工程电磁场与电磁波_丁君版_答案第五章习题答案
- 格式:doc
- 大小:743.50 KB
- 文档页数:10
第五章 恒定磁场重点和难点该章重点及处理方法与静电场类似。
但是磁感应强度的定义需要详细介绍,尤其要强调磁场与运动电荷之间没有能量交换,电流元受到的磁场力垂直于电流的流动方向。
说明磁导率与介电常数不同,磁导率可以小于1,而且大多数媒质的磁导率接近1。
讲解恒定磁场时,应与静电场进行对比。
例如,静电场是无散场,而恒定磁场是无旋场。
在任何边界上电场强度的切向分量是连续的,而磁感应强度的法向分量是连续的。
重要公式磁感应强度定义:根据运动电荷受力: B v F ⨯=q根据电流元受力: B l F ⨯=d I 根据电流环受力: B m T ⨯=真空中恒定磁场方程: 积分形式: I ⎰=⋅ll B 0d μ⎰=⋅SS B 0d微分形式:J B 0 μ=⨯∇0=⋅∇B已知电流分布求解电场强度:1,A B ⨯∇=V V ''-'=⎰'d )(4)( 0 r r r J r A πμ2,V V ''-'-⨯'=⎰'d )()( 4)(30 r r r r r J r B πμ 毕奥─萨伐定律。
3,I ⎰=⋅ll B 0d μ安培环路定律。
面电流产生的矢量磁位及磁感应强度分别为S ''-'=⎰'d )(4)(0 r r r J r A S S πμS ''-'-⨯'=⎰'d )()(4)( 30 r r r r r J r B S S πμ 线电流产生的矢量磁位及磁感应强度分别为⎰''-'=l r r l r A d 4)(0I πμ⎰''-'-⨯'=l r r r r l r B 30 )(d 4)(I πμ矢量磁位满足的微分方程:J A 0 2μ-=∇无源区中标量磁位满足的微分方程: 0 2=∇m ϕ 媒质中恒定磁场方程: 积分形式: I l =⋅⎰l H d⎰=⋅SS B 0d微分形式:J H =⨯∇ 0=⋅∇B磁性能均匀线性各向同性的媒质:场方程积分形式:⎰=⋅lI d μl B⎰=⋅BS H 0d场方程微分形式: J B μ=⨯∇ 0=⋅∇H矢量磁位微分方程:J A 2μ-=∇矢量磁位微分方程的解: V V ''-'=⎰'d )(4)(r r r J r A πμ 恒定磁场边界条件:1,t t H H 21=。
电磁场与电磁波课后习题及答案习题解答如题图所示为一长方形截面的导体槽,槽可视为无限长,其上有一块与槽相绝缘的盖板,槽的电位为零,上边盖板的电位为U0,求槽内的电位函数。
解根据题意,电位?(x,y)满足的边界条件为y?)?a(y,?) 0①?(0,) 0②?(x,0?③?(x,b)?U0 根据条件①和②,电位?(x,y)的通解应取为y ?(x,y)??Ansinh(n?1?n?yn?x)sin()aa b o U0 条件③,有 a 题图U0??Ansinh(? ax n?1n?bn?x)sin()aa sin(两边同乘以n?x)a,并从0到a对x积分,得到a2U0n?xAn?sin()dx?asinh(n?ba)?a04U0?,n?1,3,5,?n?sinh(n?ba)2U0?(1?cosn?) ??n?2,4,6,n?sinh(n?ba)?0,?(x,y)?故得到槽内的电位分布4U01?,sinh?n?1,3,5nn?(ban?ysinh()a?nx)sin(a ) 两平行无限大导体平面,距离为b,其间有一极薄的导体片y?d到y?b(???x??)。
上板和薄片保持电位U0,下板保持零电位,求板间电位的解。
设在薄片平面上,从y?0到y?d,电位线性变化,?(0,y)?U0yd。
y U0解应用叠加原理,设板间的电位为?(x,y)??1(x,y)??2(x,y) 其中,boxydxy oxy 题图?1(x,y)为不存在薄片的平行无限大导体平面间的电位,即?1(x,y)?U0yb;?2(x,y)是两个电位为零的平行导体板间有导体薄片时的电位,其边界条件为:①?2(x,0)??2(x,b)?0②?2(x,y)?0(x??) U0?U?y??0b?2(0,y)??(0,y)??1(0,y)???U0y ?U0y?b?d③(0?y?d)(d?y?b) ??xn?y?nb?2(x,y)?? Ansin()e?(x,y)的通解为bn?1根据条件①和②,可设 2 U0?U?y?n?y??0bAnsin()???bn?1?U0y?U0 y?b?d条件③有sin(两边同乘以d(0?y?d)(d?y?b) n?y)b,并从0到b 对y积分,得到b2U2Uyn?y11n?yAn?0?(1?)sin()dy?0?(?) ysin()dy?2U02bsin(n?d)b0bbbddbb(n?)db ?xU02bU0?1n?dn?y?nby?sin()sin()e 2?2?(x,y)?bd?bbn?1n故得到求在上题的解中,除开定出边缘电容。
《电磁场与电磁波》知识点及参考答案第1章 矢量分析1、如果矢量场F 的散度处处为0,即0F∇⋅≡,则矢量场是无散场,由旋涡源所产生,通过任何闭合曲面S 的通量等于0。
2、如果矢量场F 的旋度处处为0,即0F ∇⨯≡,则矢量场是无旋场,由散度源所产生,沿任何闭合路径C 的环流等于0。
3、矢量分析中的两个重要定理分别是散度定理(高斯定理)和斯托克斯定理, 它们的表达式分别是:散度(高斯)定理:SVFdV F dS ∇⋅=⋅⎰⎰和斯托克斯定理:sCF dS F dl∇⨯⋅=⋅⎰⎰。
4、在有限空间V 中,矢量场的性质由其散度、旋度和V 边界上所满足的条件唯一的确定。
( √ )5、描绘物理状态空间分布的标量函数和矢量函数,在时间为一定值的情况下,它们是唯一的。
( √ )6、标量场的梯度运算和矢量场的旋度运算都是矢量。
( √ )7、梯度的方向是等值面的切线方向。
(× )8、标量场梯度的旋度恒等于0。
( √ ) 9、习题1.12, 1.16。
第2章 电磁场的基本规律(电场部分)1、静止电荷所产生的电场,称之为静电场;电场强度的方向与正电荷在电场中受力的方向相同。
2、在国际单位制中,电场强度的单位是V/m(伏特/米)。
3、静电系统在真空中的基本方程的积分形式是:V V sD d S d V Q ρ⋅==⎰⎰和0lE dl ⋅=⎰。
4、静电系统在真空中的基本方程的微分形式是:V D ρ∇⋅=和0E∇⨯=。
5、电荷之间的相互作用力是通过电场发生的,电流与电流之间的相互作用力是通过磁场发生的。
6、在两种媒质分界面的两侧,电场→E 的切向分量E 1t -E 2t =0;而磁场→B 的法向分量B 1n -B 2n =0。
7、在介电常数为e 的均匀各向同性介质中,电位函数为 2211522x y z ϕ=+-,则电场强度E=5x y zxe ye e --+。
8、静电平衡状态下,导体内部电场强度、磁场强度等于零,导体表面为等位面;在导体表面只有电场的法向分量。
5.1 在自由空间中,已知电场3(,)10sin() V/m y E z t e t z ωβ=−G G,试求磁场强度。
(,)H z t G解:以余弦为基准,重新写出已知的电场表示式3π(,)10cos( V/m 2y E z t e t z ωβ=−−G G这是一个沿方向传播的均匀平面波的电场,其初相角为z +90−D 。
与之相伴的磁场为300311π(,)(,)10cos(210πcos() 2.65sin() A/m120π2z z y x x H z t e E z t e e t z e t z e t z ωβηηωβωβ=×=×−−=−−−=−−G G G G G G G5.2 理想介质(参数为0μμ=、r 0εεε=、0σ=)中有一均匀平面波沿x 方向传播,已知其电场瞬时值表达式为9(,)377cos(105) V/m y E x t e t x =−G G试求:(1) 该理想介质的相对介电常数;(2) 与(,)E x t G相伴的磁场;(3) 该平面波的平均功率密度。
(,)H x t G 解:(1) 理想介质中的均匀平面波的电场E G应满足波动方程2220EE tμε∂∇−=∂G G据此即可求出欲使给定的E G满足方程所需的媒质参数。
方程中222929425cos(105)y y y y y E E e E e e t x x∂∇=∇==−−∂G G G G 221892237710cos(105)y y y E E e e t t x∂∂==−×−∂∂G G G x = 故得91899425cos(105)[37710cos(105)]0t x t x με−−+×−即18189425251037710με−==×× 故181882r 0025102510(310) 2.25εμε−−×==×××=其实,观察题目给定的电场表达式,可知它表征一个沿x +方向传播的均匀平面波,其相速为98p 10210 m/s 5v k ω===× 而8p 310v ====×故2r 3() 2.252ε==(2) 与电场相伴的磁场E G H G 可由0j E ωμ∇×=−H G G求得。
工程电磁场与电磁波习题解答(试用本)主编:丁君第一章1-1 解: (1)z y x a a a B A vv v v v )125()93()32(3-++++-=+=z y x a a a v v v 712-+\B A vv 3+=194491441=++(2)266cos 26216cos cos cos -=Þ´-=××=×=×q q q qC BC BC B C B C v vv v v vv v vB r 方向的单位矢量为:26BB B b vv v v ==C r 在B s 方向的分矢量为:33cos (34)1313x y z C b B a a a q ·=-=-+-v v v v v v(3)191321cos cos cos -=×==×q q qBA BA B A B A v v v v vv v vπq Þ=- (4) z y x a a a C B vv v v v 553-+-=-C B vv -的单位矢量为:z y x z y x a a a C B a a a vv v vv v v v 595595593553-+-=--+-1-2证明:欲证明三矢量A 、B 、C 能构成一个三角形,则须证出三个线性无关的非零矢量位于同一平面上。
则有:0)(=´·C B A即 0=z y xz y xzy xC C C B B B A A A 代入得 000043111624431213=-=---=zyxz y xzy xC C C B B B A A A即得证1-3 解:(1)4321F F F F F +++=合代入数据得x y F 2a a =-v v合(2)514=+=合F (3)合力方向与单位矢量y x a a v v 5152-方向相同,与x 轴成-1-4 证明:设矢量r r的终点在A.B.C 构成的平面上,则:(),(),()r a r b r c ---v v v v v v在此平面上 ,则必有不为0的实数,,m n p 满足:()()()0m r a n r b p r c -+-+-=v v v v v v所以得:p n m cp b n a m r ++++=vv v v , p n m ,,为实数1-5 解:设A 点的坐标为),(11y x ,B 点坐标为),(22y x则a v=),(11y x ,b v =),(22y x 有题意得121211x x y y x x y y --=--Þ则过A ),(11y x ,B ),(22y x 点的方程为 ()111212y x x x x y y y +---=Þ1-6 解:欲使,A B v v 互相垂直,则有0A B ·=v v则有8220A B a ·=--=v v得 3=a1-7 解:矢量A v与坐标轴的夹角分别为:72cos 76cos 7343693cos ==-===++==A A A A AAz y x g b a 其中g b a ,,分别为矢量A v与三个坐标轴方向夹角。
习题五5-1 一圆柱形铝管,外半径为32 mm ,管壁厚6 mm ,求单位长度的电阻。
解:铝管的内半径为26mm ,设流过铝管的电流为I ,则: 662222211034810)2632()(⨯=⨯-=-=-πππI IR R IJ6/10348I E J σπσ==⨯13349.5103486103486-=⨯=⨯⨯=⋅=σπσπσII I d E R (Ω)5-2 一长为l m 的导体,电阻率为σ,导体各处的横截面相似,一端的面积为A m 2,另一端面的面积为kA m 2,求两端面间的电阻。
5-2.解:(此题应为导体各处的横截面相似且呈线性关系)。
z设流入导体的电流为I ,则设任一截面面积为()z S ,由⎩⎨⎧==kA l S A S )()0(得: ⎪⎩⎪⎨⎧-==A l k a A b 1则:AAz lk z S +-=1)(σE z S IJ ==)(σ⋅=∴)(z S I Ek Ak Il A z A lk dz I dz E U ln )1()1(11⋅-=+⋅-⋅=⋅=⎰⎰σσAk k l IU R ⋅-⋅==∴σ)1(ln5-3解:σb lU本题所求电感为跨接在内外导体间的r ar E E ˆ)(=r arl I J ˆ2π=E Jσ= r alr IE ˆ2σπ=ab lI dr lr I l d E U babaln22πσσπ==⋅=⎰⎰ab UI G ln 2πσ==球冠面积⎰⎰-==πθθπϕθθ20220)cos 1(2sin r d d r Sr a r E E ˆ)(= r r a r Ia S I J ˆ)c o s 1(2ˆ2θπ-== σS J E = ⎰⎰-=⋅-=21)cos 1(22r r dr r Il d E U σθπ2112)cos 1(2r r r r IU R θπσ--==5-5.解:设电容器板内的D 为0D ,则:d 1=1.0mm d 2=2.0mmd 3=2.5mm1r ε2r ε3r ε方法一:(1) n n D D 10=⎰⋅=⋅=Sn n S D dS D Q 11101111r n n d D d E U εε⋅=⋅=F d S UQ C r 93911011096.71013103613.0---⨯=⨯⨯⨯⨯=⋅==∴πεε(2)同理 F C 921031.5-⨯=(3)同理 F C 931037.6-⨯= F C C C C 93211012.21111-⨯=++=∴方法二:由介质边界条件nn n n D D D D 0321===⎰⎰⎰⎰++=⋅-=12132321d d d d d n n n dzE dz E dz E l d E Udz D dz D d d d r nd r n⎰⎰++=1212102001εεεεdz D d d d d rn⎰+++3122303εε)(3213210rrrond d d D εεεε++=SD ds D Q n 01=⋅=⎰ UQ C =5-6 解:设内导体单位长度带电量为Q ,E 、D只有r 方向分量,电荷将均匀分布在导体表面上,⎰⎰=⋅+⋅QS d D S d D 2211Q r E r E =+-12110)2(θεθπε 在介质与空气的分界面上t t E E 21=且没有ϕ方向分量,即 21E E E == rQE 1)2(110⋅+-=∴εθθπε)l n ()2(110abQdr E U ba⋅+-=⋅=∴⎰εθθπε[])l n (/)2(110abU QC εθθπε+-==∴5-7l设电轴的位置偏离轴心c mm a 85.68= mm h 53.8= M 点N 点的电位相等 120ln 2R R l περφ=ca c a h l M +-+=2ln20περφ ca c a h l N ---=2ln20περφ由此可得出ca c a h ca c a h ---=+-+22 所以c 满足0222=+-a hc c可求出0003.0=c 1)由于a h >>,求解导体电位时a 可以忽略。
《电磁场与电磁波》课后习题解答(第五章)————————————————————————————————作者:————————————————————————————————日期:习题及参考答案5.1 一个点电荷 Q 与无穷大导体平面相距为d ,如果把它移动到无穷远处,需要作多少功?解:用镜像法计算。
导体面上的感应电荷的影响用镜像电荷来代替,镜像电荷的大小为-Q ,位于和原电荷对称的位置。
当电荷Q 离导体板的距离为x 时,电荷Q 受到的静电力为2)2(042x Q F επ-=静电力为引力,要将其移动到无穷远处,必须加一个和静电力相反的外力2)2(042x Q f επ=在移动过程中,外力f 所作的功为d Q d dx dx Q dx f 016220162επεπ=⎰∞⎰∞= 当用外力将电荷Q 移动到无穷远处时,同时也要将镜像电荷移动到无穷远处,所以,在整个过程中,外力作的总功为dq8/2επ。
也可以用静电能计算。
在移动以前,系统的静电能等于两个点电荷之间的相互作用能:d Q d Q Q d Q Q q q W 082)2(04)(21)2(042122211121επεπεπϕϕ-=-+-=+=移动点电荷Q 到无穷远处以后,系统的静电能为零。
因此,在这个过程中,外力作功等于系统静电能的增量,即外力作功为dq8/2επ。
5.2 一个点电荷放在直角导体内部(如图5-1),求出所有镜像电荷的位置和大小。
解:需要加三个镜像电荷代替 导体面上的感应电荷。
在(-a ,d )处,镜像电荷为-q ,在(错误!链接无效。
)处, 镜像电荷为q ,在(a ,-d )处,镜像电荷为-q 。
图5-1 5.3 证明:一个点电荷q 和一个带有电 荷Q 、半径为R 的导体球之间的作用力为]2)22(2[04R D DRq D D qR Q q F --+=επ其中D 是q 到球心的距离(D >R )。
证明:使用镜像法分析。
习题五5-1 一圆柱形铝管,外半径为32 mm ,管壁厚6 mm ,求单位长度的电阻。
解:铝管的内半径为26mm ,设流过铝管的电流为I ,则: 662222211034810)2632()(⨯=⨯-=-=-πππII R R I J6/10348IE J σπσ==⨯13349.5103486103486-=⨯=⨯⨯=⋅=σπσπσI I I d E R (Ω)5-2 一长为l m 的导体,电阻率为σ,导体各处的横截面相似,一端的面积为A m 2,另一端面的面积为kA m 2,求两端面间的电阻。
5-2.解:(此题应为导体各处的横截面相似且呈线性关系)。
z设流入导体的电流为I ,则设任一截面面积为()z S ,由⎩⎨⎧==kA l S A S )()0(得: ⎪⎩⎪⎨⎧-==A l k a Ab 1则:A Az l k z S +-=1)( σE z S IJ ==)( σ⋅=∴)(z S IE k A k Il A z A lk dz I dz E U ln )1()1(1010⋅-=+⋅-⋅=⋅=⎰⎰σσAk k l I U R ⋅-⋅==∴σ)1(ln 5-3解:σb lU本题所求电感为跨接在内外导体间的r ar E E ˆ)(=r arlI J ˆ2π= E J σ= r a lr IE ˆ2σπ=a bl I dr l r I l d E U b abaln 22πσσπ==⋅=⎰⎰ab U I G ln 2πσ==球冠面积⎰⎰-==πθθπϕθθ20220)cos 1(2sin r d d r Sr a r E E ˆ)(= r r a r I a S I J ˆ)c o s 1(2ˆ2θπ-== σSJ E = ⎰⎰-=⋅-=21)cos 1(22r r dr r Il d E U σθπ2112)cos 1(2r r r r I UR θπσ--==5-5.解:设电容器板内的D 为0D ,则:d 1=1.0mm d 2=2.0mmd 3=2.5mm1r ε2r ε3r ε方法一:(1) n n D D 10=⎰⋅=⋅=Sn n S D dS D Q 11101111r n n d D d E U εε⋅=⋅=F d S U Q C r 93911011096.71013103613.0---⨯=⨯⨯⨯⨯=⋅==∴πεε (2)同理 F C 921031.5-⨯=(3)同理 F C 931037.6-⨯= F C C C C 93211012.21111-⨯=++=∴方法二:由介质边界条件n n n n D D D D 0321===⎰⎰⎰⎰++=⋅-=12132321d d d d d n n n dz E dz E dz E l d E Udz D dz D d d d r nd rn⎰⎰++=1212102001εεεεdz D d d d d rn⎰+++3122303εε)(3213210rrron d d d D εεεε++=S D ds D Q n 01=⋅=⎰ UQ C =5-6 解:设内导体单位长度带电量为Q ,E 、D只有r 方向分量,电荷将均匀分布在导体表面上,⎰⎰=⋅+⋅Q S d D S d D 2211Q r E r E =+-12110)2(θεθπε在介质与空气的分界面上 t t E E 21= 且没有ϕ方向分量,即 21E E E == rQ E 1)2(110⋅+-=∴εθθπε )l n ()2(110a b Q dr E U b a ⋅+-=⋅=∴⎰εθθπε[])ln(/)2(110abU Q C εθθπε+-==∴5-7l设电轴的位置偏离轴心c mm a 85.68= mm h 53.8= M 点N 点的电位相等120ln 2R Rl περφ=c a c a h l M +-+=2ln 20περφ ca ca h l N ---=2ln20περφ 由此可得出ca c a h c a c a h ---=+-+22 所以c 满足0222=+-a hc c可求出0003.0= c1)由于a h >>,求解导体电位时a 可以忽略。
故当P 点在圆柱面上时的电位N M O φφφ== c 近似为零故可忽略aah l P -=2ln20περφ aa h UQ C l l -==2ln 2περρ=3.26F 910-⨯ 2) 同理得 当m h 06.17253.8=⨯=时,F C 91090.2-⨯= 5-8解:因为r d >>故1)z z z a a anI B ˆ1051.1ˆ10403000104ˆ4370---⨯=⨯⨯⨯⨯==πμ(T ) z z a anI B H ˆ12010403000ˆ/30=⨯⨯===-μ(A/m) 2) 2r B πψ⋅= 2020r n Ir nI IL πμπμψ=⋅==61071.1-⨯=(H)5-9解;ϕπμa rI B ˆ210=对于载流环所在平面ϕa dz dr a dz dx S d y ˆˆ== 1212122112I I M M ψψ=== d y d z y I S d B S ⎰⎰⎰=⋅=20311012122πμψ 3ln 10πμI = 3ln 012121πμψ==I M5-10052105020220434πεεπεπQdr r Q dr r Q U =+⋅=⎰⎰ 020πε==UQC5-1121ln C r C r A++-=εφ a r =时0U =φ b r =时0=φ得abb a AU C ln )(01-+=εb ab b a AU b AC ln ln )(02-+-=εε解:r ar D D ˆ)(=D D D n n ==21 ⎰⎰⎰+=⋅-=3221003R R R R dr Ddr D l d E U εε24r D S d D Q π⋅=⋅=⎰24r QD π=所以b ab b a AU b Ar a b b a AU r Aln ln )(ln ln )(00-+-+-+-=εεεεφ2)r a rab b a AU A E ˆ)1ln)((0⋅-++-=-∇=εεφ 1) 内:ab a b a A U A ED ar n S ln)(011-++-====εερ外:ab b b a A U A ED br n S ln)(012-+-=-===εερ4)000010ln)(22U a b a b a A U A a U a U Q C s ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-++-=⋅==εππρ 5-12由6261105104100--⨯+⨯==πσπσE E Iπσπσ2185410+=E 所以21121111154400σσσπσ+=⋅==r E S J I21222254500σσσ+==S J I5-13 解:(a )因为/m r k σ=+,可见电场只与r 有关。
r a r E E ˆ)(=设从内球壳流进外球壳的电流为I ,则: ()r r ca krmr Ia r I J E ˆ4ˆ422+===πσπσ)()(ln 141420bk m a ak m b m I r d kr mr I r d E U b a ba++⋅⋅=⋅+=⋅=∴⎰⎰ππ()()⎪⎪⎭⎫⎝⎛++=bk m a ak m b mU I ln 40π )()(ln410bk m a ak m b m I U R ++⋅==∴π (b ))()(ln)(4422bk m a ak m b k a ma mU ka ma IE D ar nar n s +++=+=====εππεερ内)()(ln)(20bk m a ak m b k b m b m U D br ns +++===ερ外(c) r ak r m r bk m a ak m b m U D201)()(ln+⋅++=ε 20)(1)()(ln)(1rk m bk m a ak m b mkU rrD r D V +⋅++-=∂∂⋅=⋅∇=ερ(d) )()(ln)(4402bk m a ak m b ak m am U a Q S +++=⨯=πεπρ内内)()(ln)(4402bk m a ak m b bk m bmU b Q S +++=⨯=πεπρ外外(e) r r c abk m a ak m b r mU a r IJ ˆ)()(lnˆ4202++==π (f) )()(ln40bk m a ak m b m U RU I ++==π5-14.解: abI N dr r h I N dS r I N dS r I N dS B b a S SSln 2121220000πμπμπμπμψ=⋅⋅===⋅=⎰⎰⎰⎰ abh N I N L ln 202πμψ==∴ 5-15解一般情况下认为a l >>1,a l >>2z aN I B ˆ1101μ= 2211021a N N I πμψ= 221012121a N N I M πμψ==5-16.解:AC若AB 为一对传输线,CD 为一对传输线,A 对CD : ϕπμa rIB A ˆ202= )1(ln 220022=⋅⋅⋅=⋅=⋅=⎰⎰l D D I dr l r I S d B ACAD d d SA AA D A C πμπμψ同理 BDBCB D D I ln202πμψ=IM BA 2221ψψ+=5-17xI传输线的内自感:)/(48200m H L i πμπμ=⨯= ϕπμarIB ˆ20= dx 处的磁感应强度)ˆ()(2)ˆ(200z z ax D Ia x I B --+-=πμπμ aa D I a dxdy B aD az -=⋅=⎰-ln ˆ0πμψa a D IL -==ln 00πμψaaD L L L i -+=+=ln 4000πμπμ 5-18.解:直导线在螺线管内产生的磁场为: )(20t i rB r πμμ=a bh t i r hdr t i r dS t i r r bar r ln )(2)(2)(2000⋅=⋅==⎰⎰πμμπμμπμμψ)(107.51015ln 10200036102500ln 2)(9290H a b Nh t i N M r ---⨯=⨯⨯⨯=⋅==πππμμψ。