单片机C51串口中断接收和发送范例
- 格式:doc
- 大小:22.00 KB
- 文档页数:3
51单片机中断程序例子
1. 外部中断:当外部信号引脚检测到高电平时,单片机会触发外部中断服务程序。
可以利用外部中断实现按键扫描功能,当按键按下时,触发中断程序对按键进行处理。
2. 定时器中断:利用定时器中断可以实现精确的时间控制。
例如,我们可以设置定时器中断为1秒,当定时器溢出时,触发中断程序,实现1秒钟执行一次的任务。
3. 串口中断:当接收到串口数据时,单片机会触发串口中断服务程序,可以利用串口中断实现串口通信功能。
4. ADC中断:当模数转换器完成一次转换时,单片机会触发ADC中断服务程序,可以利用ADC中断实现模拟信号的采集和处理。
5. 看门狗中断:看门狗定时器溢出时,单片机会触发看门狗中断服务程序,可以利用看门狗中断实现系统复位或其他相关功能。
6. 外部中断优先级:当多个外部中断同时触发时,可以通过设置外部中断的优先级来确定触发的顺序和优先级。
7. 定时器中断优先级:当多个定时器中断同时触发时,可以通过设置定时器中断的优先级来确定触发的顺序和优先级。
8. 中断嵌套:单片机支持中断嵌套,即在一个中断服务程序中触发
另一个中断服务程序,可以通过中断嵌套实现复杂的任务处理。
9. 中断屏蔽:单片机支持对中断的屏蔽,即可以通过设置中断屏蔽标志位来屏蔽某些中断,使其暂时不被触发。
10. 中断标志位:单片机提供中断标志位,用于标识中断是否被触发。
在中断服务程序中,可以通过读取和清除中断标志位来判断中断是否发生。
以上是根据51单片机中断程序的例子进行的描述,这些例子涵盖了常见的中断类型和相关功能。
通过学习和理解这些例子,可以更好地掌握51单片机中断编程的原理和方法。
51单片机串口通信(相关例程) 51单片机串口通信(相关例程)一、简介51单片机是一种常用的微控制器,它具有体积小、功耗低、易于编程等特点,被广泛应用于各种电子设备和嵌入式系统中。
串口通信是51单片机的常见应用之一,通过串口通信,可以使单片机与其他外部设备进行数据交互和通信。
本文将介绍51单片机串口通信的相关例程,并提供一些实用的编程代码。
二、串口通信基础知识1. 串口通信原理串口通信是通过串行数据传输的方式,在数据传输过程中,将信息分为一个个字节进行传输。
在51单片机中,常用的串口通信标准包括RS232、RS485等。
其中,RS232是一种常用的串口标准,具有常见的DB-9或DB-25连接器。
2. 串口通信参数在进行串口通信时,需要设置一些参数,如波特率、数据位、停止位和校验位等。
波特率表示在单位时间内传输的比特数,常见的波特率有9600、115200等。
数据位表示每个数据字节中的位数,一般为8位。
停止位表示停止数据传输的时间,常用的停止位有1位和2位。
校验位用于数据传输的错误检测和纠正。
三、串口通信例程介绍下面是几个常见的51单片机串口通信的例程,提供给读者参考和学习:1. 串口发送数据```C#include <reg51.h>void UART_Init(){TMOD = 0x20; // 设置计数器1为工作方式2(8位自动重装) TH1 = 0xFD; // 设置波特率为9600SCON = 0x50; // 设置串口工作方式1,允许串行接收TR1 = 1; // 启动计数器1}void UART_SendChar(unsigned char dat){SBUF = dat; // 发送数据while (!TI); // 等待发送完成TI = 0; // 清除发送完成标志}void main(){UART_Init(); // 初始化串口while (1){UART_SendChar('A'); // 发送字母A}}```2. 串口接收数据```C#include <reg51.h>void UART_Init(){TMOD = 0x20; // 设置计数器1为工作方式2(8位自动重装) TH1 = 0xFD; // 设置波特率为9600SCON = 0x50; // 设置串口工作方式1,允许串行接收TR1 = 1; // 启动计数器1}void UART_Recv(){unsigned char dat;if (RI) // 检测是否接收到数据{dat = SBUF; // 读取接收到的数据 RI = 0; // 清除接收中断标志// 处理接收到的数据}}void main(){UART_Init(); // 初始化串口EA = 1; // 允许中断ES = 1; // 允许串口中断while (1)// 主循环处理其他任务}}```3. 串口发送字符串```C#include <reg51.h>void UART_Init(){TMOD = 0x20; // 设置计数器1为工作方式2(8位自动重装) TH1 = 0xFD; // 设置波特率为9600SCON = 0x50; // 设置串口工作方式1,允许串行接收TR1 = 1; // 启动计数器1}void UART_SendString(unsigned char *str){while (*str != '\0')SBUF = *str; // 逐个发送字符while (!TI); // 等待发送完成TI = 0; // 清除发送完成标志str++; // 指针指向下一个字符}}void main(){UART_Init(); // 初始化串口while (1){UART_SendString("Hello, World!"); // 发送字符串}}```四、总结本文介绍了51单片机串口通信的基础知识和相关编程例程,包括串口发送数据、串口接收数据和串口发送字符串。
51系列单片机串口中断最近在项目上又做了一次51的串口中断,认为又学习一点新知识,跟大家分享一下。
以前都是用了很简单串口应用,这次主要是要在串口应用的基础上,再做一个自定义的通信协议在里面,所以串口部分在编程的时候遇到一些我以前没有遇到过的情况。
比如:我要连续的输出两个8bit,就出现了只能输出一个,或者是前面的那个或者是后面那个,并且在我连续发送我定义在串口的里面的通信协议的命令的时候出现了串口部分的死机。
在调试的过程中我在每次的传输后面加上了延时是程序,但是并不能根本解决这个问题,但是这个延时程序加上后让我意识到问题是在等待上一个字节的发送上出了问题。
于是我在发送字节后面加上这样的代码:while(!TI)TI=0;这个代码加上后,是暂时解决了问题,但是如果我连续不停的通过串口下我定义的通信协议命令还是会串口死掉,因为我定义的通信协议每次发送不同的命令都要有对应的命令和值返回,那这样在整个过程中,T I一直在被操作。
我个人想法,可能是那个语句在等待TI置位的时候一直不停地在忘里面重写TI的值,所以我又讲上面的代码换成:while(!TI);这回我的想法得到了应证,换成该代码后,所有的一切都达到了我想要的状态。
这里就稍微介绍一下while();循环语句在等待的应用。
在小段的代码里面完全可以加延时程序,但是在大的代码里面,执行时间和效率显的很重要,因为要考虑到整个代码一个大循环的执行时间。
考虑这个时间原因很简单,现在好多项目在开发的时候,看门狗都是用的外部硬件来实现的,如果整个程序的执行时间超过了外部看门狗的复位时间,那情况是可以想象的,而且一旦出现了这样的问题,尤其是新手,一般是不会想到这个问题的。
所以在一些要等待的地方加上一个很有效率的死循环,有时会很有效果。
while 语句解释为,当条件不满足的时候就跳出来,条件满足的时间就一直执行while语句体里面的语句。
而我用的while(!TI);就是让死循环做一个事件就是等TI=1,一旦TI=1也就是条件变成了假,这个时候就跳出了死循环,继续下面的工作。
//这是一个单片机C51串口接收(中断)和发送例程,可以用来测试51单片机的中断接收//和查询发送,另外我觉得发送没有必要用中断,因为程序的开销是一样#include <reg52.h>#include <string.h>#define INBUF_LEN 4//数据长度unsigned char inbuf1[INBUF_LEN];unsigned char checksum,count3;bit read_flag=0;void init_serialcomm(void){SCON = 0x50; //SCON: serail mode 1, 8-bit UART, enable ucvr TMOD |= 0x20; //TMOD: timer 1, mode 2, 8-bit reloadPCON |= 0x80; //SMOD=1;TH1 = 0xF4; //Baud:4800 fosc="11".0592MHzIE |= 0x90; //Enable Serial InterruptTR1 = 1; // timer 1 run// TI="1";}//向串口发送一个字符void send_char_com(unsigned char ch){SBUF="ch";while(TI==0);TI=0;}//向串口发送一个字符串,strlen为该字符串长度void send_string_com(unsigned char *str,unsigned int strlen){unsigned int k=0;do{send_char_com(*(str + k));k++;} while(k < strlen);}//串口接收中断函数void serial () interrupt 4 using 3{if(RI){unsigned char ch;RI = 0;ch="SBUF";if(ch>127){count3=0;inbuf1[count3]=ch;checksum= ch-128;}else{count3++;inbuf1[count3]=ch;checksum ^= ch;if( (count3==(INBUF_LEN-1)) && (!checksum) ){read_flag=1; //如果串口接收的数据达到INBUF_LEN个,且校验没错,//就置位取数标志}}}}main(){init_serialcomm(); //初始化串口while(1){if(read_flag) //如果取数标志已置位,就将读到的数从串口发出 {read_flag=0; //取数标志清0send_string_com(inbuf1,INBUF_LEN);}}}。
51 单片机的串口,是个全双工的串口,发送数据的同时,还可以接收数据。
当串行发送完毕后,将在标志位TI 置1,同样,当收到了数据后,也会在RI 置1。
无论RI 或TI 出现了1,只要串口中断处于开放状态,单片机都会进入串口中断处理程序。
在中断程序中,要区分出来究竟是发送引起的中断,还是接收引起的中断,然后分别进行处理。
看到过一些书籍和文章,在串口收、发数据的处理方法上,很多人都有不妥之处。
接收数据时,基本上都是使用“中断方式”,这是正确合理的。
即:每当收到一个新数据,就在中断函数中,把RI 清零,并用一个变量,通知主函数,收到了新数据。
发送数据时,很多的程序都是使用的“查询方式”,就是执行while(TI ==0); 这样的语句来等待发送完毕。
这时,处理不好的话,就可能带来问题。
看了一些网友编写的程序,发现有如下几条容易出错:1.有人在发送数据之前,先关闭了串口中断!等待发送完毕后,再打开串口中断。
这样,在发送数据的等待期间内,如果收到了数据,将不能进入中断函数,也就不会保存的这个新收到的数据。
这种处理方法,就会遗漏收到的数据。
2.有人在发送数据之前,并没有关闭串口中断,当TI = 1 时,是可以进入中断程序的。
但是,却在中断函数中,将TI 清零!这样,在主函数中的while(TI ==0);,将永远等不到发送结束的标志。
3.还有人在中断程序中,并没有区分中断的来源,反而让发送引起的中断,执行了接收中断的程序。
对此,做而论道发表自己常用的方法:接收数据时,使用“中断方式”,清除RI 后,用一个变量通知主函数,收到新数据。
发送数据时,也用“中断方式”,清除TI 后,用另一个变量通知主函数,数据发送完毕。
这样一来,收、发两者基本一致,编写程序也很规范、易懂。
更重要的是,主函数中,不用在那儿死等发送完毕,可以有更多的时间查看其它的标志。
实例:求一个PC 与单片机串口通信的程序,要求如下:1、如果在电脑上发送以$开始的字符串,则将整个字符串原样返回(字符串长度不是固定的)。
51单片机串口通信连续发送接收字节当使用单片机串口通信,连续发送字节时,如何处理呢?使用串口中断接收发送字节,中断内的程序尽可能简单,因为考虑到占用时间。
本文以连续发送4个字节为例,给出例程如下所示:本例程使用的单片机型号为:IAP15W4K58S//工作频率为11.0592MHz#include "reg51.h"#include "intrins.h"typedef unsigned char BYTE;typedef unsigned int WORD;#define FOSC 11059200L //系统频率//#define BAUD 115200 //#define BAUD 9600 //定义串口波特率#define Num_byte 4 //接收数据4个字节BYTE Data_temp[Num_byte]={0,0,0,0};sfr P0M1 = 0x93;sfr P0M0 = 0x94;sfr P1M1 = 0x91;sfr P1M0 = 0x92;sfr P2M1 = 0x95;sfr P2M0 = 0x96;sfr P3M1 = 0xb1;sfr P3M0 = 0xb2;sfr P4M1 = 0xb3;sfr P4M0 = 0xb4;sfr P5M1 = 0xC9;sfr P5M0 = 0xCA;sfr P6M1 = 0xCB;sfr P6M0 = 0xCC;sfr P7M0 = 0xE2;sfr AUXR = 0x8e; //辅助寄存器sfr T2H = 0xd6; //定时器2高8位sfr T2L = 0xd7; //定时器2低8位sfr P_SW1 = 0xA2; //外设功能切换寄存器1sbit LED1=P1^1;sbit LED2=P1^2;bit busy=0; //定义是否接收完4个字节BYTE num=0; //记录4个字节的数据void SendData(BYTE dat);void SendString(char *s);BYTE read_Byte();void delay();void main(){P0M0 = 0x00;P0M1 = 0x00;P1M0 = 0x00;P1M1 = 0x00;P2M0 = 0x00;P2M1 = 0x00;P3M0 = 0x00;P3M1 = 0x00;P4M0 = 0x00;P4M1 = 0x00;P5M0 = 0x00;P5M1 = 0x00;P6M0 = 0x00;P7M0 = 0x00;P7M1 = 0x00;P_SW1 &= 0x3F; //(P3.0/RxD, P3.1/TxD)SCON = 0x50; //8位可变波特率,允许接收T2L = (65536 - (FOSC/4/BAUD)); //设置波特率重装值T2H = (65536 - (FOSC/4/BAUD))>>8;AUXR = 0x15; //T2为1T模式, 并启动定时器2,选择定时器2为串口1的波特率发生器ES = 1; //使能串口1中断EA = 1;//SendString("STC15F2K60S2\r\nUart Test !\r\n");while(1){if(busy){ES=0;for(num=0;num<Num_byte;num++){SBUF= Data_temp[num]+0x05;while(!TI);TI=0;}num=0;ES=1;busy=0;}//SendData(3);//delay();//delay();;}/*----------------------------UART 中断服务程序-----------------------------*/void Uart() interrupt 4 using 1{ES=0;RI = 0; //清除RI位Data_temp[num++]= SBUF;if(num==Num_byte)busy=1;ES=1;}/*----------------------------发送串口数据----------------------------*/void SendData(BYTE dat){while (busy); //等待前面的数据发送完成SBUF = dat; //写数据到SBUF寄存器busy = 1;}/*----------------------------发送字符串----------------------------*/void SendString(char *s){while (*s) //检测字符串结束标志{SendData(*s); //发送当前字符s++;}//接收1个字节BYTE read_Byte(){ BYTE character;character = SBUF;return character;}void delay(){ BYTE i,j;for(i=220;i--;i>0)for(j=220;j--;j>0); }。
51单片机中断程序例子1. 外部中断程序:外部中断是指由外部设备或外部信号触发的中断。
在51单片机中,通过设置中断允许位和中断优先级来实现对外部中断的响应。
例如,当外部设备发出一个信号时,单片机可以立即停止当前任务,转而执行外部中断程序。
外部中断程序的编写需要根据具体的外部设备和信号进行相应的处理,如读取设备状态、处理数据等。
通过外部中断程序,可以实现单片机与外部设备的互动和数据交换。
2. 定时器中断程序:定时器中断是指通过设置定时器的计数值和中断允许位,使得在指定的时间间隔内触发中断。
在51单片机中,可以通过定时器中断来实现定时任务的执行。
例如,可以设置一个定时器,在每隔一定的时间就触发中断,然后在中断程序中执行相应的任务,如数据采集、数据处理等。
通过定时器中断程序,可以实现定时任务的自动执行,提高系统的实时性和可靠性。
3.串口中断程序:串口中断是指通过串口通信接口接收或发送数据时触发的中断。
在51单片机中,可以通过设置串口中断允许位和中断优先级来实现对串口数据的中断处理。
例如,当接收到一个完整的数据包时,单片机可以立即停止当前任务,转而执行串口中断程序,对接收到的数据进行处理。
通过串口中断程序,可以实现单片机与外部设备的数据交换和通信。
4. ADC中断程序:ADC(模数转换器)中断是指在进行模数转换时触发的中断。
在51单片机中,可以通过设置ADC中断允许位和中断优先级来实现对模数转换结果的中断处理。
例如,当模数转换完成后,单片机可以立即停止当前任务,转而执行ADC中断程序,对转换结果进行处理和分析。
通过ADC中断程序,可以实现对模拟信号的采集和处理,用于实时监测和控制。
5. 外部中断优先级设置:在51单片机中,可以通过设置外部中断的中断优先级来确定中断的响应顺序。
中断优先级越高,优先级越高的中断会先被响应。
通过合理设置中断优先级,可以确保关键任务的及时响应和执行。
例如,当多个外部设备同时发出中断信号时,可以通过设置优先级,确保先响应优先级高的设备,保证系统的正常运行。
51单片机串行口中断服务程序单片机串行口中断服务程序是指在单片机进行串行通信时,当接收到数据时会触发中断,然后执行相应的中断服务程序。
下面是一个示例的单片机串行口中断服务程序,共计1200字以上。
#include <reg51.h> // 引入reg51.h头文件//定义串行口中断标志sbit RI_FLAG = P3^0; // 数据接收中断标志sbit TI_FLAG = P3^1; // 数据发送中断标志//定义串行口接收数据缓冲区unsigned char receiveBuffer[10];unsigned char receiveCount = 0;//定义串行口发送数据缓冲区unsigned char sendBuffer[10];unsigned char sendCount = 0;//串行口中断服务函数void serialInterrupt( interrupt 4if(RI_FLAG) // 判断是否是数据接收中断receiveBuffer[receiveCount] = SBUF; // 读取串行口接收数据receiveCount++; // 接收计数加1RI_FLAG=0;//清除中断标志位}if(TI_FLAG) // 判断是否是数据发送中断if(sendCount < 10) // 判断是否还有数据需要发送SBUF = sendBuffer[sendCount]; // 发送串行口数据sendCount++; // 发送计数加1}elsesendCount = 0; // 重置发送计数TI_FLAG=0;//清除中断标志位}}//主函数void mainES=1;//允许串行口中断TMOD=0x20;//设置定时器1为模式2,串行口使用定时器1 TH1=0xFD;//设置波特率为9600,定时器初值为0xFDTL1=0xFD;//定时器初值为0xFDSCON=0x50;//设置串行口工作在方式1,允许接收TR1=1;//启动定时器1while(1)//主程序逻辑//将数据存入发送缓冲区sendBuffer[0] = 'H';sendBuffer[1] = 'e';sendBuffer[2] = 'l';sendBuffer[3] = 'l';sendBuffer[4] = 'o';sendBuffer[5] = '\r'; // 发送回车符sendBuffer[6] = '\n'; // 发送换行符while(sendCount != 0) //等待数据发送完毕//主程序逻辑}}。
c51单片机从串口接收发送字符串#include 〈reg52。
h>#define uchar unsigned char#define uint unsigned intuchar data table[10]; //暂存数组,可以将10改为你需要的数值/***********************************************串行口初始化波特率9600,定时器1,工作方式2 *************************************************/void serial_init(void){TMOD=0x20;//计时器1作为比特率发生器,方式2TH1=0xfd;TL1=0xfd; //装入初值TR1=1;//计时中断允许SM0=0;SM1=1;//串行口工作于方式2ES=1;//串行口中断允许REN=1;//接收允许EA=1;// 总中断允许}/***********************************************串行口传送数据传送显示数组各字符给计算机*************************************************/void send(uchar *dis){while(*dis!='\0’){SBUF=*dis;dis++;while(!TI);TI=0; //软件请发送中断}}void main(){serial_init();//初始化while(SBUF!=0x0d);//计算机键盘按下回车键,则开始将接收到的数据回传给计算机send(table);}/***********************************************串行中断服务函数单片机接收数据,存入table数组*************************************************/ void serial() interrupt 4{int i;ES=0; //关串口中断table[i++]=SBUF;//命令存到命令数组RI=0; //软件清除接收中断ES=1;//开串口中断}已经通过proteus仿真如下。
单片机串口通信在嵌入式系统中具有非常重要的作用,而其中串口中断的编写方式更是至关重要。
今天我们来讨论一下51单片机串口中断的两种写法。
1. 外部中断写法在51单片机中,串口通信一般使用串口中断来实现。
外部中断写法是一种常见的串口中断编写方式。
其具体步骤如下:1)需要设置串口工作参数,包括波特率、数据位、停止位和校验位等。
2)在主程序中使能串口中断,并设置中断优先级。
3)在中断服务函数中进行接收数据的处理,可以通过接收缓冲区、中断标志位等来判断接收数据的情况,并进行相应的处理。
2. 定时器中断写法除了外部中断写法,定时器中断也是一种常见的串口中断编写方式。
其具体步骤如下:1)同样需要设置串口工作参数,包括波特率、数据位、停止位和校验位等。
2)在主程序中初始化定时器,并使能定时器中断。
3)在定时器中断服务函数中进行接收数据的处理,同样可以通过接收缓冲区、中断标志位等来判断接收数据的情况,并进行相应的处理。
总结无论是外部中断写法还是定时器中断写法,都是实现51单片机串口通信的常见方式。
在选择具体的编写方式时,需要根据具体的应用场景和需求来进行选择。
在实际应用中,可以根据具体情况来灵活选择合适的串口中断编写方式,以便更好地满足系统的需求。
在实际编写中断服务函数时,需要注意以下几点:1)处理数据时需要考虑数据的完整性和准确性,可以通过校验位等手段来验证数据的正确性。
2)在中断服务函数中应尽量减少对全局变量的访问,以避免出现数据冲突和竞争的情况。
3)合理设置中断优先级,避免产生中断嵌套和冲突。
通过合理的中断编写方式和注意事项,可以更好地实现串口通信功能,提高系统的稳定性和可靠性,为嵌入式系统的应用提供良好的技术支持。
对于外部中断写法和定时器中断写法,两者各有优缺点。
外部中断写法在串口数据到达时能够即刻响应中断、处理数据。
但是,如果数据传输速率较快或需要高精度的数据处理,外部中断写法可能无法满足要求。
在这种情况下,定时器中断写法显得更加合适。
C51单片机教程——中断的应用中断是单片机中重要的功能之一,它可以在需要时打断当前程序的执行,转而去执行其他的相关程序,完成以不阻塞常规程序流程的方式处理一些特殊事件。
本文将介绍C51单片机中断的应用。
首先,我们需要了解中断的基本概念。
中断是单片机处理器和外部世界之间的一种通信方式,它通过改变处理器的执行流程来响应外部事件。
单片机处理器在执行中断时会暂停当前任务,转而去执行中断服务程序,中断服务程序执行完毕后,再回到原来被打断的地方继续执行。
通过使用中断,可以提高单片机系统的实时性和响应能力。
在C51单片机中,中断是通过专门的中断向量表和中断控制寄存器实现的。
中断向量表存储了中断服务程序的入口地址,中断控制寄存器用于配置中断的相关参数,如中断源、中断优先级等。
C51单片机支持多个中断源,包括外部中断、定时器中断、串口中断等。
以下是一些中断的常见应用场景。
1.外部中断:外部中断通常用于处理外部触发事件,比如按键、开关等输入信号。
当外部触发事件发生时,单片机会自动跳转到相应的中断服务程序执行。
我们可以在中断服务程序中编写相应的代码来处理触发事件,比如改变状态、计数等。
2.定时器中断:定时器中断常用于定时任务的处理。
通过配置定时器的参数,可以使单片机在设定的时间间隔内产生定时中断。
在定时器中断服务程序中,我们可以编写相应的逻辑代码,比如实现定时器计数、LED闪烁、蜂鸣器发声等功能。
3.串口中断:串口中断用于处理串口通信时的数据传输。
当有数据接收或发送时,单片机会自动触发串口中断,并跳转到中断服务程序中处理数据。
在串口中断服务程序中,我们可以编写相应的代码来处理接收或发送的数据。
例如,我们可以接收串口数据并进行处理或者发送数据到外部设备。
4.ADC中断:ADC中断用于处理模拟信号的采集和转换。
当ADC转换完成后,单片机会自动触发ADC中断,并跳转到中断服务程序中。
在中断服务程序中,我们可以读取ADC的转换结果,进行进一步的处理。
8. 结构实例6:单片机串口通信虽然那个流水灯游戏的可玩性和按键手感问题还值得再好好提升一下,但小月更希望调剂一下,转而开始了对手头烧写板上关于RS-232转换部分的学习。
小月的做法并不难以理解,毕竟与RS-232转换的相关电路在原理图中还是相当显眼的,甚至于他手头编程器的别名就是RS-232转换器。
图8.1 单片机中负责RS-232通讯的电路在烧写器一端与电脑连接的两个接头中,9针的RS-232接口就是串口通信线,而另一个USB口仅接通了+5V和GND,只有给烧写器供电的作用。
这样就可以知道,电脑可以通过RS-232对单片机的内部程序进行改写。
那么,这就意味着单片机与电脑间必然可以进行数据的交换,这种交换,就叫做通信。
所谓串口通信,就是指这种基于RS-232串口的通信方式。
RS-232(ANSI/EIA-232标准)是IBM-PC及其兼容机上的串行连接标准。
最早是为使电脑通过电话线系统相互通信的调制解调器上而是设计的。
后来发展到连接鼠标或打印机上,目前已经被支持设备的即插即用和热插拔功能的USB所替代,但仍广泛的用于工业仪器仪表中,同时也是单片机最基础和最常见的通信方式。
不过要把“最基础和最常见”这两个最拆开来说,就要在后面加上“之一”了。
虽然目前的通信技术日新月异,但这种说法在今后很长一段时期内都是成立的,也正因为这样的特点,STC的51系列单片机都是默认通过RS-232方式进行烧写的。
作为两台设备之间进行的通信,必然需要共同遵守某种规定或规则,包括交流什么、怎样交流及何时交流。
这个规则就是通信协议。
RS-232通信中通信协议的原则就是串口按位(bit)发送和接收数据。
线路上,RS-232通信使用3根线完成,分别是地线、发送、接收。
端口能够在一根线上发送数据的同时在另一根线上接收数据,即全双工传输。
全双工传输是传输制式的一种分类方式中的一类,除此还有单工传输和半双工传输。
单工传输,是指消息只能单方向传输的工作方式。
51单片机串口通讯与串口中断常见问题解决方案
一、深入了解字符串的问题
char str11[]="a";
P1=strlen(str11);
上面的一个是一个测试字符个数的实例,用仿真就可以看到结果。
结果是1。
也就是说字符’’是不会被计入的。
那么我们就可以通过此函数来分辩是否是字符和字符串。
当然如果字符串是一个字符的话,那么就是我们上面的那个情况了,会直接被当做一个数看待。
注:上位机发过来的数据全部是字符串格式的。
二、串口中断问题
先看下面的程序。
void UART_SendByte(unsigned char dat)
{
SBUF=dat;
while(!TI) ;//等待发送完毕
TI=0;
}
这个程序就是一个简单的串口发送字符的程序,为了能够实现自动发送和接收,我们分析一下它。
我们要同时实现接收,有接收那么就要有串口中断,通过串口中断达到接收数据的目的。
可是当ES=1,程序并不会像我们想的那样运行,当执行完SBUF=dat后,程序开始等待,大概是5个时钟周期后,程序并没有直接运行TI=0这句,而是,因为缓冲区中的字符而直接跳转到串口中断函数中,甚至出现死循环这样的情况。
为了避开这种情况,我们引入了下面的程序:
void UART_SendByte(unsigned char dat)
{
SBUF=dat;
ES=0;
while(!TI) ;
TI=0;。
/****************************************************************************** **** 标题: RS232串口通信试验(接收) **** 1.通过本例程了解串口的基本原理及使用,理解并掌握对串口进行初始化**** 2.请使用串口调试助手(Baud 4800、数据位8、停止位1、效验位无)做为上位机发给单片机,* 如果在字符数字发送框发0X00蜂铃器就会叫,如果发0xff蜂铃器就停叫。
** * * 请学员认真消化本例程,学会用C语言操作串口******************************************************************************** ****/#include <REG52.H>#include <stdio.h>sbit BEEP = P1^4;unsigned char b;void main (void) {SCON = 0x50; //REN=1允许串行接受状态,串口工作模式1TMOD|= 0x20; //定时器工作方式2PCON|= 0x80;//TH1 = 0xFD; //baud*2 /* reload value 19200、数据位8、停止位1。
效验位无(11.0592)TH1 = 0xF3; // //baud*2 /* 波特率4800、数据位8、停止位1。
效验位无(12M)TL1 = 0xF3;TR1 = 1;ES = 1; //开串口中断EA = 1; // 开总中断BEEP=1;// IE = 0x0;while(1){if (RI) //RI接受中断标志{ RI=0; //清除RI接受中断标志b=SBUF; //SUBF接受/发送缓冲器}BEEP=b;}}。
C51单片机和电脑串口通信电路图与源码51单片机有一个全双工的串行通讯口,所以单片机和电脑之间可以方便地进行串口通讯。
进行串行通讯时要满足一定的条件,比如电脑的串口是RS232电平的,而单片机的串口是TTL电平的,两者之间必须有一个电平转换电路,我们采用了专用芯片MAX232进行转换,虽然也可以用几个三极管进行模拟转换,但是还是用专用芯片更简单可靠。
我们采用了三线制连接串口,也就是说和电脑的9针串口只连接其中的3根线:第5脚的GND、第2脚的RXD、第3脚的TXD。
这是最简单的连接方法,但是对我们来说已经足够使用了,电路如下图所示,MAX232的第10脚和单片机的11脚连接,第9脚和单片机的10脚连接,第15脚和单片机的20脚连接.串口通讯的硬件电路如上图所示在制作电路前我们先来看看要用的MAX232,这里我们不去具体讨论它,只要知道它是TTL和RS232电平相互转换的芯片和基本的引脚接线功能就行了。
通常我会用两个小功率晶体管加少量的电路去替换MAX232,可以省一点,效果也不错,下图就是MAX232的基本接线图。
按图7-3加上MAX232就可以了。
这大热天的拿烙铁焊焊,还真的是热气迫人来呀:P串口座用DB9的母头,这样就可以用买来的PC串口延长线进行和电脑相连接,也可以直接接到电脑com口上。
为了能够在电脑端看到单片机发出的数据,我们必须借助一个WINDOWS软件进行观察,这里我们利用一个免费的电脑串口调试软件。
本串口软件在本网站可以找到软件界面如上图,我们先要设置一下串口通讯的参数,将波特率调整为4800,勾选十六进制显示。
串口选择为COM1,当然将网站提供的51单片机实验板的串口也要和电脑的COM1连接,将烧写有以下程序的单片机插入单片机实验板的万能插座中,并接通51单片机实验板的电源。
#include <reg51。
h〉#define BUFFERLEGTH 10//-—---———-—-——————--——-----—--——--——------—-—--—-—--—--——-———-—--—void UART_init();//串口初始化函数void COM_send(void);//串口发送函数char str[20];char j;//——-----————---——-—--—--—-—-—-———-———-—-——-—--—-—-——————--———-—--———void main(void){unsigned char i;UART_init();j=0; //初始化串口for(i = 0;i < 10 ;i++){COM_send(); //首先发送一次数据作为测试用};while(1);}//-——-——-——---------———-——-—-—-——--—---—---—--—-—--——---—---—--//——-——--——--—-—-—--———————---—-——-——-———-—-----——--—---——————-—-—-—-—————-—--—-—---—--———-——---——-- // 函数名称:UART_init()串口初始化函数// 函数功能: 在系统时钟为11.059MHZ时,设定串口波特率为9600bit/s// 串口接收中断允许,发送中断禁止//—-——--—-----———---—-——-—-——————-————-—-————---——-———————--———-———----—-—--—---——-—---—-————-———---void UART_init(){//初始化串行口和波特率发生器SCON =0x50; //选择串口工作方式1,打开接收允许TMOD =0x20; //定时器1工作在方式2,定时器0工作在方式1TH1 =0xfA; //实现波特率9600(系统时钟11。
//这是一个单片机C51串口接收(中断)和发送例程,可以用来测试51单片机的中断接收
//和查询发送,另外我觉得发送没有必要用中断,因为程序的开销是一样
#include <reg52.h>
#include <string.h>
#define INBUF_LEN 4//数据长度
unsigned char inbuf1[INBUF_LEN];
unsigned char checksum,count3;
bit read_flag=0;
void init_serialcomm(void)
{
SCON = 0x50; //SCON: serail mode 1, 8-bit UART, enable ucvr TMOD |= 0x20; //TMOD: timer 1, mode 2, 8-bit reload
PCON |= 0x80; //SMOD=1;
TH1 = 0xF4; //Baud:4800 fosc="11".0592MHz
IE |= 0x90; //Enable Serial Interrupt
TR1 = 1; // timer 1 run
// TI="1";
}
//向串口发送一个字符
void send_char_com(unsigned char ch)
{
SBUF="ch";
while(TI==0);
TI=0;
}
//向串口发送一个字符串,strlen为该字符串长度
void send_string_com(unsigned char *str,unsigned int strlen)
{
unsigned int k=0;
do
{
send_char_com(*(str + k));
k++;
} while(k < strlen);
}
//串口接收中断函数
void serial () interrupt 4 using 3
{
if(RI)
{
unsigned char ch;
RI = 0;
ch="SBUF";
if(ch>127)
{
count3=0;
inbuf1[count3]=ch;
checksum= ch-128;
}
else
{
count3++;
inbuf1[count3]=ch;
checksum ^= ch;
if( (count3==(INBUF_LEN-1)) && (!checksum) )
{
read_flag=1; //如果串口接收的数据达到INBUF_LEN个,且校验没错,
//就置位取数标志
}
}
}
}
main()
{
init_serialcomm(); //初始化串口
while(1)
{
if(read_flag) //如果取数标志已置位,就将读到的数从串口发出 {
read_flag=0; //取数标志清0
send_string_com(inbuf1,INBUF_LEN);
}
}
}。