悬臂梁固有频率测量试验
- 格式:doc
- 大小:296.00 KB
- 文档页数:72
说明:在下面的数据处理中,如1A,11d T,1δ,1ξ,1n T,1nω:表示第一次实1验中第一、幅值、对应幅值时间、变化率、阻尼比、无阻尼固有频率。
第二次和和三次就是把对应的1改成2或3.由于在编缉公式时不注意2,3与平方,三次方会引起误会,请老师见谅!!Ap0308104 陈2006-7-1 实验题目:悬臂梁一阶固有频率及阻尼系数测试一、实验要求以下:1. 用振动测试的方法,识别一阻尼结构的(悬臂梁)一阶固有频率和阻尼系数;2. 了解小阻尼结构的衰减自由振动形态;3. 选择传感器,设计测试方案和数据处理方案,测出悬臂梁的一阶固有频率和阻尼根据测试曲线,读取数据,识别悬臂梁的一阶固有频率和阻尼系数。
二、实验内容识别悬臂梁的二阶固有频率和阻尼系数。
三、测试原理概述:1,瞬态信号可以用三种方式产生,有脉冲激振,阶跃激振,快速正弦扫描激振。
2,脉冲激励用脉冲锤敲击试件,产生近似于半正弦的脉冲信号。
信号的有效频率取决于脉冲持续时间τ,τ越小则频率范围越大。
3.幅值:幅值是振动强度的标志,它可以用峰值、有效值、平均值等方法来表示。
频率:不同的频率成分反映系统内不同的振源。
通过频谱分析可以确定主要频率成分及其幅值大小,可以看到共振时的频率,也就可以得到悬臂梁的固有频率4、阻尼比的测定自由衰减法: 在结构被激起自由振动时,由于存在阻尼,其振幅呈指数衰减波形,可算出阻尼比。
一阶固有频率和阻尼比的理论计算如下:113344423.515(1)2=210;70;4;285;7800;,1212,, Ix= 11.43 cm Iy= 0.04 cm 0.004 2.810,,1x y y f kg E pa b mm h mm L mm mab a bI I I m m E L πρρ-----------⨯======⨯=⨯固x y =式惯性矩:把数据代入I 后求得载面积:S =bh=0.07m 把S 和I 及等数据代入()式,求得本41.65()HZ 固理悬臂梁理论固有频率f =阻尼比计算如下:2221111220,2,........ln ,,22;n d n n nd n d n T ii i j ji i i i j i i i j i n d i jn d n d d d d x dx c kx dt dtc e A A A A A T A T T ξωξωωξωωωξωωηηδξωωωωωπδπξ++-++++++++=++===≈==⨯⨯⨯==≈2二阶系统的特征方程为S 微分方程:m 很少时,可以把。
实验八线性扫频法简支梁振型测试
一、实验目的
学习线性扫频法观察简支梁的振型;
二、实验仪器安装示意图
图8-1 实验装置框图
三、实验原理
根据梁的振动的振型叠加原理。
当激振频率是某一阶固有频率时候,梁的振动表现为此阶频率下的振型。
从而可以观察振型的节点,近似的知道振型曲线。
四、实验步骤
有一根梁如图所示,采用线性扫频方法做其z 方向的振动模态,可按以下步骤进行。
(1)连接仪器
固定好JZ‐1型接触式激振器,并与DH1301连接好。
(2)调整信号源频率,直到出现某阶振型
五、实验结果和分析
1、记录模态参数
模态参数 第一阶 第二阶 第三阶 第四阶 第五阶 频率
2、根据节点初步画出各阶模态振型图
3、与理论结果进行比较
实验九悬臂梁振型观察
一、实验目的
1、观察悬臂梁振型
二、实验仪器安装示意图
图9‐1 实验装置框图
三、实验原理
同 简支梁
四、实验步骤
有一根悬臂梁如图所示,采用线性扫频方法做其z 方向的振动模态,可按以下步骤进行。
(1)连接仪器
固定好非接触式激振器,并与DH1301连接好。
(2)调整信号源频率,直到出现某阶振型
五、实验结果和分析
1、记录模态参数
模态参数 第一阶 第二阶 第三阶 第四阶
频率
2、根据节点画出各阶模态振型图并与理论结果比较。
梁的振动实验报告实验目的改变梁的边界条件,对比分析不同边界条件,梁的振动特性(频率、振型等)。
对比理论计算结果与实际测量结果。
正确理解边界条件对振动特性的影响。
实验内容对悬臂梁、简支梁进行振动特性对比,利用锤击法测量系统模态及阻尼比等。
实验原理1、固有频率的测定悬臂梁作为连续体的固有振动,其固有频率为:,其一、二、三、四阶时,简支梁的固有频率为:其一、二、三、四阶时,其中E为材料的弹性模量,I为梁截面的最小惯性矩,ρ为材料密度,A为梁截面积,l为梁的长度。
试件梁的结构尺寸:长L=610mm, 宽b=49mm, 厚度h=8.84mm.材料参数: 45#钢,弹性模量E=210 (GPa), 密度=7800 (Kg/m3)横截面积:A=4.33*10-4 (m2),截面惯性矩:J==2.82*10-9(m4)则梁的各阶固有频率即可计算出。
2、实验简图图1 悬臂梁实验简图图2简支梁实验简图实验仪器本次实验主要采用力锤、加速度传感器、YE6251数据采集仪、计算机等。
图3和图4分别为悬臂梁和简支梁的实验装置图。
图5为YE6251数据采集仪。
图3 悬臂梁实验装置图图4 简支梁实验简图图5 YE6251数据采集分析系统实验步骤1:"在教学装置选择"中,选择结构类型为"悬臂梁",如果选择等份数为17,将需要测量17个测点。
2:本试验可采用多点激励,单点响应的方式,如果是划分为17等份,请将拾振点放在第5点。
3:请将力锤的锤头换成尼龙头,并将力通道的低通滤波器设置为1KHz,将拾振的加速度通道的低通滤波器设置为2KHz。
4:用力锤对第1点激振,对应的激励为f1,响应为1,平均3次,对应的数据为第1批数据,以此类推,测量完全部测点。
5:选择"教学装置模态分析和振型动画显示",调入测量数据进行分析。
6:"在教学装置选择"中,选择结构类型为"简支梁",如果选择等份数为17,将需要测量17个测点。
实验报告悬臂梁的模态实验姓名: xxx学号: xxx专业: xxx系别: xxx一、试验装置二、实验原理本实验采用锤击法测定悬臂梁的频响函数,将第S 点沿坐标X S 方向作用的锤击力和第r 点沿X r 方向的响应分别由相应的传感器转换为电信号,在由动态分析仪,按照随机振动理论,运算得出r,s 两点间的频响函数rs H ~,∑=+-==ni i i i k i s i r s r rs i k F X H 12)()()(0)21(~~λζλϕϕ (1) 又由于响应信号是加速度,同时圆频率为ω,位移函数,sin t X x ω=其加速度为,sin 22x t X a ωωω-=-=用复数表示后,参照(1)可得到加速度频响函数为:∑=+--=-=ni i i i k i s i r s r a rs i kF X H 12)()()(202)21(~~λζλϕϕωω (2) 由公式(2)可知,当k ωω=时,1=k λ,此时式(2)可近似写为:,22)(~)()()()()()(2kk k s k r k k k sk r k k a rs m i k i H ζϕϕζϕϕωωω-=-== (3) 它对应频响函数a rs H ~的幅频曲线的第k 个峰值,其中在上面(3),k m kk k 2()(ω)式中=为各阶主质量...n k ,3,2,1=。
改变s 点的位置,在不同点激振,可以得到不同点与点r之间的频响函数,当s=r 时,就可得到点r 处的原点频响函数,表示为:∑=+--=ni i i i i i r i r a rr i k H 12)()()(2)21(~λζλϕϕω (4) 它的第k 个峰值为:,2)(~)()()(2kk k r k r k k a rr k i H ζϕϕωωω-== (5)由(3)/(5)得到:(6)若另1)(=k rϕ,就可得到:(7)由(7)式,另s=1,2,3,......n,就可得到第k 阶主振型的各个元素。
悬臂梁的频率特性测试一、实验目的:测取悬臂梁的振动信号;获得悬臂梁的频率特性;通过对频响函数固有频率图和自功率谱图及相干函数的分析与描绘,初步掌握固有频率的测试方法,并由此了解由振动测试和分析进行机械设备状态监测与故障诊断的一般方法。
二、实验器材:悬臂梁,激振力锤,压电加速度计,电荷放大器,接线盒,A/D采集卡,计算机,压电加速度计:YD系列压电加速度计:YD42 ,A/D采集卡:中泰,电荷放大器:B&K2635。
三、实验原理及方法:数据采集线路简图:更换力锤锤头(橡胶头,钢头)看不同类型激振的试验效果。
四、实验步骤:1、用纱布沾取酒精、丙酮擦净悬臂梁上加速度计安装处,取适量蜡将加速度计贴在悬臂梁上并固定好;2、将激励信号线、响应信号线接至B&K电荷放大器输入端,输出端接至接线盒的0通道,经滤波后送入计算机;3、进入计算机界面并设置参数,设定采样频率,命名文件名,用激振力锤适当敲击悬臂梁并观察力脉冲波形与响应波形;4、敲击悬臂梁,采集数据并保存,计算后绘制响应函数图,读出0-2000Hz内各峰对应的频率值;5、制取力信号的自功率谱;6、制取响应信号的自功率谱,读出各峰值对应的频率值。
五、实验结论:悬臂梁参数如下:长L=200mm, 宽b=40mm, 高h=5mm, 密度ρ=7600kg/m 3 , E=2×1011N/m 2。
计算梁的前三阶固有频率:计算公式:sEI L A f nn ρπ022=其中7.61,4.22,52.3321===A A A ;I 0为梁横截面的惯性矩30121bh I =;s 为横截面面积bh s =。
理论计算值:。
Hz f Hz f Hz •f 7.1817,9.659,7.1031276002510202.0252.332421===⨯⨯⨯⨯=π列出实验测得的固有频率,并与理论值进行比较:悬臂梁不当等诸多因素引起的。
弹性模量是描述固体材料抵抗形变能力的物理量。
思考题与习题0-1 举例说明什么是测试?答:⑴测试的例子:为了确定一端固定的悬臂梁的的固有频率,可以采用锤击法对梁尽享激振,在利用压力传感器、电荷放大器、波形记录器记录信号波形,由衰减的振荡波形便可以计算出悬臂梁的固有频率。
⑵结论:由本例可知,测试是指确定被测对象悬臂梁固有频率的全部操作,是通过一定的技术手段—激振。
拾振、记录、数据处理等,获取悬臂梁固有频率的信息过程。
0-2以方框图的形式说明测试系统的组成,简述主要组成部分的作用。
答:⑴:测试系统的方框图如图0—1所示。
⑵:各部分的作用如下.传感器是将被测信息转换成某种电信号的器件;信号调理是把来自传感器的信号转换成适合传输和处理的形式;信号处理环节可对来自信号调理环节的信号,进行各种运算.滤波和分析;信号显示、记录环节将来至信号处理环节的信号显示或存储;模数转换和数模转换是进行模拟信号与数字信号的相互转换,以便于用计算机处理。
0—3 针对工程测试技术课程的特点,思考如何学习该门课程?答:本课程具有很强的实践性,只有在学习过程中密切联系实际,加强实验,注意物理概念,才能真正掌握有关知识。
在教学环节中安排与本课程相关的必要的实验及习题,学习中学生必须主动积极的参加实验及完成相应的习题才能受到应有的实验能力的训练,才能在潜移默化中获得关于动态测试工作的比较完整的概念,也只有这样,才能初步具有处理实际测试工作的能力。
思考题与习题1-1信号的分哪几类以及特点是什么?⑴、按信号随时间的变化规律分为确定性信号和分确定性信号,确定信号分为周期信号(包括谐波信号和一般周期信号)和非周期信号(准周期信号和以便非周期信号);非确定性信号包括平稳随机信号(包括各态历经信号和非各态历经信号)和非平稳随机信号.⑵、按信号幅值随时间变化的连续性分类,信号包括连续信号和离散信号,其中连续信号包括模拟信号和一般模拟信号,离散信号包括一般离散信号和数字信号.⑶、按信号的能量特征分类,信号包括能量有限信号和功率有限信号。
悬臂梁固有频率的测量-更新悬臂梁固有频率的测量实验⽤具:1、计算机2、LabVIEW 虚拟仪器平台3、USB 数据采集卡4、加速度传感器5、信号调理设备6、悬臂梁7、开关电源8、脉冲锤实验⽬的:1、掌握⽤瞬态激振⽅式,进⾏机械阻抗测试的仪器使⽤⽅法。
2、了解瞬态激振时的数据处理⽅法。
3、测出悬臂梁的固有频率和阻尼系数。
实验原理:悬臂梁是⼀个连续弹性体,具有⽆限多个⾃由度,即有⽆限多个固有频率和主振型。
在⼀般情况下,梁的振动是⽆限多个主振型的叠加。
如果给梁施加⼀个⼤⼩合适的激振⼒,其频率正好等于梁的某阶固有频率,就会产⽣共振,对应于这⼀阶固有频率的确定的振动形态叫做这⼀阶的主振型,这时其他各阶振型的影响可以忽略不计。
⽤共振法测定梁的固有频率和主振型时,只要连续调节激振⼒的频率,使梁出现某阶纯振型且振动幅值达到最⼤(产⽣共振),就可以认为这时的激振频率是悬臂梁的该阶固有频率。
实际上,⼈们关⼼的通常是最低的⼏阶固有频率和主振型,本实验采⽤共振法测定悬臂梁的⼀、⼆、三阶固有频率和振型。
由弹性振动理论,悬臂梁横向振动固有频率的理论解为:(Hz )式中:梁的长度L弹性常数E=2╳106 kg/cm 2。
材料重度0.0078kg/cm 3。
轴惯性矩4312cm hb I z =。
悬臂梁横向振动的各阶固有频率之⽐为1:6.25:17.5,横向振动的⼀、⼆、三阶振型如图所⽰。
ρA EJ L f 25.17==ρ=321::f f f(a )(b )(c )图⽰为悬臂梁横向振动的⼀阶主振型(a )、⼆阶主振型(b )和三阶主振型(c )由弹性体振动理论可知,对于悬臂梁,横向振动固有频率理论解为)3,2,1()(42??==i lEI l l i i ρβω各阶频率为π=2ii f ω式l i β——频率⽅程+1=0的解,前三个根(i =1,2,3)依次为1.875,4.694,7.855;E ——材料的弹性模量(Pa );I ——梁横截⾯对z 轴的惯性矩(m4);——材料线密度(kg/m ),其中 ——材料密度(kg/m3); A ——梁横截⾯⾯积(m2);对矩形截⾯,弯曲惯性矩123hb I =式中 b ——梁横截⾯宽度(m );h ——梁横截⾯⾼度(m )。
1悬臂梁固有频率的计算试求在0x =处固定、x l =处自由的等截面悬臂梁振动的固有频率(求解前五阶).解:法一:欧拉—伯努利梁理论悬臂梁的运动微分方程为:4242(,)(,)+0w x t w x t EI A x t ρ∂∂=∂∂;悬臂梁的边界条件为:2222(0)0(1),(0)0(2)0(3),(EI )0(4)x l x ldw w ww x x dx x x x ==∂∂∂======∂∂∂,;该偏微分方程的自由振动解为(x,t)W(x)T(t)w =,将此解带入悬臂梁的运动微分方程可得到1234(x)C cos sin cosh sinh W x C x C x C x ββββ=+++,(t)Acos t Bsin t T w w =+;其中24A EIρωβ=将边界条件(1)、(2)带入上式可得13C 0C +=,24C 0C +=;进一步整理可得12(x)C (cos cosh )(sin sinh )W x x C x x ββββ=-+-;再将边界条件(3)、(4)带入可得12(cos cosh )C (sin sinh )0C l l l l ββββ-+-+=;12(sin sinh )C (cos cosh )0C l l l l ββββ--+-+=要求12C C 和有非零解,则它们的系数行列式必为零,即(cos cosh )(sin sinh )=0(sin sinh )(cos cosh )l l l l l l l l ββββββββ-+-+--+-+所以得到频率方程为:cos()cosh()1n n l l ββ=-;该方程的根n l β表示振动系统的固有频率:1224()(),1,2,...n n EI w l n Al βρ==满足上式中的各n l β(1,2,...n =)的值在书P443表8。
4中给出,现罗列如下:123451.875104 4.6940917.85475710.99554114.1372l l l l l βββββ=====,,,,;若相对于n β的22C 值表示为2n C ,根据式中的1n C ,2n C 可以表示为21cos cosh ()sin sinh n n n n n n l lC C l lββββ+=-+;因此1cos cosh (x)C (cos x cosh x)(sin x sinh x),1,2,...sin sinh n n n n n n n n n n l lW n l l ββββββββ⎡⎤+=---=⎢⎥+⎣⎦由此可得到悬臂梁的前五阶固有频率,分别将n=1,2,3,4,5带入可得:1112222221234441.875104() 4.694091()7.854757()EI EI EIAl Al Alωωωρρρ===,,, 112222454410.995541()14.1372()EI EI Al Alωωρρ==,;法二、铁摩辛柯梁梁理论1。
实验报告
实验名称:悬臂梁固有频率测试
实验目的:
1)熟悉基于Labview的数据采集过程
2)掌握时频域的信号分析
实验仪器设备:
1)悬臂梁实验模型:钢尺(宽:mm,厚:mm);涡流传感器;前置放大电路及电源
2)数据采集卡,计算机,示波器,改锥等
3)基于Labview的数据采集程序及分析程序
实验过程:
1)准备工作:接好涡流传感器,加合适激励观察示波器输出波形;连接采样系统的硬件部分后,应用计算机中的采集程序观测输出波形是否正常。
2)调节悬臂梁实验模型即钢尺的长度(20cm,24cm,28cm),三个不同长度上加入两种激励方式(冲激、阶跃),应用采集系统采集两种激励方式下的涡流传感器输出数据,存储。
冲激:应用改锥敲击实现;阶跃:应用手按动实现。
3)应用数据分析软件进行数据分析。
实验结果及分析:
1)不同长度不同激励方式下采集的数据如下:
图a1钢尺长度:20cm,改锥敲击
图a2钢尺长度:20cm,手按动
图b1钢尺长度:24cm,改锥敲击
图b2钢尺长度:24cm,手按动
图c1钢尺长度:28cm,改锥敲击
图c2钢尺长度:28cm,手按动
2)数据分析及思考
思考题:
1)总结在实验和数据处理操作时需要注意的问题?
2)不同激励方式造成测试结果的误差有多大?哪种最好?
3)在上面实验中,最高能够找到第几阶固有频率?
4)比较悬臂梁频率测量的理论值和实验值,分析误差及来源?
5)查找一篇相关文献,该文献的测试对象以悬臂梁为原型,简要总结它的测试方案。
报告四报告四 悬臂梁振动参数测试试验一 实验目的实验目的1.了解机械振动测试的基本原理 方法 技能2.掌握自由共振法确定系统的固有频率和阻尼比的方法3.了解机械振动数据处理方法二 要仪器设备 要仪器设备1.悬臂梁—被测 象2.DASP 数据采集 分析系统 该系统集成 信号发生器示波器 信号分析仪 和 频响函数测试仪 种仪器, 有多通道同 采集 能,并 采集到的信号实 时域 频域多种分析 能, 有 被测振动系统的频响函数测试的 能3.电荷放大器—前置放大器4. 速度计自由共振法自由共振法1.1.时域法测梁的振动频率和阻时域法测梁的振动频率和阻时域法测梁的振动频率和阻尼尼本实验中,圆频率d ωω=当ξ很小时,有d d ,2/n T ωωωπ≈=中,正由测量得到 所示,当ξ很小时,有 1 定d n ωω≈ 2 确定ξξ=lnin i nM M δ+= 2.2.频域法测梁的振动频率 阻尼频域法测梁的振动频率 阻尼频域法测梁的振动频率 阻尼因d ωω=当ξ很小时,有 r n ωω≈1 由()A ω减掉ω 的共振峰来确定n ω2 212nωωξω−=,12(1)(1)nn ωξωωξω=−=+12()()A A ωω≈≈四 按理论 式计算按理论 式计算 梁的固有频率梁的固有频率已知()n f HZ =式中 E ——梁的弹性模量0I ——梁横截面惯性矩L ——悬臂梁长度S ——梁的横截面积A ——振型常数 3.52A = 一阶ρ——梁材料单位体积质量五 悬臂梁振动参数的测试悬臂梁振动参数的测试图1 实验测试悬臂梁图2 测试实验 场1.1.用时域波形曲线确定梁的用时域波形曲线确定梁的n ω和ξ 由实验测量信号分析软件如 图3所示图3安 CRAS 振动及动态信号采集分析软件一次锤击得到梁的振动信号波形,拾取时域波形曲线中任意一段曲线,并 波峰值进行标定,如图4所示图4 任取7个振动信号波形曲线由图4知,n=7,M i =0.22E此,M i为n =0.17E此,且n*正=1821.88-1653.13=168.75ms 则,梁的振动周期正=168.75/7=24.1071ms,即 正=24.107×10-3s故,悬臂梁的振动频率ƒ时=1/正=41.18Hz≈41.2Hz将正代入 式得d 322/260.5/24.10710T rad s πωπ−===×将M i =0.22m步,M i为1=0.17m步代入 式得0.22lnln 0.2580.17i n i n M M δ+=== 再将0.258n δ=代入 式得35.86910ξ−===×即得到梁的阻尼比0.587%ξ≈ 2.2.用频域 率谱曲线确定梁的用频域 率谱曲线确定梁的n ω和ξ悬臂梁的频域 率谱曲线如图5所示图5 悬臂梁的频域 率谱曲线由图5, 知,频域 梁的振动频率ƒ频=41.56 Hz再结合 式得r 2241.56261.0rad /n f s ωωππ≈=⋅=×≈频按照实验 骤,分 取共振峰两侧得到1ω和2ω,如图5中所示, 得141.41/rad s ω= 241.88/rad s ω=将1ω 2ω和n ω代入 式得2141.8841.410.000922261n ωωξω−−===× 即频域 计算得梁的振动频率 ƒ=41.56 Hz阻尼比约 ζ≈0.09%时域法相比,阻尼比差距较大,应该以时域法测的的阻尼比 准,频域法测量时,由于软件分辨率的限制,的位置,故测量误差较大 理论 式计算结果相比较 理论 式计算结果相比较,,分析误差产生的原因分析误差产生的原因本振动实验中,选用的悬臂梁材料 45#钢, 物理尺 参数如L ——悬臂梁长度,L=23.2cmB ——悬臂梁宽度,B=3cm H ——悬臂梁厚度,H=0.3cmS ——梁的横截面积E ——梁的弹性模量,E=200GPa0I ——梁横截面惯性矩,30/12I B H =⋅A ——振型常数, 3.52A = 一阶ρ——梁材料单位体积质量,7.89x103kg/m 3将以 各参数代入 式,计算得()45.383()n f HZ Hz === 即理论 式计算得到悬臂梁的固有频率45.4H n f z ≈显然,理论计算所得的梁的固有频率大于由时域波形曲线计算的固有频率,即45.3H 41.56H n f z f z ≈>≈时误差产生的原因有多方面,分析如a)实验仪器存在误差 本实验采用的是 速度计作 传感器,由于长时间使用,传感器没有经过重新标定和校 ,固定端 牢固,或是固定 没放 整,都有 能导致振动信号采集时产生误差,使得采集信号波形在周期 幅值和相位方面存在一定的偏差,进而影响到实验结果 外,振动信号分析软件的设置偏差也会 实验分析结果产生影响b)实验过程中的人 操作误差 本实验 要是锤击法测试,在锤击悬臂梁时,由于锤击的力量和方向 当,或没及时抽开锤子,在击打梁时产生突变振动,使采集到的信号发生 涉,从而影响了信号分析,结果产生误差干) 境影响误差 整个实验仪器连接放置在室温 境 的小实验室中,由于实验组成员讨论喧哗产生的声音,以及来回走动 地板产生的振动,都会在一定程度 涉和影响振动信号采集的质量,从而影响到分析结果的准备性。