当前位置:文档之家› 材料力学性能学习要点_

材料力学性能学习要点_

材料力学性能学习要点_
材料力学性能学习要点_

材料力学性能知识框架

不同材料(金属、高分子、陶瓷基复合材料)具有怎样的力学性能特点;

结合成型与加工、选材和材料改质、改性等项要求,理解各材料力学性能指标(复习不再列出)的含义、物理及技术意义;

材料变形与断裂的基本特征(金属为主,了解高分子、陶瓷及复合材料);

结合工件服役(受载、环境因素)条件和材料断口形貌特征,判断材料失效及断裂类型;了解主要力学性能指标的测试方法;

分析、把握影响材料主要力学性能指标的主要因素。

1.拉伸力学性能

强度、塑性、韧性;

(1)强度:金属材料在外力作用下抵抗永久变形和断裂的能力称为强度。强度是衡量零件本身承载能力(即抵抗失效能力)的重要指标。

(2)塑性:材料受力,应力超过屈服点后,仍能继续变形而不发生断裂的性质(能力)。

“δ”-伸长率,“ψ”-断面收缩率。

意义:a. 确保安全,防止产生突然破坏;

b. 缓和应力集中;

c. 是轧制、挤压等冷热加工变形的必要条件;

影响因素:a. 细化晶粒,塑性↑;

b. 软的第二相,塑性↑;

c. 温度提高,塑性↑;

d. 固溶、硬的第二相等,塑性↓

(3)韧性:材料断裂前吸收塑性变形功和断裂功的能力。(或者材料抵抗裂纹扩展的能力,J/m3),是材料的力学性能。

退火低碳钢静拉伸曲线特征;断口形貌特点;

退火低碳钢在拉伸力作用下的变形过程可分为弹性变形、不均匀屈服塑性变形、均匀塑性变形、不均匀集中塑性变形和断裂几个阶段。

弹性变形、塑性变形;

(1)弹性变形:

定义:当外力去除后,能恢复到原来形状或尺寸的变形,叫弹性变形。

特点:单调、可逆、变形量很小(<0.5~1.0%)

(2)塑性变形:

定义:外载荷卸去后,不能恢复的变形。

特点:各晶粒变形的不同时性和不均匀性、变形的相互协调性

屈服(不均匀塑性变形)、均匀塑性变形、集中塑性变形(缩颈);

(1)屈服(不均匀塑性变形):在金属塑性变形开始阶段,外力不增加、甚至下降时,变形继续进行的现象,称为屈服。

特点:上屈服点、下屈服点(吕德丝带)

(2)均匀塑性变形:屈服之后,缩颈之前的阶段(在这一阶段,塑性变形并是能像屈服平台那样连续流变先去,而需要不断增加外力才能进行,)

(3)集中塑性变形(缩颈):

a. 意义变形集中于局部区域

b. 缩颈的判据(塑性变形时,体积不变的条件)e B = n

结论:当金属材料真实均匀塑性应变量等于应变硬化指数时,便产生缩颈。

所以,n值大时,材料的均匀塑性变形能力强!

c. 颈部的三向拉应力状态

承受三向拉应力(相当于厚板单向拉伸,平面应变状态)

产生屈服的原因,影响因素分析;

机理:外应力作用下,晶体中位错萌生、增殖和运动的过程。

影响屈服强度因素:

1)内因

a. 金属本性及晶格类型

位错运动的阻力:晶格阻力(P-N力);位错交互作用产生的阻力。

b. 溶质原子和点缺陷

形成晶格畸变(间隙固溶,空位)

c. 晶粒大小和亚结构

晶界是位错运动的障碍。要使相邻晶粒的位错源开动,须加大外应力。

d. 第二相

不可变形第二相,位错只能绕过它运动。可变形第二相,位错可切过。

第二相的作用,还与其尺寸、形状、数量及分布有关;同时,第二相与基体的晶体学匹配程度也有关。

2)外因

温度提高,位错易运动,σs↓。例:高温锻造,“乘热打铁”

应变速率提高,σs↑。

应力状态切应力τ↑,σs↓。

应变硬化,静力韧度;

(1)应变硬化或称形变强化,加工硬化

1)意义

a. 应变硬化和塑性变形适当配合,可使金属进行均匀塑性形变。

b.使构件具有一定的抗偶然过载能力。

c. 强化金属,提高力学性能。

d.提高低碳钢的切削加工性能。

2)应变硬化机理

a. 三种单晶体金属的应力

b. 应变硬化机理

易滑移阶段:单系滑移hcp金属(Mg、Zn)不能产生多系滑称,∴易滑移段长。

线性硬化阶段:多系滑移位错交互作用,形成割阶、面角位错、胞状结构等;位错运动的阻力增大。

抛物线硬化阶段:交滑移,或双交滑移,刃型位错不能产生交滑移。

多晶体,一开动便是多系滑移,∴无易滑移阶段

(2)静力韧度:静拉伸时,单位体积材料断裂所吸收的功(是强度和塑性的综合指标)。J/m3 工程意义:对按照屈服强度设计、有偶而过载的机件必须考虑。

断裂类型(韧性、脆性,沿晶、穿晶,微孔聚合、解理);断裂分类及特征(表1-7)

韧性断裂与脆性断裂的区别与联系; 区别:(1) 韧性断裂

断裂特点:

断裂前,宏观变形明显;过程缓慢;

断裂面一般平行于最大切应力,并与主应力成45o

角。 (2)脆性断裂 断裂特点

断裂前基本不发生塑性变形,无明显前兆; 断口与正应力垂直。

联系:通常,脆断前也产生微量的塑性变形,一般规定: Ψ < 5%为脆性断裂;> 5%时为韧性断裂。

可见,金属材料的韧性与脆性是根据一定条件下的塑性变形量来规定的。 条件改变,材料的韧性与脆性行为会随之而改变。

格里菲斯断裂理论之裂纹扩展力学表达式(表1-8)

的数学、物理含义。

2.应力状态软性系数;

应力状态软性系数α 的定义:最大切应力与最大正应力之比

+(--=

3213

1max max 22σσνσσσστα

式中 最大切应力τmax 按第三强度理论计算,即 τmax= (σ1-σ3) /2

σ1,σ3分别为最大和最小主应力。

最大正应力 σmax 按第二强度理论计算,即,

)

(321max σσνσσ--=ν——泊松比。

单向拉伸 α = 1/2

扭 转 α = 1 /(1+ν)≈0.8

单向压缩α= 1 /(2ν)≈2

应力状态系数α的技术意义——表示在不同试验方法下(即不同应力状态下)材料塑性变形的难易程度

α越大,表示该应力状态下切应力分量越大,材料就越易塑变。

∴把α值较大的称做软的应力状态,α值较小的称做硬的应力状态。

缺口试样静弯曲曲线,缺口效应;

缺口式样静弯曲曲线:

曲线下所包围的面积,表示试样从变形到断裂的总功。

总功由三部分组成:

(1)只发生弹性变形的弹性功I;

(2)发生塑性变形的变形功以面积Ⅱ表示;

(3)在达到最大载荷Pmax时试样即出

现裂纹。如果裂纹到截荷P1点时开始迅

速扩展,直至试样完全破断。这一部分

功以面积Ⅲ表示,叫作撕裂功。

可用断裂功,或Pmax/P1,来表示材料的缺口敏感度。

P1 —试样发生断裂所对应的作用力。

Pmax/P1 =1时,裂纹扩展极快,缺口敏感度最大。

缺口效应:

理论应力集中系数

Kt = σmax/σ

Kt值与材料性质无关,只取决于缺口的几何形状。

拉伸时,缺口试样上的应力分布

弹性状态下:

(a)薄板缺口下的弹性应力(平面应力)

缺口根部为单向拉应力状态σy,内部为两向拉应力状态,σz等于0 。

(b)厚板缺口下的弹性应力(平面应变)

缺口根部为两向拉应力状态,内部为三向拉应力状态。

(c) 平面应变时的应力分布

在材料内部,沿厚度方向,σz不等于0。

(d)平面应变时,局部屈服后的应力分布

塑性状态下:

塑性较好的材料,若根部产生塑性变形,应力将重新分布,并随载荷的增大,塑性区逐渐扩大,直至整个截面。

应力最大处则转移到离缺口根部ry距离处,该处σy,σx,σz均为最大值。

随塑性变形逐步向试样内部转移,各应力峰值越来越大。试样中心区的σy最大。

∴出现“缺口强化”(三向拉应力约束了塑性变形)

塑性降低,影响材料的安全使用。

标尺硬度符号压头类型初始实验

力F0/N

主试验力

F1/N

总试验力

F/N

测量硬度

X围

应用举例

A HRA 金刚石圆

98.07

490.3 588.4 20~88

硬质合金、硬化薄钢

板、表面薄层硬化钢

B HRB

Φ

1.588mm

882.6 980.7 20~100

低碳钢、铜合金、铁

素体可锻铸铁

C HRC 金刚石圆

1373 1471 20~70

淬火钢、高硬度铸件、

珠光体可锻铸铁

3.冲击弯曲试验

冲击韧度、试样规X及断口形貌特征、低温脆性、韧脆转变温度t K及影响因素。

断裂分析图(FAD),技术意义和用途,NDT、FTE和FTP的含义和定量关系:

技术意义:

对低强度钢板进行落锤试验求得NDT温度,可建立断裂分析图。该图是表示许用应力、缺陷(裂纹)和温度之间关系的综合图。

它明确提供了低强度钢构件在温度、应力和缺陷(裂纹)联合作用下脆性断裂开始和终止的条件。

对低强度钢构件防止脆断设计和选材提供了一个有效方法;可分析断裂事故,帮助积累防止脆性断裂的经验。

NDT:零塑性、或无塑性断裂温度;

FTE:弹性断裂转变(/折)温度(数值上= NDT+33℃)

FTP:100%纤维断口的断裂温度(数值上= NDT+67℃),即塑性断裂转变温度。

4.断裂韧度

裂纹尖端应力强度因子K I、塑性区修正的意义;

断裂韧度的影响因素;

断裂韧度的实质:(K IC)是材料强度、塑性和结构参量(基体相的强化程度、第二相的大小、数量与分布,晶粒尺寸,裂纹等)的综合性能。

K IC应用、计算(本章例一、例二,本章思考习题17,),有关塑性区修正的问题、表面半椭圆形裂纹形状系数;

K IC、K C,有何异同?

断裂韧度J IC和G IC、裂纹尖端X开位移δC的技术含义(Esp:量纲和断裂条件上理解)

5.疲劳

疲劳概念及其特点,

概念:材料在交变应力的作用下,经过一段时间,而发生断裂的现象,叫疲劳。

疲劳破坏时无明显的塑性变形,呈现脆性的突然断裂。疲劳断裂是一种非常危险的断裂。疲劳的分类及其特点:

(1)分类

1)按应力状态弯曲疲劳、扭转疲劳、拉压疲劳、复合疲劳等。

2)按环境腐蚀疲劳、热疲劳、接触疲劳等。

3)按循环周期高周疲劳、低周疲劳。

4)按破坏原因机械疲劳、腐蚀疲劳、热疲劳

(2)疲劳的特点

1)断裂应力<σb,甚至<σs;

2)出现脆性断裂;

3)对材料的缺陷十分敏感;

4)疲劳破坏能清楚显示裂纹的萌生和扩展,断裂。

疲劳曲线,

疲劳断口宏观形貌特征,疲劳裂纹形成、扩展和断裂,微观特征;

(1)疲劳端口宏观形貌特征:

断口拥有三个形貌不同的区域:疲劳源、疲劳区、瞬断区。随材质、应力状态的不同,三个

区的大小和位置不同。

疲劳裂纹扩展速率曲线;

疲劳门槛值(概念)、疲劳寿命估算Paris公式、疲劳过程及裂纹形成与扩展的机理;

疲劳门槛值△K th:是阻止疲劳裂纹开始扩展的性能,也是材料力学性能指标

常选用Paris公式:da/dN = C(△K)n

疲劳过程:裂纹萌生→亚稳扩展→失稳扩展→断裂

裂纹萌生的原因:应力集中、不均匀塑性形变。

方式:表面滑移带开裂;晶界或其他界面开裂。

裂纹扩展的两个阶段:

第一阶段沿主滑移系,以纯剪切方式向内扩展;扩展速率仅0.1μm 数量级。

第二阶段疲劳裂纹亚稳扩展;扩展速率达μm级。

疲劳强度影响因素;

(1)材料内因:①化学成分②显微组织③非金属夹杂及冶金缺陷

(2)材料表面状态和工件结构:①表面状态应力集中;表面粗糙度②残余应力及表面强化(喷丸与滚压)③表面及化学热处理

低周疲劳和热疲劳的概念

低周疲劳:疲劳寿命为102~105次的疲劳断裂,称为低周疲劳(在应力较高、循环次数较少的疲劳断裂)

特点:(1)局部产生宏观变形,应力与应变之间呈非线性。

(2)裂纹成核期短,有多个裂纹源;断口呈韧窝状、轮胎花样状。

(3) 疲劳寿命取决于塑性应变幅△εp。

热疲劳:在循环热应力和热应变作用下,产生的疲劳称为热疲劳。热疲劳属低周疲劳。

6.应力腐蚀与氢脆概念

应力腐蚀:金属在拉应力和特定的化学介质共同作用下,经过一段时间后所产生的低应力脆断现象。

氢脆:由于氢和应力共同作用而导致的金属材料产生脆性断裂的现象。

断口形貌特征

应力腐蚀:宏观:枯树枝状、分叉,主裂纹扩展较快,分支裂纹扩展较慢。

微观沿晶断裂和穿晶断裂

氢脆:宏观:呈氧化色,颗粒状(沿晶)

微观:沿原奥氏体晶界的沿晶断裂,晶界上常有撕裂棱。

破坏机理

应力腐蚀:滑移——溶解理论(钝化膜破坏理论)

氢脆:在金属凝固的过程中,溶入其中的氢没能及时释放出来,向金属中缺陷附近扩散,到室温时原子氢在缺陷处结合成分子氢并不断聚集,从而产生巨大的内压力,使金属发生裂纹。

防治措施

应力腐蚀:(1)合理选材(原则:选材时,考虑耐应力腐蚀性能;在成本和采购便利下,尽

量选KISCC较高的材料);

(2)减少拉应力(降低应力集中,退火,喷丸及其他表面处理);

(3)改善化学介质(水净化、添加缓蚀剂);

(4)采用电化学保护,使金属远离电化学腐蚀区域(外加电位、阴极保护)。

氢脆:(1)材料降低含氢量,细化组织,降低S、P含量。

显微组织对氢脆的敏感性,由低→高

排序:球状P、片状P、回火M或B、未回火M。

(2)环境减少吸氢的可能性,含氢介质中加入抑制剂,表面涂层。

(3)力学因素减小残余拉应力,降低应力集中。

应力腐蚀裂纹的da/dt~K I关系曲线、裂纹形成与扩展、断裂过程。

应力腐蚀裂纹的扩展速度da/dt

KI>KISCC,裂纹扩展。

扩展速率da/dt——单位时间内的裂纹扩展量。

da/dt~ KI 曲线(图6-7,P132)的三个阶段(初始、稳定、失稳)。

第一阶段:当KI刚超过KIscc时,裂纹经过一段孕育后突然加速扩展,曲线几乎与纵坐标轴平行。

第二阶段:曲线出现水平线段,da/dt与KI几乎无关。因为这时裂纹尖端发生分叉现象,裂纹扩展主要受电化学过程控制,故与材料和环境密切相关。

第三阶段:裂纹长度已经接近临界尺寸,da/dt又明显的依赖于KI,随其增大而急剧增大,这时材料进入失稳扩展的过渡区。当KI达到KIC时便失稳扩展而断裂。

第二阶段时间越长,材料抗应力腐蚀开裂性能越好。

如果测出KISCC及第二阶段的da/dt ,就可估算机件在应力腐蚀条件下的剩余寿命。

7.磨损和接触疲劳

磨损:机件表面相接触并作相对运动,表面逐渐有微小颗粒分离出来形成磨屑,使表面材料逐渐流失,造成表面损伤的现象。

接触疲劳:机件(如轴承、齿轮等)两接触表面作滚动、滑动,或滚滑时,在交变接触压应力长期作用下,材料表面因疲劳损伤,导致局部区域产生小片或小块状金属剥落导致的材料流失现象。

磨损量与时间的关系曲线:p140

耐磨性:通常是用磨损量来表示耐磨性,磨损量越小,耐磨性越高

相对耐磨性系数ε=△w标/△w测。

粘着磨损、磨粒磨损、冲蚀磨损、腐蚀磨损,及微动磨损的概念

粘着磨损(咬合磨损):滑动条件下,摩擦副相对运动速度较小(钢:<1m/s)时发生的磨损。磨粒磨损:当摩擦副一方面存在坚硬的细微突起,或者在接触面之间存在着硬质粒子时所产生的一种磨损。

冲蚀磨损:流体或固体以松散的小颗粒按一定的速度和角度对材料表面进行冲击造成的损伤。进一步分又有固气冲蚀磨损、流体冲蚀磨损、液滴冲蚀磨损和气蚀等。

腐蚀磨损:摩擦过程中,摩擦副之间或摩擦副表面与环境介质发生化学或电化学反应形成腐蚀产物,进而脱落造成表面材料损失的过程。腐蚀磨损+粘着磨损或磨粒磨损——腐蚀机械磨损。

微动磨损:接触表面之间因存在小振幅相对运动或往复运动而产生的磨损(也叫微动腐蚀)。特征:摩擦副接触区有大量红色Fe2O3磨屑。该磨损兼有粘着磨损、氧化磨损及磨粒磨损。

接触疲劳概念、破坏形式(麻点、浅层剥落、深层剥落)。

(1)麻点剥落

局部塑性变形,产生裂纹、扩展(滑移带开裂),在连续滚滑作用下,润滑油挤入裂纹并封闭其间,产生高压冲击波,剥落下一块金属而形成一凹坑。摩擦力较大及表面质量差时,易产生麻点剥落。

(2)浅层剥落

最大切应力处,塑性变形最剧烈,且反复进行,导致材料局部弱化,非金属夹杂物附近萌生裂纹。表层、次表层产生了加工硬化。

(3)深层剥落

过渡区是薄弱区,萌生裂纹,先平行于表面扩展,后垂直于表面扩展,最后形成大的剥落坑。

8.材料在高温下的失效,力学性能指标表征

常见高温性能:(1)抗(高温)氧化性

(2)热强性材料在高温、长时间和应力的作用下,抵抗变形和断裂的能力。

等强温度T E反映的曲线、蠕变曲线;

蠕变极限、持久强度 蠕变极限: 例如: 表示:在600℃,稳态蠕变速率= 1×10-5

%/h 的强度60MPa 。 又如(规定温度t 、时间τ,蠕变总伸长δ) 表示:500℃,10万小时,总伸长率为 ε=1%的蠕变极限为100MPa 。 持久强度:在规定温度(t ),达到规定的持续时间(τ)而不发生断裂的应力值

9.高分子材料

结构特点:⑴聚合物为复合物(∵各个巨分子的分子量不一定相同); ⑵聚合物有构型、构象的变化; ⑶分子之间可以有各种相互排列。

线型非晶态聚合物的变形-温度曲线,VS 结晶聚合物的力学性能特点比较

MPa 60600

1015=-?σ

MPa

10050010/15

=σε

?

t

τσ

强度与硬度、银纹与断裂、摩擦与磨损 强度 比金属低得多(约20~80MPa),比强度较金属的高。实际强度仅为其理论值的1/200。 硬度 聚合物的硬度也比金属低得多。由于聚合物具有较大的柔性和弹性,故在不少场合下显示出较高的抗划伤能力。

在拉应力作用下,非晶态聚合物的某些薄弱地区,因应力集中产生局部塑性变形,结果在其表面和内部会出现闪亮的、细长形的“类裂纹”,称为银纹。

在干摩擦条件下,聚合物一金属摩擦副的耐磨性通常优于大多数金属与金属配对的摩擦副。大多数液体对塑料具有润滑减摩作用。 特有的高弹性,可使接触表面产生变形而不是切削犁沟损伤,故具有较好的抗磨粒磨损能力。但在凿削式磨粒磨损情况下,聚合物的耐磨性比较差。

10.陶瓷

结构特点、变形与断裂(E ,强度、塑性、耐磨性)特点; 陶瓷材料通常是金属与非金属元素组成的化合物;以离子键和共价键为主要结合键。可以通过改变晶体结构的晶型变化改变其性能。

塑性变形:室温下,绝大多数陶瓷材料塑性变形极小,1000℃以上,大多数陶瓷材料可发生塑性变形,超细等轴晶,第二相弥散分布,晶粒间存在无定形相。

断裂:以各种缺陷(表面或内部)为裂纹源,裂纹扩展,瞬时脆断。

陶瓷的断裂韧度及增韧措施;

陶瓷的断裂韧度:比金属的低1~2个数量级。 陶瓷材料的增韧:(1)改善组织(细密、纯、匀);(2)相变增韧;(3)微裂纹增韧。

热震断裂VS 热震损伤,抗热震性。 抗热震断裂参数R :

急剧加热和冷却

缓慢加热和冷却

抗热震损伤:气孔可钝化裂纹尖端;减小应力集中;降低热导率。

反复加热冷却产生的弹性变能是陶瓷材料热震损伤的动力(裂纹扩展的动力)。 提高热震损伤抗力,需使用弹性模量大,强度低的材料。

f

c E t R σαυ-=?=1R

E R f

λσαυλ=-=')1(

11.复合材料

概念、纤维增强复合材料力学性能特点。

定义:由两种或两种以上异质、异形、异性的材料复合形成的新型材料。

分类:按基体分:金属基复合材料;无机非金属复合材料;聚合物复合材料。

按增强体分:连续纤维复合材料;短纤维复合材料;颗粒复合材料;层合板复合材料。

按用途分:结构复合材料;功能复合材料。

复合材料力学性能特点:1、高比强度、比弹性模量;

2、各向异性;

3、抗疲劳性能好;

4、减振性能好;

5、可设计性强。

名词概念:

穿晶断裂和沿晶断裂:

穿晶断裂→裂纹穿过晶界。

沿晶断裂→裂纹沿晶扩展。

穿晶断裂,可以是韧性或脆性断裂;两者有时可混合发生。

沿晶断裂(断口形貌呈冰糖状),多数是脆性断裂。

KIC:平面应变断裂韧度(厚板受力状态)

KC:平面应力断裂韧度(薄板受力状态)

解理断裂、微孔聚合断裂

应力状态软性系数:最大切应力与最大正应力之比。

缺口敏感度:试样的抗拉强度与等截面尺寸光滑试样的抗拉强度的比值。比值越大,缺口敏感性越小,越容易发生塑性变形。

*强度、塑性、韧性,

强度:金属材料在外力作用下抵抗永久变形和断裂的能力称为强度。强度是衡量零件本身承载能力(即抵抗失效能力)的重要指标。

塑性:材料受力,应力超过屈服点后,仍能继续变形而不发生断裂的性质(能力)。

韧性:材料断裂前吸收塑性变形功和断裂功的能力。(或者材料抵抗裂纹扩展的能力,J/m3),是材料的力学性能

弹性比功:物理意义:吸收弹性变形功的能力。

几何意义:应力-应变曲线上弹性阶段下的面积

低温脆性:低温下,材料的脆性急剧增加。

静力韧度:材料在静拉伸时单位体积材科从变形到断裂所消耗的功。

冲击韧度:材料在冲击载荷作用下吸收塑性变形功和断裂功的能力。

断裂韧度:在弹塑性条件下,当应力场强度因子增大到某一临界值,裂纹便失稳扩展而导致材料断裂

冲击吸收功:冲击弯曲试验中试样变形和断裂所消耗的功

驻留滑移带:交变载荷作用,通过位错的交滑移,使驻留滑移带加宽(Note:永留或能再现的循环滑移带,称为驻留滑移带。

X开型(I型)裂纹:拉应力垂直作用于裂纹扩展面,裂纹沿作用力方向X开,沿裂纹面扩

展。

应力腐蚀断裂:金属在拉应力和特定的化学介质共同作用下,经过一段时间后所产生的低应力脆断现象。

氢脆断裂:由于氢和应力共同作用而导致的金属材料产生脆性断裂的现象。

等强温度:晶粒强度与晶界强度相等的温度。

σ:在高温长时载荷作用下的断裂强度---持久强度极限。

持久强度t

τ

热疲劳:当容器或构件由于其温度的反复变化而引起其金属材料的疲劳现象称为热疲劳

热震断裂:陶瓷材料承受温度骤变产生瞬时断裂,称之为热震断裂。

热震损伤:陶瓷材料在热冲击循环作用下,材料先出现开裂、剥落,然后碎裂和变质,终至整体破坏,称之为热震损伤。

玻璃态:温度低于玻璃化温度时,聚合物所处于的状态即为玻璃态。

工程力学材料力学_知识点_及典型例题

作出图中AB杆的受力图。 A处固定铰支座 B处可动铰支座 作出图中AB、AC杆及整体的受力图。 B、C光滑面约束 A处铰链约束 DE柔性约束 作图示物系中各物体及整体的受力图。 AB杆:二力杆 E处固定端 C处铰链约束

(1)运动效应:力使物体的机械运动状态发生变化的效应。 (2)变形效应:力使物体的形状发生和尺寸改变的效应。 3、力的三要素:力的大小、方向、作用点。 4、力的表示方法: (1)力是矢量,在图示力时,常用一带箭头的线段来表示力;(注意表明力的方向和力的作用点!) (2)在书写力时,力矢量用加黑的字母或大写字母上打一横线表示,如F、G、F1等等。 5、约束的概念:对物体的运动起限制作用的装置。 6、约束力(约束反力):约束作用于被约束物体上的力。 约束力的方向总是与约束所能限制的运动方向相反。 约束力的作用点,在约束与被约束物体的接处 7、主动力:使物体产生运动或运动趋势的力。作用于被约束物体上的除约束力以外的其它力。 8、柔性约束:如绳索、链条、胶带等。 (1)约束的特点:只能限制物体原柔索伸长方向的运动。 (2)约束反力的特点:约束反力沿柔索的中心线作用,离开被约束物体。() 9、光滑接触面:物体放置在光滑的地面或搁置在光滑的槽体内。 (1)约束的特点:两物体的接触表面上的摩擦力忽略不计,视为光滑接触面约束。被约束的物体可以沿接触面滑动,但不能沿接触面的公法线方向压入接触面。 (2)约束反力的特点:光滑接触面的约束反力沿接触面的公法线,通过接触点,指向被约束物体。() 10、铰链约束:两个带有圆孔的物体,用光滑的圆柱型销钉相连接。 约束反力的特点:是方向未定的一个力;一般用一对正交的力来表示,指向假定。()11、固定铰支座 (1)约束的构造特点:把中间铰约束中的某一个构件换成支座,并与基础固定在一起,则构成了固定铰支座约束。

材料力学性能重点总结

名词解释: 1加工硬化:试样发生均匀塑性变形,欲继续变形则必须不断增加载荷,这种随着随性变形的增大形变抗力不断增大的现象叫加工硬化。 2弹性比功:表示金属材料吸收弹性变形功的能力。 3滞弹性:在弹性范围内快速加载或卸载后,随着时间延长产生附加弹性应变的现象。 4包申格效应:金属材料通过预先加载产生少量塑性变形(残余应变小于1%-4%),而后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 5塑性:金属材料断裂前发生塑性变形的能力。常见塑性变形方式:滑移和孪生 6弹性极限:以规定某一少量的残留变形为标准,对应此残留变形的应力。 7比例极限:应力与应变保持正比关系的应力最高限。 8屈服强度:以规定发生一定的残留变形为标准,如通常以0.2%的残留变形的应力作为屈 服强度。 9韧性断裂是材料断裂前发生产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的断裂 过程,在裂纹扩展过程中不断的消耗能量。韧性断裂的断裂面一般平行于最大切应力并于主 应力成45度角。 10脆性断裂是突然发生的断裂,断裂前基本上不发生塑形变形,没有明显征兆,危害性很大。断裂面一般与主应力垂直,端口平齐而光亮,常呈放射状或结晶状。 11剪切断裂是金属材料在切应力作用下,沿着滑移面分离而造成的断裂,又分滑断和微孔聚集性断裂。 12解理断裂:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,总是脆性断裂。 13缺口效应:由于缺口的存在,在静载荷作用下,缺口截面上的应力状态发生变化,产生所谓缺口效应“ ①缺口引起应力集中,并改变了缺口应力状态,使得缺口试样或机件中所受的应力由原来的单向应力状态改变为两向或者三向应力状态。 ②缺口使得材料的强度提高,塑性降低,增大材料产生脆断的倾向。 8缺口敏感度:有缺口强度的抗拉强度Z bm与等截面尺寸光滑试样的抗拉强度Zb的比值. NSR=Z bn / Z S NSR越大缺口敏感度越小 9冲击韧性:Ak除以冲击式样缺口底部截面积所得之商 10冲击吸收功:式样变形和断裂所消耗的功,称为冲击吸收功以Ak表示,单位J 11低温脆性:一些具有体心立方晶格或某些秘排立方晶格的金属,当温度降低到、某一温度时,会由韧性状态变为脆性状态,冲击吸收功明显下降,断裂机理由微孔聚集变为穿晶解 理,断口特征由纤维状变为结晶状,这种现象称为低温脆性 12脆性转变温度:当温度降低时,材料屈服强度急剧增加,而塑形和冲击吸收功急剧减小。材料屈服强度急剧升高的温度,或断后延伸率,断后收缩率,冲击吸收功急剧减小的温度就是韧脆转变温度tk,tk是一个温度区间 16应力场强度因子KI :表示应力场的强弱程度,对于某一确定的点的大小直接影响应力场的大小,KI越大,则应力场各应力分量也越大 17应力腐蚀:金属在拉应力和特定的化学介质共同作用下,经过一段时间后产生的低应力脆断现象第一章 3?金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指 标? 答:由于弹性变形时原子间距在外力作用下可逆变化的结果,应力与应变关系实际上是原子

金属材料力学性能最常用的几项指标

金属材料力学性能最常用的几项指标 硬度是评定金属材料力学性能最常用的指标之一。 对于金属材料的硬度,至今在国内外还没有一个包括所有试验方法的统一而明确的定义。就已经标准化的、被国内外普通采用的金属硬度试验方法而言,金属材料硬度的定义是:材料抵抗另一较硬材料压入的能力。硬度检测是评价金属力学性能最迅速、最经济、最简单的一种试验方法。硬度检测的主要目的就是测定材料的适用性,或材料为使用目的所进行的特殊硬化或软化处理的效果。对于被检测材料而言,硬度是代表着在一定压头和试验力作用下所反映出的弹性、塑性、强度、韧性及磨损抗力等多种物理量的综合性能。由于通过硬度试验可以反映金属材料在不同的化学成分、组织结构和热处理工艺条件下性能的差异,因此硬度试验广泛应用于金属性能的检验、监督热处理工艺质量和新材料的研制。金属硬度检测主要有两类试验方法。一类是静态试验方法,这类方法试验力的施加是缓慢而无冲击的。硬度的测定主要决定于压痕的深度、压痕投影面积或压痕凹印面积的大小。静态试验方法包括布氏、洛氏、维氏、努氏、韦氏、巴氏等。其中布、洛、维三种测试方法是最长用的,它们是金属硬度检测的主要测试方法。而洛氏硬度试验又是应用最多的,它被广泛用于产品的检测,据统计,目前应用中的硬度计70%是洛氏硬度计。另一类试验方法是动态试验法,这类方法试验力的施加是动态的和冲击性的。这里包括肖氏和里氏硬度试验法。动态试验法主要用于大型的及不可移动工件的硬度检测。 1.布氏硬度计原理 对直径为D的硬质合金压头施加规定的试验力,使压头压入试样表面,经规定的保持时间后,除去试验力,测量试样表面的压痕直径d,布氏硬度用试验

材料力学必备知识点

材料力学必备知识点 1、材料力学的任务:满足强度、刚度和稳定性要求的前提下,为设计既经济又安全的构件,提供必要的理论基础和计算方法。 2、变形固体的基本假设:连续性假设、均匀性假设、各向同性假设。 3、杆件变形的基本形式:拉伸或压缩、剪切、扭转、弯曲。 4、低碳钢:含碳量在0.3%以下的碳素钢。 5、低碳钢拉伸时的力学性能:弹性阶段、屈服阶段、强化阶段、局部变形阶段 极限:比例极限、弹性极限、屈服极限、强化极限 6、名义(条件)屈服极限:将产生0.2%塑性应变时的应力作为屈服指标 7、延伸率δ是衡量材料的塑性指标塑性材料 随外力解除而消失的变形叫弹性变形;外力解除后不能消失的变形叫塑性变形。 >5%的材料称为塑性材料:<5%的材料称为脆性材料 8、失效:断裂和出现塑性变形统称为失效 9、应变能:弹性固体在外力作用下,因变形而储存的能量

10、应力集中:因杆件外形突然变化而引起的局部应力急剧增大的现象 11、扭转变形:在杆件的两端各作用一个力偶,其力偶矩大小相等、转向相反且作用平面垂直于杆件轴线,致使杆件的任意两个横截面都发生绕轴线的相对转动。12、翘曲:变形后杆的横截面已不再保持为平面;自由扭转:等直杆两端受扭转力偶作用且翘曲不受任何限制;约束扭转:横截面上除切应力外还有正应力 13、三种形式的梁:简支梁、外伸梁、悬臂梁 14、组合变形:由两种或两种以上基本变形组合的变形 15、截面核心:对每一个截面,环绕形心都有一个封闭区域,当压力作用于这一封闭区域内时,截面上只有压应力。 16、根据强度条件可以进行(强度校核、设计截面、确定许可载荷)三方面的强度计算。 17、低碳钢材料由于冷作硬化,会使(比例极限)提高,而使(塑性)降低。 18、积分法求梁的挠曲线方程时,通常用到边界条件和连续性条件;因杆件外形突然变化引起的局部应力急剧增大的现象称为应力集中;轴向受压直杆丧失其直线平衡形态的现象称为失稳 19、圆杆扭转时,根据(切应力互等定理),其纵向截

工程材料力学性能答案

工程材料力学性能答案1111111111111111111111111111111111111 1111111111111111111111111111111111111 111111 决定金属屈服强度的因素有哪 些?12 内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。外在因素:温度、应变速率和应力状态。试举出几种能显著强化金属而又不降低其塑性的方法。固溶强化、形变硬化、细晶强化试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险?21韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。何谓拉伸断口三要素?影响宏观拉伸断口性态的

因素有哪些?答:宏观断口呈杯锥形,纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化?断裂强度与抗拉强度有何区别?抗拉强度是试样断裂前所承受的最大工程应力,记为σb;拉伸断裂时的真应力称为断裂强度记为σf; 两者之间有经验关系:σf = σb (1+ψ);脆性材料的抗拉强度就是断裂强度;对于塑性材料,于出现颈缩两者并不相等。裂纹扩展受哪些因素支配?答:裂纹形核前均需有塑性变形;位错运动受阻,在一定条件下便会形成裂纹。2222222222222222222222222222222222 2222222222222222222222222222222222 2222 试综合比较单向拉伸、压缩、弯曲及扭转试验的特点和应用范围。答:单向拉伸试验的特点及应用:单向拉伸的应力状态较硬,一般用于塑性变形

2017材料力学性能复习提纲

1.第一章是重中之重。可以说没有什么需要忽略的。还要尤其注意其中跟工程实践密切相关的内容,如:弹性极限、屈服强度、抗拉强度、断裂强度等重要力学性能指标的工程实践意义怎样? 2.如何提高材料的强度?相变强化的本质是什么?其中固溶强化效果与溶质原子的关系如何?材料的刚度如何影响材料的使用性能?脆性断裂和韧性断裂主要易发生在哪些材料上?断口特征怎样。 3. 弹性比功、包申格现象等等的概念和影响因素,这些因素是如何影响材料相关性能的? 4.断裂强度的裂纹理论。特别是重要力学参数的计算。 5.材料中的非金属夹杂物,在构件受到扭转、压缩或者拉伸时,如何影响最后断口形貌的。扭转、压缩、弯曲实验各自最适合测量材料的哪些性能?在做这些实验时,操作过程应注意哪些因素?缺口效应是怎样的?为何要在试样上加工缺口? 6.冲击实验的步骤,对试样的要求怎样?为何有这些要求? 7.各种硬度实验的原理,硬度值的表示方式,其中各个参数的含义。各种硬度测试方法的适用范围和彼此的优劣。 8.材料的低温脆性含义,具体衡量指标,以及如何判断材料的低温使用性能? 9.针对常用的金属、陶瓷和高分子材料,怎样提高其断裂韧性。测定KⅠc的实验中试样有什么要求?裂纹体的开裂、扩展方式有哪几种,其中哪种最危险?断裂韧性的影响因素,以及断裂韧度在金属材料中的具体应用举例。

10.材料的疲劳强度,以及影响因素。何为过载锻炼?如何估计材料的疲劳寿命(Pair公式的应用)?疲劳断口的特征有? 11.应力腐蚀断裂的概念和力学性能指标有哪些?如何改善材料应对SCC的能力?环境氢脆的特点和影响因素。SCC和环境氢脆的区别在哪些方面? 12.材料的高温力学性能指标有哪些?表示方法和符号中各个参数的含义。材料发生高温蠕变断裂具体的影响因素。 13.材料磨损过程,从耐磨的角度考虑为提高器件的使用寿命,应遵循什么样的设计原则?磨损的详细分类。

常用材料力学性能.

常用材料性质参数 材料的性质与制造工艺、化学成份、内部缺陷、使用温度、受载历史、服役时间、试件尺寸等因素有关。本附录给出的材料性能参数只是典型范围值。用于实际工程分析或工程设计时,请咨询材料制造商或供应商。 除非特别说明,本附录给出的弹性模量、屈服强度均指拉伸时的值。 表 1 材料的弹性模量、泊松比、密度和热膨胀系数 材料名称弹性模量E GPa 泊松比V 密度 kg/m3 热膨胀系数a 1G6/C 铝合金-79 黄铜 青铜 铸铁 混凝土(压 普通增强轻质17-31 2300 2400 1100-1800

7-14 铜及其合金玻璃 镁合金镍合金( 蒙乃尔铜镍 塑料 尼龙聚乙烯 2.1-3.4 0.7-1.4 0.4 0.4 880-1100 960-1400 70-140 140-290 岩石(压 花岗岩、大理石、石英石石灰石、沙石40-100 20-70 0.2-0.3 0.2-0.3 2600-2900 2000-2900 5-9 橡胶130-200 沙、土壤、砂砾钢

高强钢不锈钢结构钢190-210 0.27-0.30 7850 10-18 14 17 12 钛合金钨木材(弯曲 杉木橡木松木11-13 11-12 11-14 480-560 640-720 560-640 1 表 2 材料的力学性能 材料名称/牌号屈服强度s CT MPa 抗拉强度b CT

MPa 伸长率 5 % 备注 铝合金LY12 35-500 274 100-550 412 1-45 19 硬铝 黄铜青铜 铸铁( 拉伸HT150 HT250 120-290 69-480 150 250 0-1 铸铁( 压缩混凝土(压缩铜及其合金 玻璃

材料力学主要知识点归纳

材料力学主要知识点 一、基本概念 1、构件正常工作的要求:强度、刚度、稳定性。 2、可变形固体的两个基本假设:连续性假设、均匀性假设。另外对于常用工程材料(如钢材),还有各向同性假设。 3、什么是应力、正应力、切应力、线应变、切应变。 杆件截面上的分布内力集度,称为应力。应力的法向分量σ称为正应力,切向分量τ称为切应力。 杆件单位长度的伸长(或缩短),称为线应变;单元体直角的改变量称为切应变。 4、低碳钢工作段的伸长量与荷载间的关系可分为以下四个阶段:弹性阶段、屈服阶段、强化阶段、局部变形阶段。 5、应力集中:由于杆件截面骤然变化(或几何外形局部不规则)而引起的局部应力骤增现象,称为应力集中。 6、强度理论及其相当应力(详见材料力学ⅠP229)。 7、截面几何性质 A 、截面的静矩及形心 ①对x 轴静矩?=A x ydA S ,对y 轴静矩?=A y xdA S ②截面对于某一轴的静矩为0,则该轴必通过截面的形心;反之亦然。 B 、极惯性矩、惯性矩、惯性积、惯性半径 ① 极惯性矩:?=A P dA I 2ρ ② 对x 轴惯性矩:?= A x dA y I 2,对y 轴惯性矩:?=A y dA x I 2 ③ 惯性积:?=A xy xydA I ④ 惯性半径:A I i x x =,A I i y y =。 C 、平行移轴公式: ① 基本公式:A a aS I I xc xc x 22++=;A b bS I I yc yc y 22++= ;a 为x c 轴距x 轴距离,b 为y c 距y 轴距离。 ② 原坐标系通过截面形心时A a I I xc x 2+=;A b I I yc y 2+=;a 为截面形心距x 轴距离, b 为截面形心距y 轴距离。 二、杆件变形的基本形式 1、轴向拉伸或轴向压缩: A 、应力公式 A F = σ B 、杆件伸长量EA F N l l =?,E 为弹性模量。

西安工业大学材料力学性能复习重点资料

弹性模量:产生100%弹性变形所需要的应力 弹性比功(弹性比能/应变比能):表示金属材料吸收弹性变形功的能力 滞弹性:在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象 循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力 塑性:金属材料断裂前发生不可逆永久(塑性) 变形的能力. 包申格效应:金属材料经过预先加载产生少量的弹性形变,卸载后,再同向加载(拉伸)时,屈服强度或弹性极限增加;反向加载(压缩)时,屈服强度或弹性极限降低的 现象。 *消除包申格效应的方法:预先进行较大的塑形变形;在第二次反向受力前先使金属材料于 回复或再结晶温度下退火 金属韧性:金属材料断裂前吸收塑形变形功和断裂功的能力;或材料抵抗裂纹扩展的能力 缩颈:韧性金属在拉伸试验时变形集中于局部区域的特殊现象 韧性断裂:断裂前发生明显塑性变形的断裂 脆性断裂:突然发生的断裂,且断裂前基本不产生塑性变形。 穿晶断裂:裂纹扩展的路径穿过晶内 沿晶断裂:裂纹沿晶界扩展,大多为脆性断裂。断口形貌:冰糖状 剪切断裂:金属材料在切应力作用下沿滑面分离造成的滑移面分离的断裂 解理断裂:金属材料在一定条件下,外加正应力达到一定数值后,以极快速率沿一定晶体平面产生的穿晶断裂。 .解理面:由于与大理石的断裂相似,所以称这种晶体学平面为解理面 解理刻面:以晶粒大小为单位的解理面 解理台阶:解理裂纹与螺型位错相遇,形成具有一定高度的台阶 河流花样:解理台阶沿裂纹前端滑动,同号台阶汇合并长大,足够大时汇集成河流花样。微孔聚集断裂:由于杂质与基体界面脱离形成微孔形核并长大形成微孔,在外力作用下产生缩颈而断裂,导致各个微孔连接形成微裂纹,微裂纹在三向拉应力区和集中 塑形变形区,在该区形成新微孔。新微孔连通使裂纹向前推进,不断如此下 去产生断裂。 应力状态软性系数:τmax和σmax的比值,用α表示 各种加载状态下的应力状态软性系数: 三向不等拉伸:α=0.1 单向静拉伸α=0.5 扭转:α=0.8 单向压缩:α=2 三向不等压缩:α=4 缺口效应:由于缺口的存在,缺口截面上的应力状态将发生变化缺口,缺口根部应力集中缺口敏感度(NSR):缺口试样的抗拉强度σbn与截面尺寸光滑试样的抗拉强度σb的比值 冲击韧性:是指材料在冲击载荷作用下吸收塑性变形功和断裂功的能力,用Ak表示 冲击吸收功:试样变形和断裂所消耗的功 低温脆性:在试验温度低于某一温度t k时,会由韧性状态变为脆性状态,冲击吸收功明显下降,断裂机理由微孔聚集型变为穿晶解理型,断口特征由纤维状变为结晶状,。t k称为韧脆转变温度,也称冷脆转变温度 低应力脆断:在应力水平低于材料屈服极限的情况下所发生的突然断裂现象。 张开型(Ⅰ型)裂纹:拉应力垂直作用于裂纹扩展面,沿作用力方向张开,沿裂纹面扩展的裂纹 应力场:物件受力时,其内部所受到的有方向有大小且连续的应力所构成的场 塑性区:金属材料裂纹扩展前,尖端附近出现的塑性变形区 有效屈服应力:在某个方向上发生屈服时对应的应力

第二章 金属材料力学性能基本知识及钢材的脆化

金属材料力学性能基本知识 及钢材的脆化 金属材料是现代工业、农业、国防以及科学技术各个领域应用最广泛的工程材料,这不仅是由于其来源丰富,生产工艺简单、成熟,而且还因为它具有优良的性能。 通常所指的金属材料性能包括以下两个方面: 1.使用性能即为了保证机械零件、设备、结构件等能正常工作,材料所应具备的性能,主要有力学性能(强度、硬度、刚度、塑性、韧性等),物理性能(密度、熔点、导热性、热膨胀性等),化学性能(耐蚀性、热稳定性等)。使用性能决定了材料的应用范围,使用安全可靠性和使用寿命。 2 工艺性能即材料在被制成机械零件、设备、结构件的过程中适应各种冷、热加工的性能,例如锻造,焊接,热处理,压力加工,切削加工等方面的性能。工艺性能对制造成本、生成效率、产品质量有重要影响。 1.1材料力学基本知识 金属材料在加工和使用过程中都要承受不同形式外力的作用,当外力达到或超过某一限度时,材料就会发生变形以至断裂。材料在外力作用下所表现的一些性能称为材料的力学性能。锅炉压力容器材料的力学性能指标主要有强度、硬度、塑性、韧性等这些性能指标可以通过力学性能试验测定。 1.1.1强度 金属的强度是指金属抵抗永久变形和断裂的能力。材料强度指标可以通过拉伸试验测 出。把一定尺寸和形状的金属试样(图1~2)装夹在试验机上,然后对试样逐渐施加拉伸载荷,直至把试样拉断为止。根据试样在拉伸过程中承受的载荷和产生的变形量之间的关系,可绘出该金属的拉伸曲线(图1—3)。在拉伸曲线上可以得到该材料强度性能的一些数据。图1—3所示的曲线,其纵坐标是载荷P(也可换算为应力d),横坐标是伸长量AL(也可换算为应变e)。所以曲线称为P—AL曲线或一一s曲线。图中曲线A是低碳钢的拉伸曲线,分析曲线A,可以将拉伸过程分为四个阶段:

(完整版)材料力学必备知识点

材料力学必备知识点 1、 材料力学的任务:满足强度、刚度和稳定性要求的前提下,为设计既经济又安全的构件,提供必要的理论基础和计算方法。 2、 变形固体的基本假设:连续性假设、均匀性假设、各向同性假设。 3、 杆件变形的基本形式:拉伸或压缩、剪切、扭转、弯曲。 4、 低碳钢:含碳量在0.3%以下的碳素钢。 5、 低碳钢拉伸时的力学性能:弹性阶段、屈服阶段、强化阶段、局部变形阶段 极限:比例极限、弹性极限、屈服极限、强化极限 6、 名义(条件)屈服极限:将产生0.2%塑性应变时的应力作为屈服指标 7、 延伸率δ是衡量材料的塑性指标塑性材料 随外力解除而消失的变形叫弹性变形;外力解除后不能消失的变形叫塑性变形。 >5%的材料称为塑性材料: <5%的材料称为脆性材料 8、 失效:断裂和出现塑性变形统称为失效 9、 应变能:弹性固体在外力作用下,因变形而储存的能量 10、应力集中:因杆件外形突然变化而引起的局部应力急剧增大的现象 11、扭转变形:在杆件的两端各作用一个力偶,其力偶矩大小相等、转向相反且作用平面垂直于杆件轴线,致使杆件的任意两个横截面都发生绕轴线的相对转动。 12、翘曲:变形后杆的横截面已不再保持为平面;自由扭转:等直杆两端受扭转力偶作用且翘曲不受任何限制;约束扭转:横截面上除切应力外还有正应力 13、三种形式的梁:简支梁、外伸梁、悬臂梁 14、组合变形:由两种或两种以上基本变形组合的变形 15、截面核心:对每一个截面,环绕形心都有一个封闭区域,当压力作用于这一封闭区域内时,截面上只有压应力。 16、根据强度条件 可以进行(强度校核、设计截面、确定许可载荷)三方面的强度计算。 17、低碳钢材料由于冷作硬化,会使(比例极限)提高,而使(塑性)降低。 18、积分法求梁的挠曲线方程时,通常用到边界条件和连续性条件;因杆件外形突然变化引起的局部应力急剧增大的现象称为应力集中;轴向受压直杆丧失其直线平衡形态的现象称为失稳 19、圆杆扭转时,根据(切应力互等定理),其纵向截面上也存在切应力。 20、组合图形对某一轴的静矩等于(各组成图形对同一轴静矩)的代数和。 21、图形对于若干相互平行轴的惯性矩中,其中数值最小的是对( 距形心最近的)轴的惯性矩。 22、当简支梁只受集中力和集中力偶作用时,则最大剪力必发生在(集中力作用面的一侧)。 23、应用公式z My I σ=时,必须满足的两个条件是(各向同性的线弹性材料)和小变形。 24、一点的应力状态是该点(所有截面上的应力情况)。 在平面应力状态下,单元体相互垂直平面上的正应力之和等于(常数)。 25、强度理论是(关于材料破坏原因)的假说。 在复杂应力状态下,应根据(危险点的应力状态和材料性质等因素)选择合适的强度理论。 26、强度是指构件抵抗 破坏 的能力;刚度是指构件抵抗 变形 的能力;稳定性是指构件维持其原有的 平衡状态 的能力。 27、弹性模量E 是衡量材料抵抗弹性变形能力的指标。 28、使材料丧失正常工作能力的应力,称为极限应力

材料力学性能考试答案

《工程材料力学性能》课后答案 机械工业出版社 2008第2版 第一章 单向静拉伸力学性能 1、 试述退火低碳钢、中碳钢和高碳钢的屈服现象在拉伸力-伸长曲线图上的区别?为什么? 2、 决定金属屈服强度的因素有哪些?【P12】 答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。 外在因素:温度、应变速率和应力状态。 3、 试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险?【P21】 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。 4、 剪切断裂与解理断裂都是穿晶断裂,为什么断裂性质完全不同?【P23】 答:剪切断裂是在切应力作用下沿滑移面分离而造成的滑移面分离,一般是韧性断裂,而解理断裂是在正应力作用以极快的速率沿一定晶体学平面产生的穿晶断裂,解理断裂通常是脆性断裂。 5、 何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些? 答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。 6、 论述格雷菲斯裂纹理论分析问题的思路,推导格雷菲斯方程,并指出该理论的局限性。 【P32】 答: 212?? ? ??=a E s c πγσ,只适用于脆性固体,也就是只适用于那些裂纹尖端塑性变形可以忽略的情况。 第二章 金属在其他静载荷下的力学性能 一、解释下列名词: (1)应力状态软性系数—— 材料或工件所承受的最大切应力τmax 和最大正应力σmax 比值,即: () 32131max max 5.02σσσσσστα+--== 【新书P39 旧书P46】 (2)缺口效应—— 绝大多数机件的横截面都不是均匀而无变化的光滑体,往往存在截面的急剧变化,如键槽、油孔、轴肩、螺纹、退刀槽及焊缝等,这种截面变化的部分可视为“缺口”,由于缺口的存在,在载荷作用下缺口截面上的应力状态将发生变化,产生所谓的缺口效应。【P44 P53】 (3)缺口敏感度——缺口试样的抗拉强度σbn 的与等截面尺寸光滑试样的抗拉强度σb 的比值,称为缺口敏感度,即: 【P47 P55 】 (4)布氏硬度——用钢球或硬质合金球作为压头,采用单位面积所承受的试验力计算而得的硬度。【P49 P58】 (5)洛氏硬度——采用金刚石圆锥体或小淬火钢球作压头,以测量压痕深度所表示的硬度【P51 P60】。 (6)维氏硬度——以两相对面夹角为136。的金刚石四棱锥作压头,采用单位面积所承

材料力学性能》复习资料

《材料力学性能》复习资料 第一章 1塑性--材料在外力作用下发生不可逆的永久变形的能力 2穿晶断裂和沿晶断裂---穿晶断裂,裂纹穿过晶界。沿晶断裂,裂纹沿晶扩展。 3包申格效应——金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 4E---应变为一个单位时,E即等于弹性应力,即E是产生100%弹性变形所需的应力 5ζs----屈服强度,一般将ζ0.2定为屈服强度 6n—应变硬化指数 Hollomon关系式: S=ken (真应力S与真应变e之间的关系) n—应变硬化指数;k—硬化系数 应变硬化指数n反映了金属材料抵抗继续塑性变形的能力。分析:n=1,理想弹性体;n=0材料无硬化能力。大多数金属材料的n值在0.1~0.5之间。 7δ10---长比例试样断后延伸率 L0=5d0 或 L0=10d0 L0标注长度 d0名义截面直径) 8静力韧度:静拉伸时,单位体积材料断裂所吸收的功(是强度和塑性的综合指标)。J/m3 9脆性断裂(1)断裂特点断裂前基本不发生塑性变形,无明显前兆;断口与正应力垂直。(2)断口特征平齐光亮,常呈放射状或结晶状;人字纹花样的放射方向与裂纹扩展方向平行。通常,脆断前也产生微量的塑性变形,一般规定Ψ<5%为脆性断裂;大于5%时为韧性断裂。 11屈服在金属塑性变形的开始阶段,外力不增加、甚至下降的情况下,变形继续进行的现象,称为屈服。 12低碳钢在室温条件下单向拉伸应力—应变曲线的特点p1-2 13解理断裂以极快速率沿一定晶体学平面产生的穿晶断裂。 解理面一般是指低指数晶面或表面能量低的晶面。 14韧性是金属材料塑性变形和断裂全过程吸收能量的能力,它是强度和塑性的综合表现,因而在特定条件下,能量、强度和塑性都可用来表示韧性。 15弹性比功αe(弹性比能、应变比能) 物理意义:吸收弹性变形功的能力。 几何意义:应力-应变曲线上弹性阶段下的面积。αe = (1/2) ζe*ε e

材料力学知识点总结

材料力学总结一、基本变形

二、还有: (1)外力偶矩:)(9549 m N n N m ?= N —千瓦;n —转/分 (2)薄壁圆管扭转剪应力:t r T 22πτ= (3)矩形截面杆扭转剪应力:h b G T h b T 32max ;β?ατ= = 三、截面几何性质 (1)平行移轴公式:;2A a I I ZC Z += abA I I c c Y Z YZ += (2)组合截面: 1.形 心:∑∑=== n i i n i ci i c A y A y 1 1 ; ∑∑=== n i i n i ci i c A z A z 1 1 2.静 矩:∑=ci i Z y A S ; ∑=ci i y z A S 3. 惯性矩:∑=i Z Z I I )( ;∑=i y y I I )( 四、应力分析: (1)二向应力状态(解析法、图解法) a . 解析法: b.应力圆: :拉为“+”,压为“-” :使单元体顺时针转动为“+” :从x 轴逆时针转到截面的 法线为“+” α τασσσσσα2sin 2cos 2 2 x y x y x --+ += x y στα

ατασστα2cos 2sin 2 x y x +-= y x x tg σστα-- =220 22 min max 22 x y x y x τσσσσσ+??? ? ? ?-±+= c :适用条件:平衡状态 (2)三向应力圆: 1max σσ=; 3min σσ=;2 3 1max σστ-= (3)广义虎克定律: [])(1 3211σσνσε+-= E [] )(1z y x x E σσνσε+-= [])(11322σσνσε+-=E [] )(1 x z y y E σσνσε+-= [])(12133σσνσε+-=E [] )(1 y x z z E σσνσε+-= *适用条件:各向同性材料;材料服从虎克定律 (4)常用的二向应力状态 1.纯剪切应力状态: τσ=1 ,02=σ,τσ-=3 2.一种常见的二向应力状态: 22 3122τσσ σ+?? ? ??±= 2 234τσσ+=r x σ

材料的力学性能

材料的力学性能 mechanical properties of materials 主要是指材料的宏观性能,如弹性性能、塑性性能、硬度、抗冲击性能等。它们是设计各种工程结构时选用材料的主要依据。各种工程材料的力学性能是按照有关标准规定的方法和程序,用相应的试验设备和仪器测出的。表征材料力学性能的各种参量同材料的化学组成、晶体点阵、晶粒大小、外力特性(静力、动力、冲击力等)、温度、加工方式等一系列内、外因素有关。材料的各种力学性能分述如下: 弹性性能材料在外力作用下发生变形,如果外力不超过某个限度,在外力卸除后恢复原状。材料的这种性能称为弹性。外力卸除后即可消失的变形,称为弹性变形。表示材料在静载荷、常温下弹性性能的一些主要参量可以通过拉伸试验进行测定。 拉伸试样常制成圆截面(图1之a)或矩形截面(图1之b)棒体,l为标距,d为圆形试样的直径,h和t分别为矩形截面试样的宽度和厚度,图中截面形状用阴影表示,面积记为A。长度和横向尺寸的比例关系也有如下规定:对于圆形截面试样,规定l=10d或l=5d;对于矩形截 面试样,按照面积换算规定或者。试样两端的粗大部分用以和材料试验 机的夹头相连接。试验结果通常绘制成拉伸图或应力-应变图。图2为低碳钢的拉伸图,横坐标表示试样的伸长量Δl(或应变ε=Δl/l),纵坐标表示载荷P(或应力σ=P/A)。图中的曲线从原点到点p为直线,pe段为曲线,载荷不大于点e所对应的值时,卸载后试样可恢复原状。反映材料弹性性质的参量有比例极限、弹性极限、弹性模量、剪切弹性模量和泊松比等。 比例极限应力和应变成正比例关系的最大应力称为比例极限,即图中点p所对应的应力,以σp表示。在应力低于σp的情况下,应力和应变保持正比例关系的规律叫胡克定律。载荷超过点p对应的值后,拉伸曲线开始偏离直线。 弹性极限试样卸载后能恢复原状的最大应力称为弹性极限,即图中点e所对应的应力,以σe表示。若在应力超出σe后卸载,试样中将出现残余变形。比例极限和弹性极限的测试值敏感地受测试精度的影响,并不易测准,所以在有关标准中规定,对于拉伸曲线的直线部分产生规定偏离量(用切线斜率的偏差表示)的应力作为"规定比例极限"。对于弹性

工程材料力学性能各章节复习知识点

工程材料力学性能各个章节主要复习知识点 第一章 弹性比功:又称弹性比能,应变比能,表示金属材料吸收弹性变形功的能力。 滞弹性:对材料在弹性范围内快速加载或卸载后随时间延长附加弹性应变的现象。包申格效应:金属材料经预先加载产生少量塑性变形(残余应变为1%~4%),卸载后再同向加载,规定残余伸长应力(弹性极限或屈服极限)增加,反向加载,规定残余伸长应力降低的现象。 塑性:指金属材料断裂前发生塑性变形的能力。 脆性:材料在外力作用下(如拉伸,冲击等)仅产生很小的变形及断裂破坏的性质。 韧性:是金属材料断裂前洗手塑性变形功和断裂功的能力,也指材料抵抗裂纹扩展的能力。 应力、应变;真应力,真应变概念。 穿晶断裂和沿晶断裂:多晶体材料断裂时,裂纹扩展的路径可能不同,穿晶断裂穿过晶内;沿晶断裂沿晶界扩展。 拉伸断口形貌特征? ①韧性断裂:断裂面一般平行于最大切应力并与主应力成45度角。用肉眼或放大镜观察时,断口呈纤维状,灰暗色。纤维状是塑性变形过程中微裂纹不断扩展和相互连接造成的,而灰暗色则是纤维断口便面对光反射能力很弱所致。其断口宏观呈杯锥形,由纤维区、放射区、和剪切唇区三个区域组成。 ②脆性断裂:断裂面一般与正应力垂直,断口平齐而光亮,常呈放射状或结晶状。板状矩形拉伸试样断口呈人字形花样。人字形花样的放射方向也与裂纹扩展方向平行,但其尖端指向裂纹源。 韧、脆性断裂区别? 韧性断裂产生前会有明显的塑性变形,过程比较缓慢;脆性断裂则不会有明显的塑性变形产生,突然发生,难以发现征兆 拉伸断口三要素? 纤维区,放射区和剪切唇。 缺口试样静拉伸试验种类? 轴向拉伸、偏斜拉伸 材料失效有哪几种形式? 磨损、腐蚀和断裂是材料的三种主要失效方式。 材料的形变强化规律是什么? 层错能越低,n越大,形变强化增强效果越大 退火态金属增强效果比冷加工态是好,且随金属强度等级降低而增加。 在某些合金中,增强效果随合金元素含量的增加而下降。 材料的晶粒变粗,增强效果提高。 第二章 应力状态软性系数:材料某一应力状态,τmax和σmax的比值表示他们的相对大小,成为应力状态软性系数,比为α,α=τmax σmax 缺口敏感度:缺口试样的抗拉强度σbn与等截面尺寸光滑试样的抗拉强度σb的比

材料力学知识点归纳总结(完整版)

材料力学知识点归纳总结(完整版) 1.材料力学:研究构件(杆件)在外力作用下内力、变形、以及破坏或失效一般规律的科学,为合理设计构件提供有关强度、刚度、稳定性等分析的基本理论和方法。 2.理论力学:研究物体(刚体)受力和机械运动一般规律的科学。 3.构件的承载能力:为保证构件正常工作,构件应具有足够的能力负担所承受的载荷。构 4.件应当满足以下要求:强度要求、刚度要求、稳定性要求 5.变形固体的基本假设:材料力学所研究的构件,由各种材料所制成,材料的物质结构和性质虽然各不相同,但都为固体。任何固体在外力作用下都会发生形状和尺寸的改变——即变形。因此,这些材料统称为变形固体。 第二章:内力、截面法和应力概念 1.内力的概念:材料力学的研究对象是构件,对于所取的研究对象来说,周围的其他物体作用于其上的力均为外力,这些外力包括荷载、约束力、重力等。按照外力作用方式的不同,外力又可分为分布力和集中力。 2.截面法:截面法是材料力学中求内力的基本方法,是已知构件外力确定内力的普遍方法。 已知杆件在外力作用下处于平衡,求m-m截面上的内力,即求m-m截面左、右两部分的相互作用力。 首先假想地用一截面m-m截面处把杆件裁成两部分,然后取任一部分为研究对象,另一部分对它的作用力,即为m-m截面上的内力N。因为整个杆件是平衡的,

所以每一部分也都平衡,那么,m-m截面上的内力必和相应部分上的外力平衡。由平衡条件就可以确定内力。例如在左段杆上由平衡方程 N-F=0 可得N=F 3.综上所述,截面法可归纳为以下三个步骤: 1、假想截开在需求内力的截面处,假想用一截面把构件截成两部分。 2、任意留取任取一部分为究研对象,将弃去部分对留下部分的作用以截面上的内力N来代替。 3、平衡求力对留下部分建立平衡方程,求解内力。 4.应力的概念:用截面法确定的内力,是截面上分布内力系的合成结果,它没有表明该分布力系的分布规律,所以,为了研究相伴的强度,仅仅知道内力是不够的。例如,有同样材料而截面面积大小不等的两根杆件,若它们所受的外力相同,那么横截面上的内力也是相同的。但是,从经验知道,当外力增大时,面积小的杆件一定先破坏。这是因为截面面积小,其上内力分布的密集程度大的缘故。 如图所示,在杆件横截面m-m上围绕一点K取微小面积,并设上分布内力的合力为。的大小和方向与所取K点的位置和面积有关。 将与的比值称为微小面积上的平均应力,用表示,即: 称为截面m-m上一点K处的应力。应力的方向与内力N的极限方向相同,通常,它既不与截面垂直也不与截面相切。将应力分解为垂直于截面的分量σ和相切于截面的分量τ,其中σ称为正应力,τ称为切应力。在国际单位制中,应力单位是帕斯卡,简称帕(Pa)。工程上常用兆帕(MPa),有时也用吉帕(GPa)。 5.杆件变形的基本形式:在机器或结构物中,构件的形状是多种多样的。如果构件的纵向(长度方向)尺寸较横向(垂直于长度方向)尺寸大得多,这样的构件称为杆件。

材料力学性能-第2版课后习题答案

第一章单向静拉伸力学性能 1、 解释下列名词。 2. 滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落 后于应力的现象。 3?循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。 4?包申格效应: 金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规 定残余伸长应力降低的 现象。 11. 韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆 性断裂,这种现象称 为韧脆转变 2、 说明下列力学性能指标的意义。 答:E 弹性模量G 切变模量 r 规定残余伸长应力 0.2屈服强度 gt 金属材料拉伸时最大应力下的总伸长率 n 应 变硬化指数 【P15】 3、 金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标? 答:主要决定于原子本性和晶格类型。合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但 是不改变金属原子的本性和晶格类型。组织虽然改变了,原子的本性和晶格类型未发生改变,故弹性模量对组织不敏 感。【P4】 4、 现有4 5、40Cr 、35 CrMo 钢和灰铸铁几种材料,你选择哪种材料作为机床起身,为什么? 选灰铸铁,因为其含碳量搞,有良好的吸震减震作用,并且机床床身一般结构简单,对精度要求不高,使用灰铸铁可 降低成本,提高生产效率。 5、 试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险? 【P21】 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程 中不断地消耗能量;而脆性断裂是突然发生的断裂, 断裂前基本上不发生塑性变形, 没有明显征兆,因而危害性很大。 6、 何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些? 答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形 态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。 7、 板材宏观脆性断口的主要特征是什么?如何寻找断裂源? 断口平齐而光亮,常呈放射状或结晶状,板状矩形拉伸试样断口中的人字纹花样的放射方向也 与裂纹扩展方向平行,其尖端指向裂纹源。 第二章 金属在其他静载荷下的力学性能 一、解释下列名词: (1 )应力状态软性系数—— 材料或工件所承受的最大切应力T max 和最大正应力(T max 比值,即: (3)缺口敏感度一一缺口试样的抗拉强度 T bn 的与等截面尺寸光滑试样的抗拉强度 T b 的比值,称为缺口敏感度,即:【P47 P55】 max 1 3 max 2 1 0.5 2 3 【新书P39旧书P46】

《材料力学性能》复习提纲

《材料力学性能》复习提纲 第一章金属在单向静拉伸载荷下的力学性能 1.拉伸变形过程; 2.弹性不完整性(滞弹性,包申格效应),循环韧性; 3.塑性变形方式,滑移,均匀屈服产生机制,影响屈服强度的因素; 4.应变硬化(形变强化)及其产生原因和工程意义; 5.缩颈,抗拉强度; 6.塑性、脆性及韧性,塑性指标; 7.机件的失效形式:磨损、腐蚀和断裂; 8.断裂的分类及各类断口特征,韧性断裂和脆性断裂的区别,哪种断裂更危险及其原因; 9.拉伸断口的三要素以及强度和塑性对断口三个区域组成的影响; 10.微孔聚集断裂过程; 11.格雷菲斯裂纹理论(原理,出发点,必要条件); 12.为什么理论断裂强度与实际断裂强度在数值上有数量级的差别; 13.机械设计中最常用的两个强度指标为:屈服强度和抗拉强度; 14.碳含量对钢拉伸曲线的影响。 第二章金属在其他静载荷下的力学性能 1.应力状态软性系数α及其代表的意义; 2.压缩、弯曲、扭转试验的特点; 3.缺口效应(定义及由于缺口引起的两个效应),理论应力集中系数,缺口敏感度及其代表的意义; 4.硬度的分类、符号表示方法、测试(布氏硬度、洛氏硬度、维氏硬度)原理\方法; 5.课后作业P55页的8题。 第三章金属在冲击载荷下的力学性能 1.冲击韧性; 2.低温脆性、韧脆转变温度及其确定方法、韧性温度储备; 3.产生低温脆性的物理本质和机理; 4.影响韧脆转变温度的因素。 第四章金属的断裂韧度 1.低应力脆断; 2.裂纹的扩展形式; 3.应力场强度因子KⅠ定义及其表达式; 4.材料的断裂韧度,断裂K判据,断裂G判据;5 5.KⅠ和K IC,G IC与K IC的关系; 6.KⅠ的修正条件,考虑应力松弛时塑性区宽度(平面应力,平面应变),修正后KⅠ计算公式; 7.断裂韧度测试时试样的制备(满足条件);

相关主题
文本预览
相关文档 最新文档