任一x(a<x<b),g`(x)≠0, 那么在(a,b)内至少存在一点ξ,使得)`()`()()()()(ξξg f a g b g a f b f =--Ps :对于罗尔定理、拉格朗日中值定理、柯西中值定理结论都是开开区间内取值。
第四讲 中值定理的证明技巧一、 考试要求1、 理解闭区间上连续函数的性质(最大值、最小值定理,有界性定理,介值定理),并会应用这些性质。
2、 理解并会用罗尔定理、拉格朗日中值定理、泰勒定理,了解并会用柯西中值定理。
掌握这四个定理的简单应用(经济)。
3、 了解定积分中值定理。
二、 内容提要1、 介值定理(根的存在性定理)(1)介值定理 在闭区间上连续的函数必取得介于最大值 M 与最小值m 之间的任何值.(2)零点定理设f(x)在[a 、b]连续,且f(a)f(b)<0,则至少存在一点,c ∈(a 、b),使得f(c)=02、 罗尔定理若函数)(x f 满足:(1))(x f 在[]b a ,上连续(2))(x f 在),(b a 内可导(3))()(b f a f =则一定存在),(b a ∈ξ使得0)('=ξf3、 拉格朗日中值定理若函数)(x f 满足:(1))(x f 在[]b a ,上连续(2))(x f 在),(b a 内可导则一定存在),(b a ∈ξ,使得))((')()(a b f a f b f -=-ξ4、 柯西中值定理若函数)(),(x g x f 满足:(1)在[]b a ,上连续(2)在),(b a 内可导(3)0)('≠x g则至少有一点),(b a ∈ξ使得)(')(')()()()(ξξg f a g b g a f b f =--5、 泰勒公式如果函数)(x f 在含有0x 的某个开区间),(b a 内具有直到1+n 阶导数, 则当x 在),(b a 内时, )(x f 可以表示为0x x -的一个n 次多项式与一个余项)(x R n 之和,即 )())((!1 ))((!21))(()()(00)(200000x R x x x f n x x x f x x x f x f x f n n n +-+⋅⋅⋅+-''+-'+= 其中10)1()()!1()()(++-+=n n n x x n f x R ξ (ξ介于0x 与x 之间).在需要用到泰勒公式时,必须要搞清楚三点:1.展开的基点;2.展开的阶数;3.余项的形式.其中余项的形式,一般在求极限时用的是带皮亚诺余项的泰勒公式,在证明不等式时用的是带拉格朗日余项的泰勒公式.而基点和阶数,要根据具体的问题来确定.6、 积分中值定理若f(x)在[a 、b]上连续,则至少存在一点c ∈[a 、b],使得ba ⎰f(x)dx=f(c)(b-a)三、 典型题型与例题题型一 、与连续函数相关的问题(证明存在ξ使0)(=ξf 或方程f(x)=0有根)例1、设)(x f 在[a,b]上连续,),,2,1(0,21n i c b x x x a i n ΛΛ=><<<<<,证明存在],[b a ∈ξ ,使得nn n c c c x f c x f c x f c f ++++++=ΛΛ212211)()()()(ξ例2、设)(,0x f a b >>在[a,b]上连续、单调递增,且0)(>x f ,证明存在),(b a ∈ξ使得 )(2)()(222ξξf a f b b f a =+例3、设)(x f 在[a,b]上连续且0)(>x f ,证明存在),(b a ∈ξ使得⎰⎰⎰==b b a a dx x f dx x f dx x f ξξ)(21)()(。
例4、设)(),(x g x f 在[a,b]上连续,证明存在),(b a ∈ξ使得⎰⎰=b a dx x g f dx x f g ξξξξ)()()()(例5、 设f(x)在[0,1]上连续,且f(x)<1. 证明:210x f t dt x-=⎰()在(0,1)内有且仅有一个实根。
例6、设实数n a a a ,,,21Λ满足关系式012)1(3121=--++--n a a a n n Λ,证明方程 0)12cos(3cos cos 21=-+++x n a x a x a n Λ,在)2,0(π内至少有一实根。
例7、(0234,6分)设函数f(x),g(x)在[a,b]上连续,且g(x)>0,利用闭区间上连续函数的性质,证明存在一点],[b a ∈ξ使得⎰⎰=ba ba dx x g f dx x g x f )()()()(ξ题型二、 验证满足某中值定理例8、验证函数⎪⎪⎩⎪⎪⎨⎧>≤-=1,11,23)(2x xx x x f ,在[0,2]上满足拉格朗日中值定理,并求满足定理的ξ题型三、 证明存在ξ, 使fn ()()ξ=0(n=1,2,…)例9、设)(x f 在[a,b]上可导且0)()(<''-+b f a f ,证明至少存在一个),(b a ∈ξ使得0)(='ξf例10、设)(x f 在[0,3]上连续,在(0,3)内可导,且1)3(,3)2()1()0(==++f f f f ,证明存在一个)3,0(∈ξ使得0)(='ξf例11、设)(x f 在[0,2]上连续,在(0,2)内具有二阶导数且12112()lim 0,2()(2)cos x f x f x dx f x π→==⎰,证明存在)2,0(∈ξ使得0)(=''ξf题型四、 证明存在ξ, 使G f f (,(),())ξξξ'=0(1) 用罗尔定理1) 原函数法:例12、设)(),(x g x f 在[a,b]上连续,在(a,b)内可导,且)),((0)(b a x x g ∈≠',求证存在),(b a ∈ξ使得)()()()()()(ξξξξg f b g g f a f ''=--例13、(0134)设f(x)在[0,1]上连续,(0,1)内可导,且⎰>=-k x k dx x f xe k f 1011,)()1(证明:在(0,1)内至少存在一点ξ, 使 ).()1()(1ξξξf f --='例14、 设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)f(b)>0,f(a)⋅+<f a b (),20 g(x)在[a,b]上连续,试证对∃∈'=ξξξξ(,),()()().a b f g f 使得.*例15、 设f(x)在[0,1]上连续,在(0,1)内一阶可导,且⎰⎰==10100)(,0)(dx x xf dx x f . 试证:),1,0(∈∃ξ使得 )()1()(1ξξξf f -+='.2) 常微分方程法:例16、设)(x f 在[a,b]上连续,在(a,b)内可导,且λ==)()(b f a f ,证明存在),(b a ∈ξ使得λξξ=+')()(f f例17、设f(x)在[0,1]上连续,在(0,1)内可导,且 f(0)=0, f(1)=1, 证明:对任意实数λξ,)必存在(,∈01 , 使得'--=f f ()[()]ξλξξ1(2) 直接用拉格朗日或柯西中值定理例18、设)(x f 在],[b a 上连续,在),(b a 内可导,求证存在ξ∈(,)a b ,使得bf b af a b af f ()()()()--='+ξξξ例19、设)(x f 在],[b a 上连续,在),(b a 内可导,求证存在ξ∈(,)a b ,使得1)],()([)()(11≥'+=--n f nf b f a f a b a b n n n ξξξξ例20、设)(x f 在],[b a 上连续,在),(b a 内可导)0(b a <<,求证存在ξ∈(,)a b ,使得 f b f a b af ()()ln ()-='ξξ例21、设)(x f 在],[b a 上连续,在),(b a 内可导)0(b a <<,求证存在ξ∈(,)a b ,使得 f b f a b a a ab b f ()()()()--=++'2223ξξ题型5、 含有''f ()ξ(或更高阶导数)的介值问题例22、 设f(x)在[0,1]上二阶可导,且f(0)=f(1), 试证至少存在一个ξ∈(,)01, 使''='-f f ()()ξξξ21例23、(012,8分)设)(x f 在)0](,[>-a a a 上具有二阶连续导数,f(0)=0(1) 写出f(x)的带拉氏余项的一阶麦克劳林公式。
(2) 证明在],[a a -上至少存在一个η使得⎰-=''aa dx x f f a )(3)(3η例24、 设f(x)在[-1, 1]上具有三阶连续导数,且f(-1)=0, f(1)=1, f '(0)=0, 证明: 在(-1,1)内存在一点ξ,使得'''=f ().ξ3题型6、 双介值问题F (,,)ξηΛ=0例25、例1、设)(x f 在[a,b]上连续,在(a,b)内可导,b a <<0,求证存在),(,b a ∈ηξ使得)(2)()(b a f f +'='ηηξ例26、(051,12分)已知函数)(x f 在[0,1]上连续,在(0,1)内可导,且1)1(,0)0(==f f证明:(1)存在)1,0(∈ξ,使得ξξ-=1)(f(2)存在两个不同的点)1,0(,∈ςη使得1)()(=''ςηf f题型7、 综合题例27、(011,7分)设函数)(x f 在(-1,1)内具有二阶连续导数,且0)(≠''x f ,试证(1) 对于(-1,1)内的任意0≠x ,存在唯一的)1,0()(∈x θ使得 ()(0)(())f x f xf x x θ'=+成立(2)21)(lim 0=→x x θ例28、试证明若)(x f 在[a,b]上存在二阶导数,且0)()(='='b f a f ,则存在),(b a ∈ξ使得)()()(4)(2a f b f a b f --≥''ξ*例29、设e<a<b, 求证:在(a,b)内存在唯一的点ξ,使得ae a b e b e a b ----=ln ln 110ξξ。