小学奥数精讲:带余除法(同余式和同余方程)知识点及典型例题
- 格式:doc
- 大小:38.50 KB
- 文档页数:5
华杯赛数论专题:余数及同余一、带余除法的定义:一般地,如果a是整数,b是整数(b≠0),若有a÷b=q…r,也就是a=b×q+r, 0≤r<b;我们称上面的除法算式为一个带余除法算式.这里:(1)当时:我们称a可以被b整除,记作b|a,q称为a除以b的商或完全商(2)当时:我们称a不可以被b整除,记作,q称为a除以b的商或不完全商二、同余的概念两个整数被同一个大于1的整数m除,所得的余数相同,就说这两个整数对于除数m来说是同余的.也可以换句话来说这个概念,如果两个整数的差能被大于1的整数m整除,那么这两个整数对于除数m来说是同余的.同余的概念和符号都是德国伟大数学家高斯引进的.一般地,两个整数a和b,除以大于1的正整数m,如果所得的余数相同,就说a、b对于模m同余,记作a≡b(mod m).由于一个整数被m除的余数只能是0、1、2、3、…、m-1这m个数,所以全体整数可按被m除的余数分类,凡是余数相同的归为一类,全体整数就被划分成了m类,同一类中的任何两数被m除的余数都相等,即同一类中任何两数的差都能被m整除,不同类的任何两数被m除的余数都不相等.三、同余的性质1.如果a≡b(mod m),那么m|(a-b);如果整数a和b对于模m是同余的,那么a 与b的差能被m整除.2.a≡a(mod m),即任何整数都与自身同余.3.若a≡b(mod m),则b≡a(mod m).4.若a≡b(mod m),b≡c(mod m),则a≡c(mod m).5.若a≡b(mod m),c≡d(mod m),则a+c≡b+d (mod m),a-c≡b-d (mod m),a×c≡b×d (mod m).6.若a≡b(mod m),则an≡bn(mod m)。
(其中n为正整数).例1.用一个两位数除708,余数为43,求这个两位数.【答案】95【解答】根据被除数-余数=商×除数,可知,所求两位数一定是707-43=665的大于43的约数,所以所求的两位数是95.例2.数713、1103、830、947被一个数除所得余数相同(余数不为0),求这个除数.【答案】39,13或3.【解答】1103-713=390=3×13×2×5,947-830=117=3×13×3,1103-947=156=2×13×3×2,除数为39,13或3.例3.从1、2、…100中最多能选出多少个数,使选出的数中每两个的和都不能被3整除?【答案】35【解答】1、2、…100中,除以3余1的数共34个,即1、4、7、10、…、100.除以3余2的数共33个,选出的数中,如果有除以3余1的,就一定不能有除以3余2的;如果有除以3余2的,也就不能有除以3余1的。
数论---同余问题余数问题是我们数论知识非常重要的一大板块,许多名校小升初考试中,各大杯赛中经常会考到,所以序号本讲内容堆学生来讲是非常重要的。
定理1:几个数相加,如果存在一个加数,不能被数a整除,那么它们的和,就不能被整数a整除。
如:35除以5,7余0,除以3余2;63除以3,7余0,除以5余3;30除以3,5余0,除以7余2。
则35+63+30除以3余2,除以5余3,除以7余2。
定理2:两数不能整除,若除数扩大(或缩小)了几倍,而被除数不变,则其商和余数也同时扩大(或缩小)相同的倍数(余数必小于除数)。
一、带余除法的定义及性质:一般地,如果a是整数,b是整数(b≠0),若有a÷b=q……r,也就是a=b×q+r,0≤r<b;我们称上面的除法算式为一个带余除法算式。
这里:r=时:我们称a可以被b整除,q称为a除以b的商或完全商(1)当0r≠时:我们称a不可以被b整除,q称为a除以b的商或不完全商(2)当0一个完美的带余除法讲解模型:如图,这是一堆书,共有a本,这个a就可以理解为被除数,现在要求按照b本一捆打包,那么b就是除数的角色,经过打包后共打包了c捆,那么这个c就是商,最后还剩余d本,这个d就是余数。
这个图能够让学生清晰的明白带余除法算式中4个量的关系。
并且可以看出余数一定要比除数小。
二、三大余数定理:1.余数的加法定理a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。
例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。
例如:23,19除以5的余数分别是3和4,故23+19=42除以5的余数等于3+4=7除以5的余数,即2.2.余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。
例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。
小学奥数精讲:余数与同余问题小学奥数精讲:余数与同余问题一、问题引入我们知道,自然数(0 和所有正整数),按能否被2 整除可以分为偶数和奇数两类,即能被 2 整除(除以 2 余 0)的数为偶数,丌被2 整除(除以 2 余 1)的数为奇数,奇数和偶数各自有其特征,它们之间又有相互联系。
同理,如果我们以除以3 的余数为标准,就可以将自然数分成三类,余 0、余 1、余 2;如果我们以除以 4 的余数为标准,就可以将自然数分成四类,余 0、余 1、余 2、余3;以除以 n 为标准,就可以将自然数划分为 n 类。
那么除以 n 余数相同的一类数有何共同的性质呢?除以n 余数丌同的数之间又有何联系呢?这是本讲将要讨论的第二个问题——同余问题。
二、知识总结1、首先根据上一讲的整除特征,做简单推导,即可得到下列求余方法。
【注】下列方法大家以理解为主,丌必死记。
着重掌握除以3、4、8、9、16 的余数求法即可。
①求除以 2 的余数:奇数余 1,偶数余 0;②求除以 3 的余数:等于该数的各位数字之和除以 3 的余数;③求除以 4 的余数:等于该数末两位组成的数除以 4 的余数;④求除以 5 的余数:等于该数个位数除以 5 的余数;⑤求除以 6 的余数:该数的各个数字之和除以 3 得余数 a,若该余数不原数同奇同偶,则原数除以6 的余数为a,若该余数不原数一奇一偶,则原数除以 6 的余数为 a+3;⑥求除以7 的余数:等于该数的末三位不末三位以前的数字组成的数之差除以 7 的余数,如果数字仍然太大丌能直接观察出来,就重复此过程;⑦求除以 8 的余数:等于该数的末三位除以 8 的余数;⑧求除以 9 的余数:等于该数的各位数字之和除以 9 的余数;⑨求除以 10 的余数:等于该数的个位数;⑩求除以11 的余数:(a)等于该数的奇数位上的数字之和不偶数的数字之和的差除以 11 的余数(b)等于该数的末三位不末三位之前的数字组成的数之差除以 11 的余数,如果数字仍然太大丌能直接观察出来,就重复此过程;求除以13 的余数:等于该数的末三位不末三位之前的数字组成的数之差除以 13 的余数,如果数字仍然太大丌能直接观察出来,就重复此过程;求除以 16 的余数:等于该数的后四位除以 16 的余数;求除以17 的余数:等于把该数的个位数字去掉,再从余下的数中,减去个位数的 5 倍,所得到的数字除以 17 的余数,如果数字仍然太大丌能直接观察出来,就重复此过程;求除以 18 的余数:该数的各个数字之和除以 9 得余数 a,若该余数不原数同奇同偶,则原数除以 18 的余数为 a,若该余数不原数一奇一偶,则原数除以 18 的余数为 a+3;求除以19 的余数:等于把该数的个位数字去掉,再从余下的数中,加上个位数的 2 倍,所得数字除以 19 的余数。
1. 学习同余的性质2. 利用整除性质判别余数同余定理 1、定义:若两个整数a 、b 被自然数m 除有相同的余数,那么称a 、b 对于模m 同余,用式子表示为:a ≡b ( mod m ),左边的式子叫做同余式。
同余式读作:a 同余于b ,模m 。
2、重要性质及推论:(1)若两个数a ,b 除以同一个数m 得到的余数相同,则a ,b 的差一定能被m 整除例如:17与11除以3的余数都是2,所以1711 ()能被3整除. (2)用式子表示为:如果有a ≡b ( mod m ),那么一定有a -b =mk ,k 是整数,即m |(a -b )3、余数判别法当一个数不能被另一个数整除时,虽然可以用长除法去求得余数,但当被除位数较多时,计算是很麻烦的.建立余数判别法的基本思想是:为了求出“N 被m 除的余数”,我们希望找到一个较简单的数R ,使得:N 与R 对于除数m 同余.由于R 是一个较简单的数,所以可以通过计算R 被m 除的余数来求得N 被m 除的余数.⑴ 整数N 被2或5除的余数等于N 的个位数被2或5除的余数;⑵ 整数N 被4或25除的余数等于N 的末两位数被4或25除的余数;⑶ 整数N 被8或125除的余数等于N 的末三位数被8或125除的余数;⑷ 整数N 被3或9除的余数等于其各位数字之和被3或9除的余数;知识点拨教学目标5-5-3.同余问题⑸整数N被11除的余数等于N的奇数位数之和与偶数位数之和的差被11除的余数;(不够减的话先适当加11的倍数再减);⑹整数N被7,11或13除的余数等于先将整数N从个位起从右往左每三位分一节,奇数节的数之和与偶数节的数之和的差被7,11或13除的余数就是原数被7,11或13除的余数.例题精讲模块一、两个数的同余问题【例 1】有一个整数,除39,51,147所得的余数都是3,求这个数.【考点】两个数的同余问题【难度】1星【题型】解答【解析】(法1) 39336-=,51-3=48,1473144-=,(36,144)12=,12的约数是1,2,3,4,6,12,因为余数为3要小于除数,这个数是4,6,12;(法2)由于所得的余数相同,得到这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.513912-=,(12,108)12-=,14739108=,所以这个数是4,6,12.【答案】4,6,12【例 2】某个两位数加上3后被3除余1,加上4后被4除余1,加上5后被5除余1,这个两位数是______. 【考点】两个数的同余问题【难度】2星【题型】填空【关键词】人大附中,分班考试【解析】“加上3后被3除余1”其实原数还是余1,同理这个两位数除以4、5都余1,这样,这个数就是[3、4、5]+1=60+1=61。
小学数学精讲(6)带余除法、同余性质、中国剩余定理一、知识地图;,;(2),.;(4)a ⎧⎪≡≡⎧⎪⎪⎪≡+⎪⎪⎪>≡-⎪⎧⎪⎨⎨⎪<≡-+⎩⎪⎪⎪⎪⨯≡⨯⎨⎪⎪⎪≡⎩⎪≡⎩12121212121212带余除法如果m r ,n r(moda),那么(1)m+n r r 当r r m-n r r 同余性质m-n 当r r m-n r r 数论三(3)m n r r 如果m n(moda),那么a|m-n 中国剩余定理--余1律升级满足法--前几级得数+前几级公倍数本级余数(mod 本级数)进制数,数位与位值⎪⎪⎪⎪⎪⎪ 二、基础知识(一)余数问题在整数的除法中,只有能整除和不能整除两种情况。
当不能整除时,就产生余数,余数问题在小学数学中非常重要。
余数问题和整除性问题是有密切关系的,因为只要我们去掉余数那么就能和整除性问题联系在一起了。
1. 带余除法 1定义的引入:带余除法:一般地,如果a 是整数,b 是整数(b ≠0),那么一定有另外两个整数q 和r ,0≤r <b ,使得a=b ×q + r 当r=0时,我们称a 能被b 整除。
当r ≠0时,我们称a 不能被b 整除,r 为a 除以b 的余数,q 为a 除以b 的不完全商(亦简称为商)。
用带余数的除式又可以表示为a ÷b=q ……r , 0≤r <b例如:给出整数13 ,整数5,那么就存在另外两个数2和3,使得13=5×2+3 其实也就是表达了13÷5=2…3,这么一个简单的意思。
2.和余数相关的一些性质余数有如下一些重要性质(a ,b ,c 均为自然数) (1)余数小于除数。
(2)被除数=除数×商+余数除数=(被除数-余数)÷商; 商=(被除数-余数)÷除数。
这条性质,要与整除性联系,从被除数中减掉余数,那么所得到的差就能够被除数整除了。
因为在一些题目中因为余数的存在,不便于我们计算,去掉余数,回到比较熟悉的整除性问题,那么问题就会变得简单了。
数学教师解题能力培训之四数的整除(4)余数和同余教室姓名学号【知识要点】1、例如:37÷5=7……2,四者之间的数量关系:被除数=除数×商+余数2、同余的概念:两个整数,被同一个大于1的整数m除,所得余数如果相同,那么,这两个整数对于除数m来说是同余的。
例如:14和26这两个数虽然大小不同,但它们分别除以6所得的余数相同,我们把14和26叫做关于模6同余。
3、同余最基本的性质是:几个同余式(模相同)相加、减、乘、乘方仍然同余。
【典型例题】例1、两个整数相除商8,余16;并且被除数、除数、商及余数的和是463.那么被除数是多少?解:因为:被除数=除数×8+16,并且被除数+除数=463―8―16=439,所以除数=(439-16)÷(8+1)=47,被除数=47×8+16=392.例2、被3除余2,被5除余3,被7除余4的最小自然数是多少?解:被3除余2的数有2,5,8,11,…其中8又能被5除余3,并且满足条件最小的,而[3,5]=15,所以8+15=23,23+15=38,38+15=53,53满足了被7除余4这个条件,并且最小。
例3、五(3)班同学上体育课,排成3行少1人,排成4行多3人,排成5行少1人,排成6行多5人,问上体育课的同学最少多少名?解:[3,4,5,6]=60, 60-1=59(人).例4、小刚在一次计算除法时,把被除数171错写成117,结果商少了3而余数恰好相同,这题中的除数是几?解:设除数为m,正确的商位q,余数为r,那么错写被除数后,除数仍为m,商为q-3,余数仍为r。
因为:171=m×q+r117= m×(q-3)+r于是171-117=(m×q+r)-(m×q-3 m+r)得m=18.【精英班】例5、有一个三位数,其中个位上的数是百位上的数的3倍,且这个三位数除以5余4,除以11余3.这个三位数是多少?解:这个三位数除以5余4,所以它的个位数字是4或9,因为个位数字是百位数字的3倍,所以个位数字只能是9,百位数字是3.因为这个数除以11余3,所以它的十位数字=3+(9-3)=9,这个三位数是399.【竞赛班】例6、11+22+33+44+55+66+77+88+99除以3的余数是多少?解:由数的整除性质和同余性质可推知:(1)3的倍数的任何次方(0除外)除以3的余数为0,可知33+66+99除以3余0.(2)不是3的倍数的偶次方除以3的余数为0,可知22+44+88除以3余1.(3)11除以3余1,55与25对于3同余,它们除以3余2. 77与17对于3同余,它们除以3余1.所以(1+2+1)÷3=1……1。
同余问题(一)在平时解题中,我们经常会遇到把着眼点放在余数上的问题。
如:现在时刻是7时30分,再过52小时是几时几分?我们知道一天是24小时,,也就是说52小时里包含两个整天再加上4小时,这样就在7时30分的基础上加上4小时,就是11时30分。
很明显这个问题的着眼点是放在余数上了。
1. 同余的表达式和特殊符号37和44同除以7,余数都是2,把除数7称作“模7”,37、44对于模7同余。
记作:(mod7)“”读作同余。
一般地,两个整数a和b,除以大于1的自然数m所得的余数相同,就称a、b对于模m同余,记作:2. 同余的性质(1)(每个整数都与自身同余,称为同余的反身性。
)(2)若,那么(这称作同余的对称性)(3)若,,则(这称为同余的传递性)(4)若,,则()(这称为同余的可加性、可减性)(称为同余的可乘性)(5)若,则,n为正整数,同余还有一个非常有趣的现象:如果那么(的差一定能被k整除)这是为什么呢?k也就是的公约数,所以有下面我们应用同余的这些性质解题。
【例题分析】例1. 用412、133和257除以一个相同的自然数,所得的余数相同,这个自然数最大是几?分析与解答:假设这个自然数是a,因为412、133和257除以a所得的余数相同,所以,,说明a是以上三个数中任意两数差的约数,要求最大是几,就是求这三个差的最大公约数。
所以a最大是31。
例2. 除以19,余数是几?分析与解答:如果把三个数相乘的积求出来再除以19,就太麻烦了,利用同余思想解决就容易了。
所以此题应用了同余的可乘性,同余的传递性。
例3. 有一个1997位数,它的每个数位都是2,这个数除以13,商的第100位是几?最后余数是几?分析与解答:这个数除以13,商是有规律的。
商是170940六个数循环,那么,即,我们从左向右数“170940”的第4个数就是我们找的那个数“9”,所以商的第100位是9。
余数是几呢?则所以商的个位数字应是“170940”中的第4个,商应是9,相应的余数是5。
1. 学习同余的性质2. 利用整除性质判别余数同余定理 1、定义:若两个整数a 、b 被自然数m 除有相同的余数,那么称a 、b 对于模m 同余,用式子表示为:a ≡b ( mod m ),左边的式子叫做同余式。
同余式读作:a 同余于b ,模m 。
2、重要性质及推论:(1)若两个数a ,b 除以同一个数m 得到的余数相同,则a ,b 的差一定能被m 整除例如:17与11除以3的余数都是2,所以1711 ()能被3整除. (2)用式子表示为:如果有a ≡b ( mod m ),那么一定有a -b =mk ,k 是整数,即m |(a -b )3、余数判别法当一个数不能被另一个数整除时,虽然可以用长除法去求得余数,但当被除位数较多时,计算是很麻烦的.建立余数判别法的基本思想是:为了求出“N 被m 除的余数”,我们希望找到一个较简单的数R ,使得:N 与R 对于除数m 同余.由于R 是一个较简单的数,所以可以通过计算R 被m 除的余数来求得N 被m 除的余数.⑴ 整数N 被2或5除的余数等于N 的个位数被2或5除的余数;⑵ 整数N 被4或25除的余数等于N 的末两位数被4或25除的余数;⑶ 整数N 被8或125除的余数等于N 的末三位数被8或125除的余数;⑷ 整数N 被3或9除的余数等于其各位数字之和被3或9除的余数;知识点拨教学目标5-5-3.同余问题⑸整数N被11除的余数等于N的奇数位数之和与偶数位数之和的差被11除的余数;(不够减的话先适当加11的倍数再减);⑹整数N被7,11或13除的余数等于先将整数N从个位起从右往左每三位分一节,奇数节的数之和与偶数节的数之和的差被7,11或13除的余数就是原数被7,11或13除的余数.例题精讲模块一、两个数的同余问题【例 1】有一个整数,除39,51,147所得的余数都是3,求这个数.【考点】两个数的同余问题【难度】1星【题型】解答【解析】(法1) 39336-=,51-3=48,1473144-=,(36,144)12=,12的约数是1,2,3,4,6,12,因为余数为3要小于除数,这个数是4,6,12;(法2)由于所得的余数相同,得到这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.513912-=,14739108-=,(12,108)12=,所以这个数是4,6,12.【答案】4,6,12【例 2】某个两位数加上3后被3除余1,加上4后被4除余1,加上5后被5除余1,这个两位数是______. 【考点】两个数的同余问题【难度】2星【题型】填空【关键词】人大附中,分班考试【解析】“加上3后被3除余1”其实原数还是余1,同理这个两位数除以4、5都余1,这样,这个数就是[3、4、5]+1=60+1=61。
1. 学习同余的性质2. 利用整除性质判别余数同余定理 1、定义:若两个整数a 、b 被自然数m 除有相同的余数,那么称a 、b 对于模m 同余,用式子表示为:a ≡b ( mod m ),左边的式子叫做同余式。
同余式读作:a 同余于b ,模m 。
2、重要性质及推论:(1)若两个数a ,b 除以同一个数m 得到的余数相同,则a ,b 的差一定能被m 整除例如:17与11除以3的余数都是2,所以1711 ()能被3整除. (2)用式子表示为:如果有a ≡b ( mod m ),那么一定有a -b =mk ,k 是整数,即m |(a -b )3、余数判别法当一个数不能被另一个数整除时,虽然可以用长除法去求得余数,但当被除位数较多时,计算是很麻烦的.建立余数判别法的基本思想是:为了求出“N 被m 除的余数”,我们希望找到一个较简单的数R ,使得:N 与R 对于除数m 同余.由于R 是一个较简单的数,所以可以通过计算R 被m 除的余数来求得N 被m 除的余数.⑴ 整数N 被2或5除的余数等于N 的个位数被2或5除的余数;⑵ 整数N 被4或25除的余数等于N 的末两位数被4或25除的余数;⑶ 整数N 被8或125除的余数等于N 的末三位数被8或125除的余数;⑷ 整数N 被3或9除的余数等于其各位数字之和被3或9除的余数;知识点拨教学目标5-5-3.同余问题⑸整数N被11除的余数等于N的奇数位数之和与偶数位数之和的差被11除的余数;(不够减的话先适当加11的倍数再减);⑹整数N被7,11或13除的余数等于先将整数N从个位起从右往左每三位分一节,奇数节的数之和与偶数节的数之和的差被7,11或13除的余数就是原数被7,11或13除的余数.例题精讲模块一、两个数的同余问题【例 1】有一个整数,除39,51,147所得的余数都是3,求这个数.【考点】两个数的同余问题【难度】1星【题型】解答【解析】(法1) 39336-=,51-3=48,1473144-=,(36,144)12=,12的约数是1,2,3,4,6,12,因为余数为3要小于除数,这个数是4,6,12;(法2)由于所得的余数相同,得到这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.513912-=,14739108-=,(12,108)12=,所以这个数是4,6,12.【答案】4,6,12【例 2】某个两位数加上3后被3除余1,加上4后被4除余1,加上5后被5除余1,这个两位数是______. 【考点】两个数的同余问题【难度】2星【题型】填空【关键词】人大附中,分班考试【解析】“加上3后被3除余1”其实原数还是余1,同理这个两位数除以4、5都余1,这样,这个数就是[3、4、5]+1=60+1=61。
第3讲带余除法和同余知识网络一般地,整数a被自然数b除,必定有惟一的整数q和惟一的整数r,使得a=b×q+r其中r<b,当r=0时,就是整除的形式。
同样,可以把上式转化为a-r=b×q这样也可以看成(a-r)是b的倍数。
同样,就可以引出同余的定义。
如果a、b为整数,n为正整数,a、b被n除所得的余数相同,就称a、b对模n同余,并用符号a≡b mod(n)来表示。
如果a、b对模n同余,那么定有a-b是n的倍数。
重点·难点本讲的重点难点在于对同余的应用,这就要首先掌握同余的几个基本性质:对a、b、c、d均为整数,m、n为正整数,有(1)a≡a mod(n)。
(2)如果a≡b mod(n),那么b≡a mod(n)。
(3)如果a≡b mod(n)及b≡c mod(n),那么a≡c mod(n)。
(4)如果a≡b mod(n),c≡d mod(n),那么a+c≡(b+d) mod(n)。
(5)如果a≡b mod(n),c≡d mod(n),那么a×c≡b×d mod(n)。
(6)如果a≡b mod(n),那么。
学法指导带余除法的题一般数字较大、直接计算有难度,如何化繁为简就成为关键。
一般地,只要对题目有深入的分析,抓住隐藏在其中的规律,就能顺利解出题来。
、经典例题[例1]我国古代数学名著《孙子算经》有这样一道有关自然数的题目:今有物不知其数,三三数之剩2,五五数之剩3,七七数之剩2。
问物几何?翻译成现代文就是:一个数被3除余2,被5除余3,被7除余2。
求这个数。
思路剖析设这个数为a,则有a≡2 mod(3),a≡3 mod(5),a≡2 mod(7)可以取易得,是整数易得是整数易得是整数因此解答由上述分析因此这个数最小值是23。
[例2]菲波那契数列定义如下:前两个数都是1,从第三个数起,每个数是前面两个数的和。
于是其中前面几个数是1,1,3,5,8,13,21,34,55…(1)求其中第2002个数被4除的余数。
小学奥数精讲:带余除法(同余式和同余方程)
一、基本性质的复习
1、带余数除法算式:a÷b=q……r(a、b、q、r 均为整数) 从中我们应该得到:
(1)b>r 除数大于余数
(2)a-r=b×q 被除数减去余数则会出现整除关系,
则带余数问题就可以转化为整数问题。
2、余数的性质:
(1)可加性:和的余数等于余数的和。
即:两数和除以m 的余数等于这两个数分别除以m 的余数和。
例:7÷3=2……1 5÷3=1……2,
则(7+5)÷3 的余数就等于(1+2)÷3 的余数0。
(2)可减性:差的余数等于余数的差。
即:两数差除以m 的余数等于这两个数分别除以m 的余数差。
例:17÷3=5……2 5÷3=1……2,
则(17-5)÷3 的余数就等于(2-2)÷3 的余数0。
(3)可乘性:积的余数等于余数的积。
即:两数积除以m 的余数等于这两个数分别除以m 的余数积。
例:64÷7=9……1 45÷7=6……3,
则(64×45)÷3 的余数就等于(1×3)÷7 的余数3。
二、同余式
在生活中,若两个自然数 a 和 b 都除以同一个除数m 时,余数相同该如何表示呢?在代数中我们称之为同余。
即:a 与b 同余于模m。
意思就是自然数a 和b 关于m 来说是余数相同的。
用同余式表达为:a≡b(modm).
注:若a 与b 同余于模m,则a 与b 的差一定被m 整除。
(余数的可减性)
三、例题。
例1、当2011 被正整数N 除时,余数为16,请问N 的所有可能值有多少个?
例2、(1)求多位数1234567891011…20102011除以9的余数?
(2)将1开始到103的连续奇数依次写成一个多位数:a=135791113…9799101103,则数a共有多少位?数a除以9 的余数为几?
(3)一个多位数1234567……979899,问除以11 的余数是多少?
例3、(1)用一个数除200 余5,除300 余1,除400 余10,求这个数?
(2)甲、乙、丙、丁四个旅行团分别有游客69 人,85 人、93 人、97 人。
现在要把这四个旅行团分别进行分组,使每组有A名游客,以便乘车前往参观游览,已知甲、乙、丙三个旅行团分成每组A人的若干组后,所剩的人数都相同,问丁旅行团分成每组A人的若干组后还剩几人?
(3)若2836、4582、5164、6522 四个自然数都被同一个自然数相除,所得余数相同且为两位数,则除数和余数的和是多少?
例4、(1)有一列数:1、3、9、25、69、189、517……,其中第一个数是1,第二个数是3,从第三个数起,每个数是前两个数之和的2 倍再加1,那么这串数中第2008个数除以6的余数是多少?
(2)70个数排成一行,除了两头的两个数以外,每个数的3倍都恰好等于它两边两个数的和,这一行最左边的两个数的和为:0、1、3、8、21……,问最右边一个数除以6的余数是多少?
例5、(1)2007 年4 月15 日(星期日)是第5 届小学“希望杯”全国数学邀请赛举行的二试的日子,那么这天以后的第2007+4×15 天是星期几?
(2)算式1×3×5×7×……×2007 计算结果的末两位数字是多少?
例6、一个四位数是这个数的数字和的83倍,求这个四位数?
带余除法(同余式和同余方程)习题答案例1、提示:N 为2011-16的因数,且要大于16.(求出其因数的个数再从中淘汰不符合的。
)答案:11 个。
例2、(1) 提示:2011÷9=223……4,2008200920102011 除以9 的余数为 1 。
答案:1。
(2)提示:一位数5 个,两位数45 个,三位数2 个,则位数可求。
答案:101 位。
103 是第52 个数,连续9 个数的和是9 的倍数,52÷9=5……7,补两个数应该是整除的,但105107 除以9 余5,则 a 除以9 余4。
答案:余4。
(3)提示:奇数位之和减去偶数位之和。
奇数位之和:9×(1+2+3+4+5+6+7+8+9+0)+9+7+5+3+1=430;偶数位之和:10×(1+2+3+4+5+6+7+8+9+0)+8+6+4+2=470;430≡1(mod11)470≡8(mod11)1+11-8=4 答案:4
例3、(1)提示:减去余数是整除的,找减去余数以后的公因数。
答案:13。
(2) 提示:根据甲、乙、丙分成A 人一组后余数相同可求出A 的值,则可求出丁组除以A的余数。
答案:A=8 或4或2,最后丁组剩1人。
(3) 提示:余数相同可让四个数两两做差找公因数确定除数,再根据余数为两位数选出符合要求的除数。
答案:5164-4582=582, 6522-5164=1358,(1358,582)=194=2×97除数为2 的话,余数达不到两位数。
除数为194 的话,2836÷194=14……120 余数为 3 位数,不符。
除数与余数的和为:97+23=120
例4、(1) 提示:找出每个数除以 6 的余数规律即可。
3 个一循环。
答案:1。
(2) 提示:找出每个数除以6 的余数规律即可。
12 个一循环。
答案:4。
例5、(1)提示:基本性质的应用,可先求出余数在用余数进行运算。
答案:2007+4×15≡5+4×1≡9≡2(mod7)所以是星期二。
(2)提示:首先个位肯定是奇数,其次末两位实际上是考察的除以 4 或25 的余数,这个乘积肯定是25 的倍数,因为个位是奇数,所以末两位只能是25 或75,再看除以 4 的余数分别为1、3、1、3、1、3,…,所以这个乘积除以 4 的余数1.(每 4 个数乘积除以 4 的余数都为1,共1004 个数,所以最后乘积除以 4 的余数为1),25 和75 中只有25
是除以4 余 1 的,所以末两位为25。
例6、提示:abcd=83(a+b+c+d),且abcd-(a+b+c+d)=999a+99b+99c 是9 的倍数,即abcd-(a+b+c+d)≡0(mod9)又因为:abcd-(a+b+c+d) ≡83(a+b+c+d) -(a+b+c+d) ≡82(a+b+c+d) ≡(a+b+c+d) ≡0(mod9)则数字之和是9 的倍数,18、27、36。
验证得到:abcd=83×18=1494 符合;abcd=83×27=2241 但2241 数字和不是27,不符;abcd=83×36=2988 但2988 数字和不是36,不符;所以只有1494。