经济数学基础模拟试题
- 格式:doc
- 大小:162.00 KB
- 文档页数:4
经济数学基础11年秋季学期模拟试题一、单项选择题(每小题3分,共15分)1.下列函数在指定区间(,)-∞+∞上单调增加的是( B ).A .sin xB .e xC .x 2D .3 - x2.曲线11+=x y 在点(0, 1)处的切线斜率为(A ). A .21- B .21 C .3)1(21+x D .3)1(21+-x 3.下列定积分计算正确的是( D ). A .2d 211=⎰-x x B .15d 161=⎰-xC .0d sin 22=⎰-x x ππ D .0d sin =⎰-x x ππ 4.设B A ,均为n 阶可逆矩阵,则下列等式成立的是( C ).A .111)(---+=+B A B A B .111)(---=B A AB C .111)(---=A B AB D .BA AB =5.设线性方程组b AX =有唯一解,则相应的齐次方程组O AX =( C ).A .无解B .有非零解C .只有零解D .解不能确定二、填空题(每小题3分,共15分)6.函数⎩⎨⎧<≤-<≤-+=20,105,2)(2x x x x x f 的定义域是 [-5, 2) . 7.求极限 =+∞→xx x x sin lim 1 . 8.若)(x f '存在且连续,则='⎰])(d [x f )(x f ' .9.设B A ,均为n 阶矩阵,则等式2222)(B AB A B A +-=-成立的充分必要条件是 BA AB = .10.设齐次线性方程组01=⨯⨯n n m X A ,且r (A ) = r < n ,则其一般解中的自由未知量的个数等于 n -r .三、微积分计算题(每小题10分,共20分)11.设x x y -+=2tan 3,求y d .解:因为 )(2ln 2)(cos 1332'-+'='-x x xy x 2ln 2cos 3322x x x --= 所以 x xx y x d )2ln 2cos 3(d 322--= 12.计算积分x x x d 2cos 20⎰π. 解:x x x d 2cos 20⎰π=202sin 21πx x -x x d 2sin 2120⎰π=202cos 41πx =21- 四、代数计算题(每小题15分,共30分)13.设矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---112401211,计算1)(-+A I . 解:因为 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=+012411210A I 且 (I +A I ) =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-120001010830210411100010001012411210 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→123124112200010001123001011200210201 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→21123124112100010001 所以 1)(-+A I =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----2112312411214.求线性方程组⎪⎩⎪⎨⎧=++-=++-=+-5532342243214321421x x x x x x x x x x x 的一般解.解:将方程组的增广矩阵化为阶梯形⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---131101311021011551323412121011 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→000001311012101000001311021011 故方程组的一般解为:1342342131x x x x x x =++⎧⎨=+-⎩ (x 3,4x 是自由未知量〕 五、应用题(本题20分)15.某厂生产某种产品q 件时的总成本函数为C (q ) = 20+4q +0.01q 2(元),单位销售价格为p = 14-0.01q (元/件),试求:(1)产量为多少时可使利润达到最大?(2)最大利润是多少?解:(1)由已知201.014)01.014(q q q q qp R -=-==利润函数22202.0201001.042001.014q q q q q q C R L --=----=-=则q L 04.010-=',令004.010=-='q L ,解出唯一驻点250=q .因为利润函数存在着最大值,所以当产量为250件时可使利润达到最大, 15分(2)最大利润为1230125020250025002.02025010)250(2=--=⨯--⨯=L (元)。
经济数学基本春季学期模拟试题(一)答题卷一、单选题(每题3分,共15分)1.下列函数中为偶函数旳是( c ).A .x x y -=2B .11ln +-=x x yC .2e e xx y -+= D .x x y sin 2=2.设需求量q 对价格p 旳函数为p p q 23)(-=,则需求弹性为E p =( d ).A .p p32- B .32-ppC .--32ppD .--p p323.下列无穷积分中收敛旳是( c ).A .⎰∞+0d e x x B .⎰∞+13d 1x xC .⎰∞+12d 1x x D .⎰∞+1d sin x x4.设A 为43⨯矩阵,B 为25⨯矩阵,且T T B AC 故意义,则C 是 ( b )矩阵.A .24⨯B .42⨯C .53⨯D .35⨯5.线性方程组⎩⎨⎧=+=+32122121x x x x 旳解得状况是( a ).A . 无解B . 只有O 解C . 有唯一解D . 有无穷多解二、填空题(每题3分,共15分) 6.函数)5ln(21)(++-=x x x f 旳定义域是 ),2()2,5(∞+- .7.函数1()1e xf x =-旳间断点是 0x = . 8.若c x x x f x ++=⎰222d )(,则=)(x f x x 42ln 2+ .9.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=333222111A ,则=)(A r 1 . 10.设齐次线性方程组O X A =⨯⨯1553,且r (A ) = 2,则方程组一般解中旳自由未知量个数为 3 .三、微积分计算题(每题10分,共20分)11.设x y x cos ln e -=,求y d . 解:由于 x x xy x x tan e )sin (cos 1e +=--=' 因此 x x y x d )tan e (d +=12.计算定积分 ⎰e1d ln x x x .解:⎰⎰-=e12e12e1)d(ln 21ln 2d ln x x x x x x x414e d 212e 2e 12+=-=⎰x x .四、代数计算题(每题15分,共30分)13.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=143102010A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100010001I ,求1)(-+A I . 解:由于 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=+243112011A I ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=+103210012110001011100243010112001011)(I A I⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→115100012110001011⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→115100127010001011 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→115100127010126001 因此 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=+-115127126)(1A I . 14.求齐次线性方程组⎪⎩⎪⎨⎧=-++=+--=-++03520230243214314321x x x x x x x x x x x 旳一般解. 解:由于系数矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=111011101211351223011211A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→000011102301 因此一般解为⎩⎨⎧-=+-=43243123x x x x x x (其中3x ,4x 是自由未知量)五、应用题(本题20分)15.某厂生产某种产品q 件时旳总成本函数为C (q ) = 20+4q +0.01q 2(元),单位销售价格为p = 14-0.01q (元/件),问产量为多少时可使利润达到最大?最大利润是多少?解:由已知收入函数 201.014)01.014(q q q q qp R -=-==利润函数 22202.0201001.042001.014q q q q q q C R L --=----=-= 于是得到 q L 04.010-='令004.010=-='q L ,解出唯一驻点250=q .由于利润函数存在着最大值,因此当产量为250件时可使利润达到最大. 且最大利润为1230125020250025002.02025010)250(2=--=⨯--⨯=L (元)经济数学基本春季学期模拟试题(一)一、单选题(每题3分,共15分) 1.C 2. D 3. C 4. B 5. A 二、填空题(每题3分,共15分)6. ),2()2,5(∞+-7. 0x =8. x x 42ln 2+9. 1 10.3三、微积分计算题(每题10分,共20分) 11.解:由于 x x xy x x tan e )sin (cos 1e +=--=' 因此 x x y x d )tan e (d +=12.解:⎰⎰-=e 12e12e1)d(ln 21ln 2d ln x x x x x x x414e d 212e 2e 12+=-=⎰x x .四、线性代数计算题(每题15分,共30分)13.解:由于 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=+243112011A I ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=+103210012110001011100243010112001011)(I A I ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→115100012110001011⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→115100127010001011 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→115100127010126001 因此 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=+-115127126)(1A I . 14.解:由于系数矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=111011101211351223011211A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→000011102301 因此一般解为⎩⎨⎧-=+-=43243123x x x x x x (其中3x ,4x 是自由未知量)五、应用题(本题20分)15.解:由已知收入函数 201.014)01.014(q q q q qp R -=-==利润函数 22202.0201001.042001.014q q q q q q C R L --=----=-= 于是得到 q L 04.010-='令004.010=-='q L ,解出唯一驻点250=q .由于利润函数存在着最大值,因此当产量为250件时可使利润达到最大. 且最大利润为=--(2=⨯-L(元)=⨯-250)250250020125002.010250201230。
经济数学基础期末模拟题导数基本公式: 积分基本公式:一、单项选择题(每小题3分,本题共15分)1.下列结论中,( )是正确的.A .偶函数的图形关于坐标原点对称B .奇函数的图形关于坐标原点对称C .基本初等函数都是单调函数D .周期函数都是有界函数2.下列函数在区间(一∞,+∞)上单调增加的是( ).A .sin xB .x 2C .e xD .3−x3.若F(x) 是f(x)的一个原函数,则下列等式成立的是( ).A . ∫f(x)xa dx =F(x) B. ∫f′(x)ba dx =F (b )−F(a)C .∫f(x)xa dx =F (x )−F(a) D . ∫F(x)ba dx =f (b )−f(a)4.设A 为3×2矩阵,B 为2×3矩阵,则下列运算中( )可以进行.A .AB B .A+BC .AB TD .BA T5.若n 元线性方程组AX =0满足r(A)= n ,则该线性方程组( ).A .有无穷多解B .有唯一解C .有非0解D .无解二、填空题(每小题3分,共15分)6.函数f (x )=√x 2−4x−2的定义域是 .7.若函数f (x )={(1+x)1x ,x <0x 2+k , x ≥0,在x =O 处连续,则k = .8.若lnx 是f (x )的一个原函数,则f (x )= .9.若方阵A 满足 ,则A 是对称矩阵.10.线性方程组AX =b 的增广矩阵A̅化成阶梯形矩阵后为 则当d = 时,方程组AX =b 有无穷多解.三、微积分计算题(每小题10分,共20分)11.设 y =cos2x + In x ,求 y ′.12.计算定积分∫xsinxdx π20.四、线性代数计算题(每小题15分,共30分】13.设矩阵A =[10011−1−101],求(AA T )-1.14.求线性方程组的一般解. 五、应用题(本题20分)15.某厂每天生产某种产品q 件的成本函数为C(q)=0.5q 2+36q +9800(元).为使平均成本最低,每天产量应为多少?此时,每件产品平均成本为多少?。
《经济数学基础12》模拟试题(06春)一、单项选择题(每小题3分,共15分)1.设xx f 1)(=,则=))((x f f ( ). A .x 1 B .21x C .x D .2x 2.曲线y = sin x +1在点(0, 1)处的切线方程为( ).A . y = x +1B . y = 2x +1C . y = x -1D . y = 2x -13. 若c x x f x x +-=⎰11ede )(,则f (x ) =( ). A .-21x B .21x C .x 1 D . -x 1 4.设B A ,为同阶可逆矩阵,则下列等式成立的是( )A . 1T 11T )()(---=B A AB B . T 11T 1()()A B A B ---=C . T T T )(A B AB =D . T T T )(B A AB =5. 线性方程组⎩⎨⎧=+=+012121x x x x 解的情况是( ). A . 有无穷多解 B . 只有0解 C . 有唯一解 D . 无解二、填空题(每小题3分,共15分)6.函数2e ,50()1,02x x f x x x ⎧--≤<⎪=⎨-≤<⎪⎩的定义域是 .7.___________________sin lim 0=-→xx x x . 8.函数f (x ) = -sin3x 的原函数是. 9.设B A ,均为n 阶矩阵,则等式2222)(B AB A B A +-=-成立的充分必要条件是 .10.齐次线性方程组AX O =的系数矩阵为102101020000A ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦则此方程组的一般解为 .三、微分计算题(每小题9分,共18分)11.1tan(1)lim (1)(2)x x x x →--+12.由方程x y x y =++e )cos(确定y 是x 的隐函数,求y '.四、积分计算题(每小题9分,共18分)13.x x x d 91160⎰-+14.求微分方程23e d d yx x y x=的通解.五、代数计算题(每小题9分,共18分)15.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=113421201A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=321B ,求B A I )2(T -. 16.求线性方程组⎪⎩⎪⎨⎧=-+=++-=++032038204214321321x x x x x x x x x x 的一般解.六、应用题(12分)17.设生产某种产品x 个单位时的成本函数为:x x x C 625.0100)(2++=(万元), 求:(1)当10=x 时的总成本、平均成本和边际成本;(2)当产量x 为多少时,平均成本最小?七、证明题(4分)18.试证:若21,B B 均与A 可交换,则21B B +也与A 可交换.。
经济数学基础(05)春模拟试题及参考答案、单项选择题(每小题 3分,共30分)1.下列各函数对中,()中的两个函数是相等的.2C. f (x) In x , g(x) 2ln x22,、D. f (x) sin x cos x , g(x)A. x y 1 C. x y 1B. x y 1 D. x y14 .下列函数在区间(,)上单调减少的是( ).A. sin xB. 2 xC. x 25 .若 f(x)dx F (x) c,则 xf (1 x 2)dx=()12 xA. - F (1 x ) c___ 2C. 2F(1 x ) c 6.下列等式中正确的是( A . sin xdx d(cos x)~ 1 …C.a dx d(a ) ln a1 2、8. - F (1 x ) c____2D. 2F(1 x ) c8. ln xdx d(-) x1 . D. dx d(、, x) .x25, 22, 35, 20, 24是一组数据,则这组数据的中位数是(B. 23C. 22.5D. 2228.设随机变量X 的期望E(X) 1,万差D(X) = 3,则E[3(X2)]=()9.设A, B 为同阶可逆矩阵,则下列等式成立的是( )A. f(x) x 2 1 x 1,g(x) x 1B. f(x) xx 2 , g(x) x2.设函数f(x ) xsin — k,x 1,在x = 0处连续,则k =()•A. -2B. -1C. 1D. 23.函数f (x)ln x 在x 1处的切线方程是(A. 36B. 30C. 6D. 9D. 3 - x7.设 23, A. 23.5 ).2.-一11.若函数 f(x 2) x 4x 5,则 f (x)13 . d cosxdx .14 .设A,B,C 是三个事件,则 A 发生,但B,C 至少有一个不发生的事件表示 为. 15 .设A, B 为两个n 阶矩阵,且I B 可逆,则矩阵方程 A BX X 的解X三、极限与微分计算题(每小题 6分,共12分)17 .设函数y y(x)由方程x 2 y 2 e xy e 2确定,求y(x).四、积分计算题(每小题6分,共12分)18 .2xcos2xdx19 .求微分方程 y Y x 21的通解. x五、概率计算题(每小题 6分,共12分)20 .设A, B 是两个相互独立的随机事件,已知 P(A) = 0.6 , P(B) = 0.7 ,求A 与B 恰有 一个发生的概率.一 一一 2._ . 一 — 一 一一 一21 .设 X ~ N(2,3 ),求 P( 4 X 5)。
经济数学基本(11春)模拟试题6月 一、单选题(每题3分,本题共15分) 1.下列函数中为奇函数旳是(C ).(A) x x y -=2(B) xx y -+=e e(C) 11ln+-=x x y (D) x x y sin = 2.设需求量q 对价格p 旳函数为p p q 23)(-=,则需求弹性为=p E (D ). (A)p p32- (B)32-pp(C) --32pp(D)pp23--3.下列无穷积分中收敛旳是(B ). (A)⎰∞+0d e x x (B)⎰∞+12d 1x x(C)⎰∞+13d 1x x(D)⎰∞+1d ln x x4.设A 为23⨯矩阵,B 为32⨯矩阵,则下列运算中(A )可以进行. (A) AB (B) A +B (C) AB T (D) BA T5.线性方程组⎩⎨⎧=+=+012121x x x x 解旳状况是(D ).(A) 有唯一解 (B) 只有0解 (C) 有无穷多解 (D) 无解 二、填空题(每题3分,共15分)6.函数24)(2--=x x x f 旳定义域是 ),2(]2,(∞+--∞7.函数1()1e xf x =-旳间断点是 X=0 . 8.若c x F x x f +=⎰)(d )(,则=⎰--x f x x d )e (e c F x +--)e (9.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=13230201a A ,当=a 0 时,A 是对称矩阵. 10.若线性方程组⎩⎨⎧=+=-002121x x x x λ有非零解,则=λ -1 .三、微积分计算题(每题10分,共20分) 1.设x y x5cos 3+=,求y d .解:解:由微分四则运算法则和微分基本公式得)(cos d )3(d )cos 3(d d 55x x y xx+=+= )(cos d cos 5d 3ln 34x x x x+= x x x x xd cos sin 5d 3ln 34-=x x x xd )cos sin 53ln 3(4--= 2. 计算定积分⎰e1d ln x x x .解:由分部积分法得⎰⎰-=e 12e12e1)d(ln 21ln 2d ln x x x x x x x414e d 212e 2e 12+=-=⎰x x 四、线性代数计算题(每题15分,共30分)11. 设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=211010,211001B A ,求1T )(-A B .设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=211010,211001B A ,求1T )(-A B .解:由于⎥⎦⎤⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎦⎤⎢⎣⎡=3121211001211100TA B因此由公式可得⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡---⨯-⨯-=-11231123)1(23)1(1)(1T A B 12. 求齐次线性方程组⎪⎩⎪⎨⎧=-+-=+-+-=-+03520230243214321431x x x x x x x x x x x 旳一般解.解:由于系数矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=111011101201351223111201A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→000011101201 因此一般解为⎩⎨⎧-=+-=4324312x x x x x x (其中3x ,4x 是自由未知量)五、应用题(本题20分)15.生产某产品旳总成本为x x C +=3)((万元),其中x 为产量,单位:百吨.边际收入为x x R 215)(-='(万元/百吨),求: (1) 利润最大时旳产量;(2) 从利润最大时旳产量再生产1百吨,利润有什么变化? .解:(1)由于边际成本1)(='x C ,边际利润'='-'L x R x C x ()()()x x 2141215-=--=令'=L x ()0 得 7=x (百吨)。
经济数学基础3模拟练习一一、填空1.将一枚硬币连续抛两次,以X 表示所抛两次中出现正面的次数,则随机变量X 的分布率为___________________.2.甲、乙二人同时向敌机开炮,甲的命中率为0.6,乙的命中率为0.5,则敌机被击中的概率为_________.3.已知E(X)=3,D(X)=5,则E(X+2)2=_______.4.设x x x n 12,,, 是正态总体X N ~(,)μσ2的一个样本,其中μ未知,σ2已知。
用x x x n 12,,, 检验假设H 00:μμ=时,选取的统计量 。
5.设θˆ是未知参数θ的一个估计,且满足θθ=)ˆ(E ,则θˆ称为θ的 估计.6.设()()2E X E Y ==,1(,)6C ov X Y =-,则()E XY =______________ .7.已知n x x x ,,,21 是来自总体X 的样本,对总体方差D (X )进行估计时,常用的无偏估计为 .8.若事件A 与B 是相互独立的两个事件,且4.0)(,7,0)(==B P A P ,则)(AB P = .9.设有5个球, 其中有3个白球2个黑球. 如果从这5个球中随机抽出两个球, 那么事件A: “两个球中至少有一个白球” 发生的概率为 .10.已知连续型随机变量X 的分布函数为F x (), 且密度函数f x ()连续, 则f x ()= .11.设随机变量X ~ B (n ,p ),则E (X )= .12.设随机变量X 的概率密度为,11()0,x x f x ⎧-≤≤⎪=⎨⎪⎩其他,则=)(X E .13.若参数θ的两个无偏估计量1ˆθ和2ˆθ满足)ˆ()ˆ(21θθD D >,则称2ˆθ比1ˆθ更 .14.设随机变量,X Y 相互独立,且()2D X =,()1D Y =,则(23)D X Y -+=__________ . 15.设总体X 服从区间[0,]θ上的均匀分布(0)θ>,n x x x ,,,21 是来自该总体的样本,则θ的矩估计ˆθ=__________.二、选择1.事件B A ,若满足1)()(>+B P A P ,则A 与B 一定( )A. 不相互独立;B. 互不相容;C. 相互独立;D. 不互斥2.设x x x n 12,,, 是来自正态总体N (,)μσ2的样本,则( )是统计量。
经济数学基础期末模拟试题及答案一、单项选择题(2×15=30分)1、函数在(D)A、间断B、无极限C、无定义D、不可导2、函数的弹性是函数对自变量的(C)A、导数B、变化率C、相对变化率D、微分3、下列论断正确的是(A)A、可导极值点必为驻点B、极值点必为驻点C、驻点必为可导极值点D、驻点必为极值点4、设,则( C )A、B、C、D、5、设,则(B)A、3B、4C、5D、66、设A、C分别为3×2和2×4矩阵,若运算可行,则B为(D)矩阵。
A、2×2B、3×2C、3×4D、4×37、线性方程组当(A)时无解。
A、2B、-2C、3D、-38、设A为4×5矩阵,则齐次线性方程组AX=0(D)。
A、无解B、只有零解C、有唯一非零解D、有无穷多组解9、设A、B为两个事件,则事件{ A、B没有一个发生}=(A)。
A、B、C、D、10、设事件A、B互相独立,,,则(D)。
A、B、C、D、11、设在连续,则(C)。
A、B、C、D、12、设有一个原函数为,则(B)。
A、B、C、D、13、(B)不是连续型随机变量的密度函数。
A、B、C、D、14、下列各式中(D)。
A、B、C、D、15、计算不定积分(D)时可以不用分部积分法。
A、B、C、D、二、填空题(2×5=10分)16、设、,则。
17、设,则在点处切线方程为。
19、设,20、设,则。
三、计算题(6×8=48分)21、答案:22、设,求。
答案:23、答案:24、求常微分方程通解答案:25、设连续型随机变量求(1)答案:(2)答案:(3)答案:26、设、为两个事件,,,求。
答案:27、设,,求解矩阵方程答案:28、求线性方程组一般解。
答案:一般解为(为自由未知数)四、应用题(8×1=8分)29、设某厂产品能全部售出,产量为(台)时总成本(万元),边际收入为(万元/台),求(1)最大利润产量答案:最大利润产量为500(台)(2)利润函数答案:(3)最大利润答案:(万元)五、证明题(4×1=4分)30、设函数在内连续,试证。
经济数学基础期末模拟练习题一、单项选择题1.设1)(+=x x f ,则)1)((+x f f =( ). A .x B .x + 1C .x + 2D .x + 32. 下列函数中,( )不是基本初等函数. A .xy )e1(=B .2ln x y =C .xxy cos sin =D .35x y = 3.设函数⎩⎨⎧>≤=0,00,cos )(x x x x f ,则)4(π-f =().A .)4(π-f =)4(πf B .)2()0(πf f =C .)2()0(π-=f fD .)4(πf =224.若A x f x x =→)(lim 0,则)(x f 在点0x 处( )A .有定义B .没有定义C .极限存在D .有定义,且极限存在5.若4cos)(π=x f ,则=∆-∆+→∆xx f x x f x )()(0lim().A .0B .22C .4sin π-D .4sinπ6.曲线x x y -=3在点(1,0)处的切线是(). A . 22-=x y B . 22+-=x y C . 22+=x y D . 22--=x y 7.已知441x y =,则y ''=(). A .3x B .23x C .x 6 D . 68.满足方程0)(='x f 的点是函数)(x f y =的( ).A .极大值点B .极小值点C .驻点D .间断点 9.下列结论中( )不正确.A .)(x f 在0x x =处连续,则一定在0x 处可微.B .)(x f 在0x x =处不连续,则一定在0x 处不可导.C .可导函数的极值点一定发生在其驻点上.D .若)(x f 在[a ,b ]内恒有0)(<'x f ,则在[a ,b ]内函数是单调下降的. 10.设f x ()的一个原函数是e -2x,则f x ()=( ).A . e -2xB . --22e xC . x2e4--D . 42e-x11.微分方程y y ='的通解是=y ( ). A .c x +25.0B .xc e C .xc -eD .c y x +=e12.设一组数据1x =0,2x =10,3x =20,其权数分别为1.01=p ,6.02=p , 3.03=p ,则这组数据的加权平均数是( ). A .12B . 10C . 6D .413.对任意二事件A B ,,等式( )成立.A .P AB P A P B ()()()=B .P A B P A P B ()()()+=+C .P A B P A P B ()()(())=≠0D .P AB P A P B A P A ()()()(())=≠014.掷两颗均匀的骰子,事件“点数之和为3”的概率是( ). A .361 B .181C .121D .111 15.矩阵13210011000010001000-⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥的秩是( )A. 1B. 2C. 3D. 416.若线性方程组的增广矩阵为⎥⎦⎤⎢⎣⎡=41221λA ,则当λ=()时线性方程组有无穷多解.A .1B .4C .2D .1217.若非齐次线性方程组A m ×n X =b 的( ),那么该方程组无解. A .秩(A ) = n B .秩(A )=m C .秩(A )≠ 秩 (A )D .秩(A )= 秩(A )二、填空题 1.极限=→xx x 1sinlim 0.2.当k 时,⎩⎨⎧<+≥+=001)(2x kx x x x f 在0=x 处仅仅是左连续.3.函数x x x f ln )(-=的单调增加区间是. 4.如果f x x x c ()sin d ⎰=+2,则)(x f '=.5.广义积分⎰∞-02d ex x= .6.0e )(23='+''-y y x 是阶微分方程. 7.设随机变量X 的概率分布为则a = .8.设),(~p n B X ,且6)(=X E ,6.3)(=X D ,则n = . 9.设矩阵[]321-=A ,I 是单位矩阵,则I A A -T =_________.三、解答题1. 生产某种产品的固定成本为1万元,每生产一个该产品所需费用为20元,若该产品出售的单价为30元,试求:(1) 生产x 件该种产品的总成本和平均成本; (2) 售出x 件该种产品的总收入;(3) 若生产的产品都能够售出,则生产x 件该种产品的利润是多少? 2.计算下列极限(1)xx x 33sin 9lim 0-+→ (2)1245lim 224--+-→x x x x x(3))1113(lim 21----→x x x x 3.求下列导数或微分: (1)设)11)(1(-+=xx y , 求d y .(2)设x x y x sin e +=,求y d .(3)设121lncos-+=x x y ,求y '. 4.生产某种产品q 台时的边际成本10005.2)(+='q q C (元/台),固定成本500元,若已知边际收入为,20002)(+='q q R 试求(1)获得最大利润时的产量;(2)从最大利润的产量的基础再生产100台,利润有何变化?5.计算下列不定积分或定积分(1)⎰+x xx d 423(2)⎰10d cos x x x π (3)x x d sin 20⎰π6.求微分方程y x y -='2e 满足初始条件0)0(=y 的特解.7.假设事件B A ,相互独立,已知6.0)(3.0)(==B P A P ,,求事件B A 与只有一个发生的概率.8.已知7.0)(=A P ,3.0)(=B P ,5.0)(=B A P ,求)(B A P .9.有甲、乙两批种子,发芽率分别是0.85和0.75,在这两批种子中各随机取一粒,求至少有一粒发芽的概率.10.已知事件A ,B ,C 相互独立,试证)(B A +与C 相互独立. 11.设随机变量X 的密度函数为⎩⎨⎧<<-=03)2(3)(2x a x x f求 (1) 常数a ; (2)E X ()12.某类钢丝的抗拉强度服从均值为100 (kg/cm 2),标准差为5 (kg/cm 2)的正态分布,求抗拉强度在90~110之间的概率.(Φ(1) = 0.841 3, Φ(2) = 0.977 2 )13.设矩阵 A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-022011,B =⎥⎦⎤⎢⎣⎡--210321,计算(BA )-1. 14.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=111103231A ,求矩阵1-A15.设A ,B 均为n 阶对称矩阵,则AB +BA 也是对称矩阵.16.求下列解线性方程组的一般解⎪⎩⎪⎨⎧=-+-=+-+-=++-0232022023432143214321x x x x x x x x x x x x 17. 例45 设线性方程组212132123123123x x x x x x x x x c-+=--+=--+=⎧⎨⎪⎩⎪ 试问c 为何值时,方程组有解?若方程组有解时,求一般解.参考解答一、单项选择题1.解 由于1)(+=x x f ,得 )1)((+x f f 1)1)((++=x f =2)(+x f 将1)(+=x x f 代入,得)1)((+x f f =32)1(+=++x x 正确答案:D2.解 因为2ln x y =是由u y ln =,2x u =复合组成的,所以它不是基本初等函数. 正确答案:B3.解 因为02<-π,故1)2cos()2(=-=-ππf 且 1)0(=f , 所以)2()0(π-=f f正确答案:C4.解 函数在一点处有极限与函数在该点处有无定义无关. 正确答案:C5.解 因为4cos)(π=x f 是常数函数,常数函数是可导的,而且它的导数是0.所以由导数定义可得=∆-∆+→∆xx f x x f x )()(0lim)0(f '= 0正确答案:A注意:这里的4cos)(π=x f 不是余弦函数.6.解 由导数的定义和它的几何意义可知,13)()1(='-='x x x y 2)13(12=-==x x是曲线x x y -=3在点(1,0)处的切线斜率,故切线方程是)1(20-=-x y ,即22-=x y正确答案:A7.解 直接利用导数的公式计算:34)41(x x y ='=',233)(x x y ='=''正确答案:B8.解 由驻点定义可知,正确答案:C9.解 因为函数在一点处连续并不能保证在该点处可导,所以,正确答案:A 10.解 因为f x ()的一个原函数是e-2x,故f x ()=(e -2x )'=--22e x所以正确答案:B11.解 用可分离变量法很容易求解,因此,正确答案:B 12.解 因为加权平均数是203.0106.001.031⨯+⨯+⨯=∑=i ii xp = 12所以,正确答案:A13.由概率乘法公式可知,正确答案:D14.解 两颗均匀的骰子的“点数之和”样本总数有6⨯6 =36个,而“点数之和为3”的事件含有:1+2和2+1两个样本,因此,该事件的概率为181. 正确答案:B15.解 化成阶梯形矩阵后,有3个非0行,故该矩阵的秩为3. 正确答案:C16.解 将增广矩阵化为阶梯形矩阵,⎥⎦⎤⎢⎣⎡=41221λA ⎥⎦⎤⎢⎣⎡-→021021λλ 此线性方程组未知量的个数是2,若它有无穷多解,则其增广矩阵的秩应小于2,即021=λ-,从而λ=12. 正确答案:D17.解 根据非齐次线性方程组解的判别定理,得 A m ×n X =b 无解⇔秩(A ) ≠ 秩(A ) 正确答案:C二、填空题1.解 因为当0→x 时,x 是无穷小量,x1sin 是有界变量. 故当0→x 时,xx 1sin 仍然是无穷小量. 所以 =→x x x 1sin lim 00.正确答案:C2.解 因为函数是左连续的,即)0(1)1(lim )0(0f x f x ==+=-→- 若 1)(lim )0(2==+=+→+k k x f x 即当=k 1时,)(x f 在0=x 不仅是左连续,而且是连续的.所以,只有当1≠k 时,)(x f 在0=x 仅仅是左连续的. 正确答案:1≠3.解 因为 xx x x f 11)ln ()(-='-=' 令011)(>-='xx f ,得1>x 故函数的单调增加区间是),1(+∞. 正确答案:),1(+∞4.解 根据不定积分的性质可知f (x )=x c x x x f 2cos 2)2(sin )d )((='+='⎰且 )(x f '= x x 2sin 4)2cos 2(-=' 正确答案:x 2sin 4-5.解 因为 ⎰∞-02d e x x2xe 21lim aa -∞→=)e 1(21lim2a a -=-∞→=21所以正确答案:216.解 因为微分方程 0e )(23='+''-y y x 中所含未知函数的导数的最好阶数是2次,所以它是2阶微分方程. 正确答案:27.根据离散型随机变量的概率分布的性质:pkk∑=1正确答案:0.38.根据二项分布的期望和方差的定义:6.3)1()(,6)(=-===p np X D np X E得 1-p = 0.6,p = 0.4,n = 15 正确答案:159.解 因为 T A = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-321,A A T=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-321[]321- = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----963642321 所以 I A A -T=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----863632320. 正确答案:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----863632320该例题说明,可转置矩阵不一定是方阵;如果矩阵运算TA A 成立,A 也不一定是方阵.三、解答题1.(1)解 生产x 件该种产品的总成本为x x C 2010000)(+=; 平均成本为:2010000)(+=xx C . (2)解 售出x 件该种产品的总收入为:x x R 30)(=. (3)解 生产x 件该种产品的利润为:)()()(x C x R x L -==)2010000(30x x +-=1000010-x2.(1)解 对分子进行有理化,即分子、分母同乘33sin 9++x ,然后利用第一重要极限和四则运算法则进行计算.即x x x 33sin 9lim-+→=)33sin 9()33sin 9)(33sin 9(lim 0++++-+→x x x x x =33sin 91lim 3sin lim00++⨯→→x x x x x =21613=⨯(2)解 将分子、分母中的二次多项式分解因式,然后消去零因子,再四则运算法则和连续函数定义进行计算.即1245lim 224--+-→x x x x x )3)(4()1)(4(lim 4----=→x x x x x 33414)3()1(lim4=--=--=→x x x(3)解 先通分,然后消去零因子,再四则运算法则和连续函数定义进行计算.即)1113(lim 21----→x x x x =)1)(1()1()3(lim 1+-+--→x x x x x 112lim1-=+-=→x x 3.(1)解 因为 )11)(1(-+=xx y x x 1+-=且 )1('+-='xx y 32121x x--=)11(21x x+-=d y x x xd )11(21+-=注意:求导数时,要先观察函数,看看能否将函数化简,若能,应将函数化简后再求导数,简化计算过程.导数运算的重点是复合函数求导数,难点是复合函数求导数和隐函数求导数. (2)解 因为 xx x x y xx sin e 2)sin e (+'+='=xx x x xx x sin e 2cos e sin e 1+++所以 x x x x x x y y xx d )sin e 2)sin (cos e 1d d +++='=(3)解 ))12ln((cos '--='x x y122)(sin --'⋅-=x x x ]122sin 21[-+-=x x x复合函数求导数要注意下面两步:① 分清函数的复合步骤,明确所有的中间变量;② 依照法则依次对中间变量直至自变量求导,再把相应的导数乘起来. 4.解 (1)C R L '-'='=)10005.2(20002+-+q q =10005.0+-q 令0='L ,求得唯一驻点2000=q .因为驻点唯一,且利润存在着最大值,所以当产量为2000时,可使利润达到最大.(2)在利润最大的基础上再增加100台,利润的改变量为⎰+-=∆21002000d )10005.0(q q L 2500)100041(210020002-=+-=q q即利润将减少2500元.5.(1)解用第一换元积分法求之.⎰+x x x d 423=⎰+222d 421x x x =⎰+-22)d 441(21x x= c x x ++-)4ln(2222(2)解 用分部积分法求之.⎰1d cos x x x π=⎰-11d sin 1sin 1x x x x ππππ=12cos 1x ππ=22π-(3)解 因为,当π<<x 0时,0sin >x ,即x x sin sin =; 当ππ2<<x 时,0sin <x ,即x x sin sin -=;x x d sin 20⎰π=x x x x d )sin (d sin 20⎰⎰-+πππ=πππ20cos cos x x +- =1 + 1 + 1 + 1 = 46.解 将微分方程y x y -='2e 变量分离,得x y x y d e d e 2=,等式两边积分得c xy +=2e 21e 将初始条件0)0(=y 代入,得21=c .所以满足初始条件的特解为:)1(e 5.0e 2+=x y7.解B A 与只有一个发生的事件为: B A B A +,且B A 与B A 是互斥事件,于是)()()(B A P B A P B A B A P +=+ =)()()()(B P A P B P A P +=6.0)3.01()6.013.0⨯-+-⨯(=54.08.解 因为B A AB A +=,且AB 与B A 是互斥事件,得)()()(B A P AB P A P +=所以,)(B A P )()(B P AB P =)()()(B P B A P A P -=323.05.07.0=-= 9.设A 表示甲粒种子发芽,B 表示乙粒种子发芽,则A ,B 独立,且 P (A ) = 0.15,P (B ) = 0.25 故至少有一粒发芽的概率为: P (A +B ) = 1 -P (B A +) =1 -P (B A ) =1 -P (A )P (B )= 1– 0.15⨯0.25 = 0.9625 10.证 因为事件A ,B ,C 相互独立,即)()()(C P A P AC P =,)()()(C P B P BC P =且 )()()(])[(ABC P BC P AC P C B A P -+=+ =)()()()()()()(C P B P A P C P B P C P A P -+ =)()]()()()([C P B P A P B P A P -+ =)()(C P B A P + 所以)(B A +与C 相互独立.11. (1) 解 根据密度函数的性质 1=⎰⎰-=+∞∞-32d )2(3d )(ax x x x f =33)2(ax -= 1-(a -2)3得a =2所以⎩⎨⎧<<-=032)2(3)(2x x x f(2) 解 E X ()=⎰+∞∞-d )(x x xf =⎰-322d )2(3x x x=32234)6443(x x x +-=7412.解 设钢丝的抗拉强度为X ,则X ~N (100,52),且)1,0(~5100N X -. P (90<X <110) = )51001105100510090(-<-<-X P = Φ(2)-Φ(-2) = 2Φ(2) - 1 = 0.954 413.解 因为BA =⎥⎦⎤⎢⎣⎡--210321⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-022011=⎥⎦⎤⎢⎣⎡--2435 (BAI )=⎥⎦⎤⎢⎣⎡--→⎥⎦⎤⎢⎣⎡--1024111110240135 ⎥⎦⎤⎢⎣⎡---→54201111⎥⎥⎦⎤⎢⎢⎣⎡--→2521023101 所以(BA )-1=⎥⎥⎦⎤⎢⎢⎣⎡--25223114. 解 因为 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=100010001111103231][I A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→101340013790001231⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→101340211110001231 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→94310021********01→⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥100113010237001349所以 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-9437323111A15.证因为 A ,B 是对称矩阵,即 B B A A ==T T ,且 T T T )()()(BA AB BA AB +=+TTTTB A A B +=AB BA +=BA AB +=根据对称矩阵的性质可知,AB +BA 是对称矩阵.16.解 将系数矩阵化成阶梯形矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=311031101231232121211231A⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→010030108001020031108101因为,秩(A )=3 < 4,所以,方程组有非零解. 一般解为⎪⎩⎪⎨⎧===03834241x x x x x (4x 是自由未知量) 17.解⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-------→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=13501350112123111211112A c c ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→c 00013501121可见,当c = 0时,秩(A )= 秩(A )= 2 < 3 ,所以方程组有无穷多解.⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-→0000515310535101A 原方程组的一般解为⎪⎪⎩⎪⎪⎨⎧+=-=323153515153x x x x (3x 是自由未知量)。
经济数学基础期末模拟练习题一、单项选择题1.设1)(+=x x f ,则)1)((+x f f =( ). A . x B .x + 1 C .x + 2 D .x + 3 2. 下列函数中,( )不是基本初等函数.A . xy )e1(= B . 2ln x y = C . xxy cos sin =D . 35x y = 3.设函数⎩⎨⎧>≤=0,00,cos )(x x x x f ,则)4(π-f =().A .)4(π-f =)4(πf B .)2()0(πf f =C .)2()0(π-=f fD .)4(πf =224.若A x f x x =→)(lim 0,则)(x f 在点0x 处( )A .有定义B .没有定义C .极限存在D .有定义,且极限存在5.若4cos)(π=x f ,则=∆-∆+→∆xx f x x f x )()(0lim().A .0B .22 C .4sin π- D .4sin π6.曲线x x y -=3在点(1,0)处的切线是( ). A . 22-=x y B . 22+-=x y C . 22+=x yD . 22--=x y7.已知441x y =,则y ''=( ). A . 3x B . 23x C . x 6 D . 68. 满足方程0)(='x f 的点是函数)(x f y =的( ).A .极大值点B .极小值点C .驻点D .间断点 9.下列结论中( )不正确.A .)(x f 在0x x =处连续,则一定在0x 处可微.B .)(x f 在0x x =处不连续,则一定在0x 处不可导.C .可导函数的极值点一定发生在其驻点上.D .若)(x f 在[a ,b ]内恒有0)(<'x f ,则在[a ,b ]内函数是单调下降的. 10.设f x ()的一个原函数是e -2x ,则f x ()=( ). A . e -2xB . --22e xC . x2e4--D . 42e -x11.微分方程y y ='的通解是=y ( ). A . c x +25.0 B . xc e C . xc -eD . c y x+=e12.设一组数据1x =0,2x =10,3x =20,其权数分别为1.01=p ,6.02=p , 3.03=p ,则这组数据的加权平均数是( ).A . 12B . 10C . 6D . 4 13.对任意二事件A B ,,等式( )成立.A .P AB P A P B ()()()= B .P A B P A P B ()()()+=+C .P A B P A P B ()()(())=≠0 D .P AB P A P B A P A ()()()(())=≠014.掷两颗均匀的骰子,事件“点数之和为3”的概率是( ). A .361B . 181C . 121D . 11115.矩阵13210011000010001000-⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥的秩是( ) A. 1 B. 2 C. 3 D. 4 16.若线性方程组的增广矩阵为⎥⎦⎤⎢⎣⎡=41221λA ,则当λ=( )时线性方程组有无穷多解.A .1B .4C .2D .1217.若非齐次线性方程组A m ×n X = b 的( ),那么该方程组无解. A .秩(A ) = n B .秩(A )=m C .秩(A )≠ 秩 (A ) D .秩(A )= 秩(A )二、填空题 1.极限=→xx x 1sinlim 0. 2.当k 时,⎩⎨⎧<+≥+=001)(2x kx x x x f 在0=x 处仅仅是左连续.3.函数x x x f ln )(-=的单调增加区间是 . 4.如果f x x x c ()sin d ⎰=+2,则)(x f '= .5.广义积分 ⎰∞-02d e x x = . 6. 0e)(23='+''-y y x是 阶微分方程.7.设随机变量X 的概率分布为则a = .8.设),(~p n B X ,且6)(=X E ,6.3)(=X D ,则n = . 9.设矩阵[]321-=A ,I 是单位矩阵,则I A A -T =_________.三、解答题1. 生产某种产品的固定成本为1万元,每生产一个该产品所需费用为20元,若该产品出售的单价为30元,试求:(1) 生产x 件该种产品的总成本和平均成本; (2) 售出x 件该种产品的总收入;(3) 若生产的产品都能够售出,则生产x 件该种产品的利润是多少? 2.计算下列极限(1)x x x 33sin 9lim 0-+→ (2)1245lim 224--+-→x x x x x(3))1113(lim 21----→x x x x 3.求下列导数或微分: (1)设)11)(1(-+=xx y , 求d y .(2)设x x y x sin e +=,求y d .(3)设121lncos -+=x x y ,求y '. 4.生产某种产品q 台时的边际成本10005.2)(+='q q C (元/台),固定成本500元,若已知边际收入为,20002)(+='q q R 试求(1)获得最大利润时的产量;(2)从最大利润的产量的基础再生产100台,利润有何变化?5.计算下列不定积分或定积分(1)⎰+x x x d 423(2)⎰10d cos x x x π (3)x x d sin 20⎰π6.求微分方程yx y -='2e 满足初始条件0)0(=y 的特解.7.假设事件B A ,相互独立,已知6.0)(3.0)(==B P A P ,,求事件B A 与只有一个发生的概率.8.已知7.0)(=A P ,3.0)(=B P ,5.0)(=B A P ,求)(B A P .9.有甲、乙两批种子,发芽率分别是0.85和0.75,在这两批种子中各随机取一粒,求至少有一粒发芽的概率.10.已知事件A ,B ,C 相互独立,试证)(B A +与C 相互独立. 11.设随机变量X 的密度函数为⎩⎨⎧<<-=03)2(3)(2x a x x f求 (1) 常数a ; (2) E X ()12.某类钢丝的抗拉强度服从均值为100 (kg/cm 2),标准差为5 (kg/cm 2)的正态分布,求抗拉强度在90~110之间的概率.(Φ(1) = 0.841 3, Φ(2) = 0.977 2 )13.设矩阵 A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-022011,B =⎥⎦⎤⎢⎣⎡--210321,计算(BA )-1. 14.设矩阵 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=111103231A ,求矩阵1-A15.设A ,B 均为n 阶对称矩阵,则AB +BA 也是对称矩阵.16.求下列解线性方程组的一般解⎪⎩⎪⎨⎧=-+-=+-+-=++-0232022023432143214321x x x x x x x x x x x x17. 例45 设线性方程组212132123123123x x x x x x x x x c-+=--+=--+=⎧⎨⎪⎩⎪试问c 为何值时,方程组有解?若方程组有解时,求一般解.参考解答一、单项选择题1.解 由于1)(+=x x f ,得 )1)((+x f f 1)1)((++=x f =2)(+x f 将1)(+=x x f 代入,得)1)((+x f f =32)1(+=++x x 正确答案:D2.解 因为2ln x y =是由u y ln =,2x u =复合组成的,所以它不是基本初等函数.正确答案:B3.解 因为02<-π,故1)2cos()2(=-=-ππf 且 1)0(=f , 所以)2()0(π-=f f正确答案:C4.解 函数在一点处有极限与函数在该点处有无定义无关. 正确答案:C5.解 因为4cos)(π=x f 是常数函数,常数函数是可导的,而且它的导数是0.所以由导数定义可得 =∆-∆+→∆xx f x x f x )()(0lim )0(f '= 0正确答案:A注意:这里的4cos)(π=x f 不是余弦函数.6.解 由导数的定义和它的几何意义可知, 13)()1(='-='x x x y 2)13(12=-==x x是曲线x x y -=3在点(1,0)处的切线斜率,故切线方程是)1(20-=-x y ,即22-=x y正确答案:A7.解 直接利用导数的公式计算: 34)41(x x y ='=', 233)(x x y ='='' 正确答案:B8.解 由驻点定义可知,正确答案:C9.解 因为函数在一点处连续并不能保证在该点处可导,所以,正确答案:A 10. 解 因为f x ()的一个原函数是e-2x,故f x ()=(e -2x )'=--22e x所以正确答案:B11.解 用可分离变量法很容易求解,因此,正确答案:B 12.解 因为加权平均数是203.0106.001.031⨯+⨯+⨯=∑=i ii xp = 12所以,正确答案:A13.由概率乘法公式可知,正确答案:D14.解 两颗均匀的骰子的“点数之和”样本总数有6⨯6 =36个,而“点数之和为3”的事件含有:1+2和2+1两个样本,因此,该事件的概率为181. 正确答案:B15.解 化成阶梯形矩阵后,有3个非0行,故该矩阵的秩为3. 正确答案:C16.解 将增广矩阵化为阶梯形矩阵,⎥⎦⎤⎢⎣⎡=41221λA ⎥⎦⎤⎢⎣⎡-→021021λλ 此线性方程组未知量的个数是2,若它有无穷多解,则其增广矩阵的秩应小于2,即021=λ-,从而λ=12.正确答案:D17.解 根据非齐次线性方程组解的判别定理,得 A m ×n X = b 无解⇔秩(A ) ≠ 秩(A ) 正确答案:C二、填空题1.解 因为当0→x 时,x 是无穷小量,x1sin 是有界变量. 故当0→x 时,xx 1sin 仍然是无穷小量. 所以 =→x x x 1sin lim 00.正确答案:C2.解 因为函数是左连续的,即)0(1)1(lim )0(0f x f x ==+=-→-若 1)(lim )0(2==+=+→+k k x f x即当=k 1时,)(x f 在0=x 不仅是左连续,而且是连续的. 所以,只有当1≠k 时,)(x f 在0=x 仅仅是左连续的. 正确答案:1≠3.解 因为 xx x x f 11)ln ()(-='-='令011)(>-='xx f ,得1>x 故函数的单调增加区间是),1(+∞. 正确答案:),1(+∞4.解 根据不定积分的性质可知f (x )=x c x x x f 2cos 2)2(sin )d )((='+='⎰且 )(x f '= x x 2sin 4)2cos 2(-=' 正确答案:x 2sin 4-5.解 因为 ⎰∞-02d e x x2x e21lim aa -∞→=)e 1(21lim2a a -=-∞→=21所以正确答案:216.解 因为微分方程 0e )(23='+''-y y x中所含未知函数的导数的最好阶数是2次,所以它是2阶微分方程. 正确答案:27.根据离散型随机变量的概率分布的性质:pkk∑=1正确答案:0.38.根据二项分布的期望和方差的定义:6.3)1()(,6)(=-===p np X D np X E得 1- p = 0.6,p = 0.4,n = 15 正确答案:159.解 因为 T A = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-321,A A T=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-321[]321- =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----963642321 所以 I A A -T=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----863632320. 正确答案:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----863632320该例题说明,可转置矩阵不一定是方阵;如果矩阵运算TA A 成立,A 也不一定是方阵.三、解答题1.(1)解 生产x 件该种产品的总成本为x x C 2010000)(+=; 平均成本为: 2010000)(+=xx C .(2)解 售出x 件该种产品的总收入为: x x R 30)(=. (3)解 生产x 件该种产品的利润为:)()()(x C x R x L -==)2010000(30x x +- =1000010-x2.(1)解 对分子进行有理化,即分子、分母同乘33sin 9++x ,然后利用第一重要极限和四则运算法则进行计算.即 x x x 33sin 9lim-+→=)33sin 9()33sin 9)(33sin 9(lim 0++++-+→x x x x x =33sin 91lim 3sin lim00++⨯→→x x x x x =21613=⨯(2)解 将分子、分母中的二次多项式分解因式,然后消去零因子,再四则运算法则和连续函数定义进行计算.即1245lim 224--+-→x x x x x )3)(4()1)(4(lim 4----=→x x x x x33414)3()1(lim4=--=--=→x x x(3)解 先通分,然后消去零因子,再四则运算法则和连续函数定义进行计算.即 )1113(lim 21----→x x x x =)1)(1()1()3(lim 1+-+--→x x x x x 112lim1-=+-=→x x 3.(1)解 因为 )11)(1(-+=x x y xx 1+-=且 )1('+-='xx y 32121x x--=)11(21x x+-=d y x x xd )11(21+-=注意:求导数时,要先观察函数,看看能否将函数化简,若能,应将函数化简后再求导数,简化计算过程.导数运算的重点是复合函数求导数,难点是复合函数求导数和隐函数求导数. (2)解 因为 xx x x y xx sin e 2)sin e (+'+='=xx x x xx x sin e 2cos e sin e 1+++所以 x x x x x x y y xx d )sin e 2)sin (cos e 1d d +++='=(3)解 ))12ln((cos '--='x x y122)(sin--'⋅-=x x x ]122sin 21[-+-=x x x复合函数求导数要注意下面两步:① 分清函数的复合步骤,明确所有的中间变量;② 依照法则依次对中间变量直至自变量求导,再把相应的导数乘起来. 4.解 (1)C R L '-'='=)10005.2(20002+-+q q =10005.0+-q令0='L ,求得唯一驻点2000=q .因为驻点唯一,且利润存在着最大值,所以当产量为2000时,可使利润达到最大.(2)在利润最大的基础上再增加100台,利润的改变量为⎰+-=∆21002000d )10005.0(q q L 2500)100041(210020002-=+-=q q即利润将减少2500元.5.(1)解 用第一换元积分法求之.⎰+x x x d 423=⎰+222d 421x x x =⎰+-22)d 441(21x x = c x x ++-)4ln(2222(2)解 用分部积分法求之.⎰1d cos x x x π=⎰-110d sin 1sin 1x x x x ππππ=12cos 1x ππ=22π-(3)解 因为,当π<<x 0时,0sin >x ,即x x sin sin =; 当ππ2<<x 时,0sin <x ,即x x sin sin -=;x x d sin 20⎰π=x x x x d )sin (d sin 20⎰⎰-+πππ=πππ20cos cos x x +- =1 + 1 + 1 + 1 = 46.解 将微分方程yx y -='2e变量分离,得x y xy d e d e 2=,等式两边积分得c xy +=2e 21e 将初始条件0)0(=y 代入,得21=c . 所以满足初始条件的特解为: )1(e5.0e 2+=xy7.解 B A 与只有一个发生的事件为: B A B A +,且B A 与B A 是互斥事件,于是 )()()(B A P B A P B A B A P +=+ =)()()()(B P A P B P A P + =6.0)3.01()6.013.0⨯-+-⨯(=54.08.解 因为B A AB A +=,且AB 与B A 是互斥事件,得)()()(B A P AB P A P += 所以, )(B A P )()(B P AB P =)()()(B P B A P A P -=323.05.07.0=-=9.设A 表示甲粒种子发芽,B 表示乙粒种子发芽,则A ,B 独立,且 P (A ) = 0.15,P (B ) = 0.25 故至少有一粒发芽的概率为:P (A +B ) = 1 - P (B A +) = 1 - P (B A )= 1 - P (A )P (B )= 1 – 0.15⨯0.25 = 0.9625 10.证 因为事件A ,B ,C 相互独立,即)()()(C P A P AC P =,)()()(C P B P BC P = 且 )()()(])[(ABC P BC P AC P C B A P -+=+=)()()()()()()(C P B P A P C P B P C P A P -+ =)()]()()()([C P B P A P B P A P -+ =)()(C P B A P + 所以)(B A +与C 相互独立.11. (1) 解 根据密度函数的性质1=⎰⎰-=+∞∞-32d )2(3d )(ax x x x f =33)2(ax -= 1-(a -2)3得a = 2所以 ⎩⎨⎧<<-=032)2(3)(2x x x f(2) 解 E X ()=⎰+∞∞-d )(x x xf =⎰-322d )2(3x x x=32234)6443(x x x +-=7412.解 设钢丝的抗拉强度为X ,则X ~N (100,52),且)1,0(~5100N X -. P (90<X <110) = )51001105100510090(-<-<-X P = Φ(2)-Φ(-2) = 2Φ(2) - 1 = 0.954 413.解 因为BA =⎥⎦⎤⎢⎣⎡--210321⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-022011=⎥⎦⎤⎢⎣⎡--2435(BA I )=⎥⎦⎤⎢⎣⎡--→⎥⎦⎤⎢⎣⎡--1024111110240135⎥⎦⎤⎢⎣⎡---→54201111⎥⎥⎦⎤⎢⎢⎣⎡--→2521023101 所以 (BA )-1=⎥⎥⎦⎤⎢⎢⎣⎡--25223114. 解 因为 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=100010001111103231][I A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→101340013790001231⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→101340211110001231 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→943100211110632101→⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥100113010237001349 所以 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-9437323111A15.证 因为 A ,B 是对称矩阵,即 B B A A==T T,且 TT T )()()(BA AB BA AB +=+T T T T B A A B += AB BA +=BA AB += 根据对称矩阵的性质可知,AB +BA 是对称矩阵. 16.解 将系数矩阵化成阶梯形矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=311031101231232121211231A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→010030108001020031108101因为,秩(A ) = 3 < 4,所以,方程组有非零解. 一般解为⎪⎩⎪⎨⎧===03834241x x x x x (4x 是自由未知量) 17.解⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-------→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=13501350112123111211112A c c ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→c 00013501121 可见,当c = 0时,秩(A ) = 秩(A ) = 2 < 3 ,所以方程组有无穷多解.⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-→0000515310535101A 原方程组的一般解为⎪⎪⎩⎪⎪⎨⎧+=-=323153515153x x x x (3x 是自由未知量)。
经济数学基础模拟试题
一、单项选择题(每小题3分,共15分)
1.下列函数中为偶函数的是( ).
A .x x y -=2
B .1
1ln +-=x x y C .2
e e x
x y -+= D .x x y sin 2= 2.设需求量q 对价格p 的函数为p p q 23)(-=,则需求弹性为E p =( ).
A .p
p 32- B . 32-p
p
C .--32p
p D .--p p
32 3.下列无穷积分中收敛的是( ).
A .⎰∞+0d e x x
B . ⎰∞+13d 1x x
C .⎰∞+12d 1x x
D .⎰∞+1d sin x x 4.设A 为43⨯矩阵,B 为25⨯矩阵,且T T B AC 有意义,则C 是 ( )矩阵.
A .24⨯
B .42⨯
C .53⨯
D .35⨯
5.线性方程组⎩⎨⎧=+=+321221
21x x x x 的解得情况是( ). A. 无解 B. 只有O 解 C. 有唯一解 D. 有无穷多解
二、填空题(每小题3分,共15分)
6.函数)5ln(2
1)(++-=x x x f 的定义域是 . 7.函数1()1e x
f x =-的间断点是 . 8.若c x x x f x ++=⎰222d )(,则=)(x f .
9.设⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡---=333222111A ,则=)(A r . 10.设齐次线性方程组O X A =⨯⨯1553,且r (A ) = 2,则方程组一般解中的自由未知量个数为 .
三、微积分计算题(每小题10分,共20分)
11.设x y x cos ln e -=,求y d .
12.计算定积分 ⎰e
1d ln x x x .
四、代数计算题(每小题15分,共30分)
13.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=143102010A ,⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡=100010001I ,求1)(-+A I . 14.求齐次线性方程组⎪⎩⎪⎨⎧=-++=+--=-++0352023024321
4314321x x x x x x x x x x x 的一般解.
五、应用题(本题20分)
15.某厂生产某种产品q 件时的总成本函数为C (q ) = 20+4q +(元),单位销售价格为p = (元/件),问产量为多少时可使利润达到最大最大利润是多少
经济数学基础模拟试题
参考解答
一、单项选择题(每小题3分,共15分)
1.C 2. D 3. C 4. B 5. A
二、填空题(每小题3分,共15分)
6. ),2()2,5(∞+-Y
7. 0x =
8. x x 42ln 2+
9. 1 10.3
三、微积分计算题(每小题10分,共20分)
11.解:因为 x x x
y x x tan e )sin (cos 1e +=--=' 所以 x x y x d )tan e (d +=
12.解: ⎰⎰-=e 12e
12e
1)d(ln 21ln 2d ln x x x x x x x 4
14e d 212e 2e 12+=-=⎰x x .
四、线性代数计算题(每小题15分,共30分)
13.解:因为 ⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡-=+243112011A I ⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=+103210012110001011100243010112001011)(I A I ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→115100012110001011⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡---→115100127010001011 ⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡----→115100127010126001 所以 ⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡----=+-115127126)(1A I .
14.解:因为系数矩阵
⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=111011101211351223011211A ⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡--→000011102301 所以一般解为⎩⎨⎧-=+-=432
43123x x x x x x (其中3x ,4x 是自由未知量)
五、应用题(本题20分)
15.解:由已知收入函数 201.014)01.014(q q q q qp R -=-==
利润函数 22202.0201001.042001.014q q q q q q C R L --=----=-= 于是得到 q L 04.010-='
令004.010=-='q L ,解出唯一驻点250=q .
因为利润函数存在着最大值,所以当产量为250件时可使利润达到最大. 且最大利润为
1230125020250025002.02025010)250(2=--=⨯--⨯=L (元)。