2021年高中数学《曲线与方程》学案 新人教A版选修1
- 格式:doc
- 大小:25.50 KB
- 文档页数:3
第2课时 双曲线几何性质的应用学习目标 1.了解直线与双曲线的位置关系.2.了解与直线、双曲线有关的弦长、中点等问题.知识点一 直线与双曲线的位置关系思考 直线与圆(椭圆)有且只有一个公共点,则直线与圆(椭圆)相切,那么,直线与双曲线相切,能用这个方法判断吗? 答案 不能.梳理 设直线l :y =kx +m (m ≠0),①双曲线C :x 2a 2-y 2b2=1(a >0,b >0),②把①代入②得(b 2-a 2k 2)x 2-2a 2mkx -a 2m 2-a 2b 2=0.(1)当b 2-a 2k 2=0,即k =±b a时,直线l 与双曲线C 的渐近线平行,直线与双曲线相交于一点.(2)当b 2-a 2k 2≠0,即k ≠±b a时,Δ=(-2a 2mk )2-4(b 2-a 2k 2)(-a 2m 2-a 2b 2). Δ>0⇒直线与双曲线有两个公共点,此时称直线与双曲线相交; Δ=0⇒直线与双曲线有一个公共点,此时称直线与双曲线相切; Δ<0⇒直线与双曲线没有公共点,此时称直线与双曲线相离. 知识点二 弦长公式若斜率为k (k ≠0)的直线与双曲线相交于A (x 1,y 1),B (x 2,y 2)两点,则|AB |=+k2x 1+x 22-4x 1x 2]=⎝ ⎛⎭⎪⎫1+1k 2y 1+y 22-4y 1y 2].1.若直线与双曲线交于一点,则直线与双曲线相切.( × ) 2.直线l :y =x 与双曲线C :2x 2-y 2=2有两个公共点.( √ )类型一 直线与双曲线的位置关系例1 已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为233,且过点(6,1).(1)求双曲线C 的方程;(2)若直线l :y =kx +2与双曲线C 恒有两个不同的交点A ,B ,求k 的取值范围. 考点 直线与双曲线的位置关系 题点 直线与双曲线的位置关系 解 (1)由e =233,可得c 2a 2=43,所以a 2=3b 2,故双曲线方程可化为x 23b 2-y 2b2=1.将点P (6,1)代入双曲线C 的方程, 解得b 2=1,所以双曲线C 的方程为x 23-y 2=1.(2)联立直线与双曲线方程,⎩⎨⎧y =kx +2,x 2-3y 2-3=0,消去y ,得(1-3k 2)x 2-62kx -9=0.由题意得,⎩⎪⎨⎪⎧Δ=72k 2--3k2-,1-3k 2≠0,解得-1<k <1且k ≠±33. 所以k 的取值范围为⎝⎛⎭⎪⎫-1,-33∪⎝ ⎛⎭⎪⎫-33,33∪⎝ ⎛⎭⎪⎫33,1. 反思与感悟 (1)解决直线与双曲线的公共点问题,不仅要考虑判别式,更要注意二次项系数为0时,直线与渐近线平行的特殊情况.(2)双曲线与直线只有一个公共点的题目,应分两种情况讨论:双曲线与直线相切或直线与双曲线的渐近线平行.(3)注意对直线l 的斜率是否存在进行讨论.跟踪训练1 已知双曲线x 2-y 24=1,过点P (1,1)的直线l 与双曲线只有一个公共点,求直线l 的斜率k .考点 直线与双曲线的位置关系 题点 直线与双曲线的位置关系 解 当直线l 的斜率不存在时, 直线l :x =1与双曲线相切,符合题意. 当直线l 的斜率存在时,设l 的方程为y =k (x -1)+1, 代入双曲线方程,得(4-k 2)x 2-(2k -2k 2)x -k 2+2k -5=0. 当4-k 2=0时,k =±2,直线l 与双曲线的渐近线平行,l 与双曲线只有一个公共点; 当4-k 2≠0时,令Δ=0,得k =52.综上,k =52或k =±2或k 不存在.类型二 弦长公式及中点弦问题 例2 双曲线的方程是x 24-y 2=1.(1)直线l 的倾斜角为π4,被双曲线截得的弦长为8311,求直线l 的方程;(2)过点P (3,1)作直线l ′,使其被双曲线截得的弦恰被P 点平分,求直线l ′的方程. 考点 直线与双曲线的位置关系 题点 弦长及弦中点问题解 (1)设直线l 的方程为y =x +m ,代入双曲线方程,得3x 2+8mx +4(m 2+1)=0, Δ=(8m )2-4×3×4(m 2+1)=16(m 2-3)>0, ∴m 2>3.设直线l 与双曲线交于A (x 1,y 1),B (x 2,y 2)两点, 则x 1+x 2=-83m ,x 1x 2=m 2+3.由弦长公式|AB |=1+k 2|x 1-x 2|,得 2×⎝ ⎛⎭⎪⎫-83m 2-m 2+3=8311, ∴42×m 2-33=8311,即m =±5,满足m 2>3,∴直线l 的方程为y =x ±5.(2)设直线l ′与双曲线交于A ′(x 3,y 3),B ′(x 4,y 4)两点, 点P (3,1)为A ′B ′的中点,则x 3+x 4=6,y 3+y 4=2. 由x 23-4y 23=4,x 24-4y 24=4,两式相减得(x 3+x 4)(x 3-x 4)-4(y 3+y 4)(y 3-y 4)=0, ∴y 3-y 4x 3-x 4=34,∴l ′的方程为y -1=34(x -3),即3x -4y -5=0.把此方程代入双曲线方程,整理得5y 2-10y +114=0,满足Δ>0,∴所求直线l ′的方程为3x -4y -5=0.反思与感悟 (1)使用弦长公式时,一般可以利用根与系数的关系,解决此类问题,一定不要忽略直线与双曲线相交这个条件,得到的k 要保证满足相交,即验证Δ>0.(2)与弦中点有关的问题主要用点差法.跟踪训练2 设双曲线的顶点是椭圆x 23+y 24=1的焦点,该双曲线又与直线15x -3y +6=0交于A ,B 两点,且OA ⊥OB (O 为坐标原点). (1)求此双曲线的方程; (2)求|AB |.考点 直线与双曲线的位置关系 题点 弦长及弦中点问题解 (1)已知椭圆的焦点为(0,±1), 即是双曲线的顶点,因此设双曲线方程为y 2-mx 2=1(m >0),① 又直线15x -3y =-6,②A (x 1,y 1),B (x 2,y 2)是方程①②组成的方程组的两个解.由⎩⎨⎧y 2-mx 2=1,15x -3y =-6,得⎝ ⎛⎭⎪⎫53-m x 2+4153x +3=0, 当m =53时,显然不满足题意.当m ≠53时,则⎩⎪⎨⎪⎧x 1+x 2=-415353-m ,x 1x 2=353-m ,又OA ⊥OB ,∴OA →·OB →=0,∴x 1x 2+y 1y 2=0,∴x 1x 2+y 1y 2=83x 1x 2+2153(x 1+x 2)+4=0,∴83×353-m +2153×⎝ ⎛⎭⎪⎪⎫-415353-m +4=0,∴m =13,经验证,此时Δ>0.∴双曲线的方程为y 2-x 23=1.(2)∵⎩⎪⎨⎪⎧x 1+x 2=-15,x 1x 2=94,∴|AB |=1+k 2×x 1+x 22-4x 1x 2=1+⎝⎛⎭⎪⎫1532×-152-4×94=4.类型三 由直线与双曲线相交求参数的取值范围(值)例3 已知中心在坐标原点的双曲线C 的右焦点为(2,0),右顶点为(3,0). (1)求双曲线C 的方程;(2)若直线l :y =kx +2与双曲线C 恒有两个不同的交点A ,B ,且OA →·OB →>2(其中O 为原点),求k 的取值范围.考点 直线与双曲线的位置关系 题点 直线与双曲线的位置关系解 (1)设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0),由已知得a =3,c =2,所以b =1.故所求双曲线方程为x 23-y 2=1.(2)将y =kx +2代入x 23-y 2=1,可得(1-3k 2)x 2-62kx -9=0. 由直线l 与双曲线交于不同的两点,得⎩⎨⎧1-3k 2≠0,Δ=-62k2+-3k2=-k2,故k 2≠13且k 2<1.设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=62k 1-3k 2,x 1x 2=-91-3k 2,由OA →·OB →>2,得x 1x 2+y 1y 2>2. 又因为y 1y 2=(kx 1+2)(kx 2+2)=k 2x 1x 2+2k (x 1+x 2)+2=-9k 21-3k 2+12k21-3k2+2=3k 21-3k2+2. 所以-91-3k 2+3k 21-3k 2+2>2,所以3k 2-91-3k 2>0.又因为k 2≠13且k 2<1,所以13<k 2<1.所以k 的取值范围是⎩⎨⎧⎭⎬⎫k ⎪⎪⎪-1<k <-33或33<k <1. 反思与感悟 当与直线有关时,常常联立直线与双曲线的方程,消元后利用一元二次方程的判别式、根与系数的关系构造相关数量关系式求解. 跟踪训练3 已知双曲线C :x 2-y 2=1及直线l :y =kx -1. (1)若l 与C 有两个不同的交点,求实数k 的取值范围;(2)若l 与C 交于A ,B 两点,O 是坐标原点,且△AOB 的面积为2,求实数k 的值. 考点 直线与双曲线的位置关系题点 直线与双曲线相交弦长与三角形面积 解 (1)双曲线C 与直线l 有两个不同的交点,则方程组⎩⎪⎨⎪⎧x 2-y 2=1,y =kx -1有两个不同的实数根,整理得(1-k 2)x 2+2kx -2=0,∴⎩⎪⎨⎪⎧1-k 2≠0,Δ=4k 2+-k2,解得-2<k <2且k ≠±1.∴当双曲线C 与直线l 有两个不同的交点时,k 的取值范围是(-2,-1)∪(-1,1)∪(1,2).(2)设交点A (x 1,y 1),B (x 2,y 2), 直线l 与y 轴交于点D (0,-1).由(1)知,C 与l 联立的方程为(1-k 2)x 2+2kx -2=0, ∴⎩⎪⎨⎪⎧x 1+x 2=-2k1-k 2,x 1x 2=-21-k 2.当A ,B 在双曲线上的一支上且|x 1|>|x 2|时,S △OAB =S △OAD -S △OBD=12(|x 1|-|x 2|) =12|x 1-x 2|; 当A ,B 在双曲线的两支上且x 1>x 2时,S △OAB =S △ODA +S △OBD=12(|x 1|+|x 2|) =12|x 1-x 2|. ∴S △OAB =12|x 1-x 2|=2,∴(x 1-x 2)2=(22)2, 即⎝⎛⎭⎪⎫-2k 1-k 22+81-k 2=8,解得k =0或k =±62. 又∵-2<k <2且k ≠±1, ∴当k =0或k =±62时,△AOB 的面积为 2.1.若直线y =kx 与双曲线4x 2-y 2=16相交,则实数k 的取值范围是( ) A .-2<k <2B .-1<k <1C .0<k <2D .-2<k <0考点 直线与双曲线的位置关系 题点 直线与双曲线的位置关系 答案 A解析 易知k ≠±2,将y =kx 代入4x 2-y 2=16得关于x 的一元二次方程(4-k 2)x 2-16=0,由Δ>0可得-2<k <2.2.“直线与双曲线有唯一交点”是“直线与双曲线相切”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件考点 直线与双曲线的位置关系 题点 直线与双曲线的位置关系 答案 B3.直线y =x -1被双曲线2x 2-y 2=3所截得的弦的中点坐标是( ) A .(1,2) B .(-2,-1) C .(-1,-2)D .(2,1)考点 直线与双曲线的位置关系 题点 直线与双曲线的位置关系 答案 C解析 将y =x -1代入2x 2-y 2=3,得x 2+2x -4=0,由此可得弦的中点的横坐标为x 1+x 22=-22=-1,将x =-1代入直线方程y =x -1得y =-2,故选C. 4.过点A (3,-1)且被A 点平分的双曲线x 24-y 2=1的弦所在的直线方程是________.考点 直线与双曲线的位置关系 题点 直线与双曲线的其他问题 答案 3x +4y -5=0解析 易知所求直线的斜率存在,设为k ,设该直线的方程为y +1=k (x -3),代入x 24-y 2=1,消去y 得关于x 的一元二次方程(1-4k 2)x 2+(24k 2+8k )x -36k 2-24k -8=0, ∴-24k 2+8k 1-4k 2=6,∴k =-34,此时Δ>0,符合题意,∴所求直线方程为3x +4y -5=0.5.过双曲线x 2-y 22=1的右焦点F 作直线l 交双曲线于A ,B 两点,若|AB |=4,则满足条件的直线l 有________条.考点 直线与双曲线的位置关系题点 直线与双曲线相交弦长与三角形面积 答案 3解析 当直线l 交双曲线于左右两支时,因为2a =2,而|AB |=4,故可有两条.若直线l 交双曲线于同支,当直线l 垂直于x 轴时,|AB |=4,故只有一条,所以满足条件的直线有3条.双曲线的综合问题常涉及其离心率、渐近线、范围等,与向量、三角函数、不等式等知识交汇考查综合运用数学知识的能力.(1)当与向量知识结合时,注意运用向量的坐标运算,将向量间的关系,转化为点的坐标问题,再根据根与系数的关系,将所求问题与条件建立关系求解.(2)当与直线有关时,常常联立直线与双曲线的方程,消元后利用一元二次方程的判别式、根与系数的关系构造相关关系求解.一、选择题1.双曲线C 与椭圆x 29+y 24=1有相同的焦距,一条渐近线的方程为x -2y =0,则双曲线C 的标准方程为( ) A.x 24-y 2=1 B.x 24-y 2=1或y 2-x 24=1 C .x 2-y 24=1或y 2-x 24=1D .y 2-x 24=1 考点 双曲线性质的应用题点 双曲线与椭圆结合的有关问题 答案 B2.设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于A ,B 两点,|AB |为C 的实轴长的2倍,则C 的离心率为( ) A.2B.3C .2D .3 考点 双曲线的几何性质 题点 求双曲线的离心率答案 B解析 设双曲线的标准方程为x 2a 2-y 2b2=1(a >0,b >0).∵直线l 过双曲线的焦点且与对称轴垂直, ∴直线l 的方程为x =c 或x =-c ,代入x 2a 2-y 2b 2=1,得y 2=b 2⎝ ⎛⎭⎪⎫c 2a 2-1=b 4a 2, ∴y =±b 2a ,故|AB |=2b 2a .依题意2b2a=4a ,∴b 2a 2=2,∴c 2-a 2a2=e 2-1=2,∴e = 3. 3.双曲线y 2b 2-x 2a 2=1(a >b >0)的一条渐近线与椭圆x 2a 2+y 2b2=1交于点M ,N ,则|MN |等于( )A .a +b B.2aC.a 2+b 2 D.a 2-b 2考点 双曲线性质的应用题点 双曲线与椭圆结合的有关问题 答案 C解析 双曲线y 2b 2-x 2a 2=1的一条渐近线方程为y =ba x ,由⎩⎪⎨⎪⎧y =ba x ,x 2a 2+y 2b 2=1,得x =±22a . 所以|MN |=1+b 2a 2|x 2-x 1|=a 2+b 2a 2·2a=a 2+b 24.已知F 1,F 2分别为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos∠F 1PF 2等于( ) A.14B.35C.34D.45 考点 双曲线的定义 题点 双曲线的焦点三角形 答案 C解析 由双曲线定义知,|PF 1|-|PF 2|=22, 又|PF 1|=2|PF 2|,∴|PF 2|=22,|PF 1|=4 2.|F 1F 2|=2c =2 a 2+b 2=4.∴cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=32+8-162×22×42=2416×2=34. 5.已知双曲线方程为x 2-y 24=1,过P (1,0)的直线l 与双曲线只有一个公共点,则l 的条数为( )A .4B .3C .2D .1 考点 直线与双曲线的位置关系题点 直线与双曲线的位置关系答案 B解析 由双曲线x 2-y 24=1的渐近线方程为y =±2x ,点P (1,0)是双曲线的右顶点,则直线x =1与双曲线只有一个公共点,过点P (1,0)且平行于渐近线y =±2x 时,直线l 与双曲线只有一个公共点,有2条,故满足题意的直线共3条. 6.已知双曲线E :x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F (3,0),过点F 的直线交双曲线于A ,B 两点,若AB 的中点坐标为N (-12,-15),则E 的方程为( )A.x 23-y 26=1 B.x 26-y 23=1 C.x 24-y 25=1 D.x 25-y 24=1 考点 直线与双曲线的位置关系题点 弦长及弦中点问题答案 C解析 设A (x 1,y 1),B (x 2,y 2), 则x 21a 2-y 21b 2=1,x 22a 2-y 22b2=1, 两式相减可得x 1+x 2x 1-x 2a 2=y 1+y 2y 1-y 2b 2.∵线段AB 的中点坐标为N (-12,-15), ∴-x 1-x 2a 2=-y 1-y 2b 2. ∴y 1-y 2x 1-x 2=4b 25a 2.∵直线的斜率为-15-12-3=1, ∴4b 25a 2=1. ∵右焦点为F (3,0),∴a 2+b 2=9,解得a 2=4,b 2=5,∴E 的方程为x 24-y 25=1. 7.已知M (x 0,y 0)是双曲线C :x 22-y 2=1上的一点,F 1,F 2是C 的两个焦点.若MF 1→·MF 2→<0,则y 0的取值范围是( )A.⎝ ⎛⎭⎪⎫-33,33B.⎝ ⎛⎭⎪⎫-36,36 C.⎝ ⎛⎭⎪⎫-223,223 D.⎝ ⎛⎭⎪⎫-233,233 考点 双曲线的几何性质题点 双曲线范围的应用答案 A解析 由题意知a 2=2,b 2=1, 所以c 2=3,不妨设F 1(-3,0),F 2(3,0),所以MF 1→=(-3-x 0,-y 0),MF 2→=(3-x 0,-y 0),所以MF 1→·MF 2→=x 20-3+y 20=3y 20-1<0,所以-33<y 0<33. 8.如图,已知F 1,F 2是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,过F 1的直线l 与双曲线的左、右两支分别交于点B ,A ,若△ABF 2为等边三角形,则双曲线的离心率为( ) A.7B .4 C.233 D. 3考点 双曲线的几何性质题点 求双曲线的离心率答案 A解析 因为△ABF 2为等边三角形,不妨设|AB |=|BF 2|=|AF 2|=m ,A 为双曲线上一点,|F 1A |-|F 2A |=|F 1A |-|AB |=|F 1B |=2a ,B 为双曲线上一点,则|BF 2|-|BF 1|=2a ,|BF 2|=4a ,|F 1F 2|=2c ,由∠ABF 2=60°,得∠F 1BF 2=120°,在△F 1BF 2中,由用余弦定理,得4c 2=4a 2+16a 2-2·2a ·4a ·cos120°,得c 2=7a 2,则e 2=7,即e =7.二、填空题 9.双曲线x 2a 2-y 29=1的离心率e =54,则其两条渐近线方程为________. 考点 双曲线性质的应用题点 以离心率或渐近线为条件的简单问题答案 y =±34x 解析 双曲线x 2a 2-y 29=1,∴b =3, 又双曲线的离心率e =c a =1+b 2a 2=1+9a 2=54, 解得a =4, ∴双曲线的两条渐近线方程为y =±b a x =±34x .10.双曲线x 29-y 216=1的右顶点为A ,右焦点为F ,过点F 平行于双曲线的一条渐近线的直线与双曲线交于点B ,则△AFB 的面积为________.考点 双曲线的定义题点 双曲线的焦点三角形答案 3215 解析 双曲线右顶点A (3,0),右焦点F (5,0),双曲线一条渐近线的斜率是43,则直线FB 的方程是y =43(x -5),与双曲线方程联立解得点B 的纵坐标为-3215,故△AFB 的面积为12×|AF ||y B |=12×2×3215=3215. 11.若双曲线x 2a 2-y 2b2=1(a >0,b >0)与直线y =2x 无交点,则离心率e 的取值范围是________. 考点 双曲线的几何性质题点 求双曲线离心率的取值范围答案 (1,5]解析 由题意可得,双曲线的渐近线的斜率ba≤2,所以e =1+⎝ ⎛⎭⎪⎫b a 2≤ 5. 又e >1,则离心率e 的取值范围是(1,5].12.过P (8,3)作双曲线9x 2-16y 2=144的弦AB ,且P 为弦AB 的中点,那么直线AB 的方程为________.考点 直线与双曲线的位置关系题点 弦长及弦中点问题答案 3x -2y -18=0解析 设A (x 1,y 1),B (x 2,y 2),由P (8,3)为弦AB 的中点,可得x 1+x 2=16,y 1+y 2=6,又9x 21-16y 21=144,9x 22-16y 22=144,两式相减,可得9(x 1+x 2)(x 1-x 2)-16(y 1+y 2)(y 1-y 2)=0,即为9(x 1-x 2)-6(y 1-y 2)=0,可得k AB =y1-y 2x 1-x 2=32,则直线AB 的方程为y -3=32(x -8),即3x -2y -18=0.三、解答题13.已知双曲线的渐近线方程为y =±2x ,且双曲线过点(-3,42).(1)求双曲线的方程;(2)若直线4x -y -6=0与双曲线相交于A ,B 两点,求|AB |的值.考点 直线与双曲线的位置关系题点 直线与双曲线的位置关系解 (1)双曲线的渐近线方程为y =±2x ,则设双曲线的方程为x 2-y24=λ(λ≠0),把(-3,42)代入方程,得9-324=λ,解得λ=1,∴双曲线的方程为x 2-y 24=1.(2)设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧4x -y -6=0,x 2-y24=1,整理得3x 2-12x +10=0,由根与系数的关系,得x 1+x 2=4,x 1x 2=103, 由弦长公式可知|AB |=+k 2x 1+x 22-4x 1x 2] =+⎝ ⎛⎭⎪⎫42-4×103=21023, ∴|AB |的值为21023. 四、探究与拓展 14.过双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点F 作一条与其渐近线平行的直线l ,交C 于点P .若点P 的横坐标为2a ,求双曲线C 的离心率. 考点 双曲线的几何性质题点 求双曲线的离心率解 如图所示,不妨设与渐近线平行的直线l 的斜率为b a , 又直线l 过右焦点F (c,0),则直线l 的方程为y =b a(x -c ).因为点P 的横坐标为2a ,代入双曲线方程得4a 2a 2-y 2b2=1, 化简得y =-3b 或y =3b (点P 在x 轴下方,故舍去), 故点P 的坐标为(2a ,-3b ),代入直线方程得-3b =b a (2a -c ),化简可得离心率e =c a =2+ 3.15.直线y =ax +1与双曲线3x 2-y 2=1相交于A ,B 两点.(1)求线段AB 的长;(2)当a 为何值时,以AB 为直径的圆经过坐标原点? 考点 直线与双曲线的位置关系题点 弦长及弦中点问题解 由⎩⎪⎨⎪⎧ y =ax +1,3x 2-y 2=1,消去y , 得(3-a 2)x 2-2ax -2=0.由题意可得3-a 2≠0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2a3-a 2,x 1x 2=-23-a 2.(1)|AB |=x 1-x 22+y 1-y 22=+a 2x 1+x 22-4x 1x 2] =+a 2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫2a 3-a 22+83-a 2=2+a 2-a 2|3-a 2|.(2)由题意知,OA ⊥OB ,则OA →·OB →=0.即x 1x 2+y 1y 2=0,∴x 1x 2+(ax 1+1)(ax 2+1)=0,即(1+a 2)x 1x 2+a (x 1+x 2)+1=0,∴(1+a 2)·-23-a 2+a ·2a3-a 2+1=0,解得a =±1.经检验当a =±1时,以AB 为直径的圆经过坐标原点.。
河北省唐山市开滦第二中学高中数学 2.2.1双曲线及其标准方程学案 新人教A 版选修1-1【学习目标】1.了解双曲线的定义、几何图形和标准方程的推导过程;2.掌握双曲线的标准方程;3.会利用双曲线的定义和标准方程解决简单的问题.【重点难点】双曲线定义及其标准方程【学习过程】一、问题情景导入:1.太空中飞过太阳系的彗星,其轨道就是双曲线,彗星从无穷处飞来,又飞到无穷远处,双曲线是不封闭的圆锥曲线,它不同于抛物线,也不是两个抛物线构成双曲线的两支,最明显的差别是双曲线有渐近线,而抛物线没有.初中学过的反比例函数图象是双曲线,它以坐标轴为渐近线.2.我们知道,与两个定点距离的和为非零常数(大于两个定点间的距离)的点的轨迹是椭圆,那么,与两个定点距离的差为非零常数的点的轨迹是什么?3.你能类比椭圆的标准方程的推导过程推导出双曲线的标准方程吗?二、自学探究:(阅读课本第45-47页,完成下面知识点的梳理)1.双曲线的定义:把平面内与两个定点21,F F 的距离的 等于常数(小于21F F )的点的轨迹叫做双曲线.这两个定点叫做双曲线 ,两焦点间的距离叫做双曲线的 . 双曲线的定义用集合语言表示为{}21212,2F F a a MF MF M P <=-=思考:双曲线定义中212F F a <,如果212F F a =轨迹是什么图形呢?能否有212F F a <的轨迹图形呢? 2.焦点在x 轴上 焦点在y 轴上 图象 标准方程焦点坐标c b a ,,的关系思考:⑴方程13222=-y x 与13222=-x y 分别表示焦点在哪个坐标轴上的双曲线?焦点坐标分别是什么?⑵方程122=+ny m x ,当参数n m ,的取值怎样时,方程分别表示焦点在x 轴上与焦点在y 轴上的双曲线?三、例题演练:例 1.若一个动点()y x P ,到两个定点()()0,1,0,1B A -的距离之差的绝对值为定值()0≥a a 时,讨论点P 的轨迹.例 2.已知双曲线两个焦点分别为()()0,5,0,521F F -,双曲线上一点P 到21,F F 距离差的绝对值等于6,求双曲线的标准方程.变式:求适合下列条件的双曲线的标准方程:⑴5,4==c a ,焦点在x 轴上;⑵4=a ,经过点⎪⎪⎭⎫ ⎝⎛3104,1A ; ⑶求与双曲线141622=-y x 有共同的焦点,且过点()2,23的双曲线的标准方程.例3.在ABC ∆中,已知4=BC ,且A B C sin 21sin sin =-,求动点A 的轨迹方程.变式:已知定圆02410:221=+++x y x C ,定圆:C 091022=+-+x y x ,动圆C 与定圆21,C C 都外切,求动圆圆心C 的轨迹方程.【课堂小结与反思】【课后作业与练习】1.判断下列方程是否表示双曲线,若是,求出三量c b a ,,的值. ①12422=-y x ②12222=-y x ③12422-=-y x ④369422=-x y2.求a =4,b =3,焦点在x 轴上的双曲线的标准方程3.求a =25,经过点(2,-5),焦点在y 轴上的双曲线的标准方程4.证明:椭圆22525922=+y x 与双曲线151522=-y x 的焦点相同5.若方程1cos sin 22=+ααy x 表示焦点在y 轴上的双曲线,则角α所在象限是( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限6.设双曲线191622=-y x 上的点P 到点)0,5(的距离为15,则P 点到)0,5(-的距离是( ) A .7 B.23 C.5或23 D.7或237.椭圆134222=+n y x 和双曲线116222=-y nx 有相同的焦点,则实数n 的值是 ( ) A 5± B 3± C 5 D 98.已知21,F F 是双曲线191622=-y x 的焦点,PQ 是过焦点1F 的弦,且PQ 的倾斜角为600,那么PQ QF PF -+22的值为________9.设21,F F 是双曲线1422=-y x 的焦点,点P 在双曲线上,且02190=∠PF F ,则点P 到x 轴的距离为( )A 1 B55 C 2 D 510.P 为双曲线)0,0(12222>>=-b a by a x 上一点,若F 是一个焦点,以PF 为直径的圆与圆222a y x =+的位置关系是()A 内切B 外切C 外切或内切D 无公共点或相交。
双曲线及其标准方程(人教A版选修1-1第二章第2节)一、教学设计教学内容与内容解析本节课为《普通高中课程标准实验教科书数学·选修1—1》(人教A版)第二章“圆锥曲线与方程”中第二节双曲线的第一课时.本节课是在学生学习了直线、圆和椭圆的基础上进一步研究学习的,为后面的抛物线及其标准方程做铺垫.双曲线是继椭圆之后的另一种圆锥曲线,无论是定义的探索或是问题的解决或是学生的学法、教师的教法等等方面,这两者都具有极强的相似性,是渗透学法指导(如类比学习)的良好载体.新课程强调教师要创造性使用教材,这就需要教师对教材的精心解读.由椭圆的距离之和引发对距离之差的思考,再对常数的考虑,引起学生对教材双曲线定义不严密性........(常数必须大于...0.).的思考,培养学生思维的缜密.解析几何的教育价值在于通过坐标法,利用代数方法解决几何问题,为此,在推导双曲线的标准方程时,仍需让学生类比思考:怎样建立坐标系,为什么这样建立,这对文科的学生而言,“知其所以然”是需要反复强调,方可内化的.教学目标与目标解析1.学生能了解双曲线的定义、双曲线标准方程的推导及化简过程.2.在定义的探索或问题的解决中,学生能类比椭圆进行双曲线的学习.3.学生在经历双曲线定义的获得过程,能类比发现问题、不断完善、解决问题.教学问题诊断分析1.学生的知识储备分析:学生已经学习直线、圆和椭圆,基本掌握了求曲线方程的一般方法,能对含有两个根式的方程进行化简,对分类讨论、类比推理的思想方法有一定的体会.2.学生的数学能力分析:通过一年多的高中学习,学生已具备了一定的观察事物的能力,积累了一些研究问题的经验,在一定程度上具备了抽象、概括的能力和语言转换能力.但是他们的思维正从属于经验性的逻辑思维向抽象思维发展,仍需要依赖一定的具体形象的经验材料来理解抽象的逻辑关系.3.本节课是一节2012年泉州市“送教送研下乡”活动中的一节公开课,由于借班上课,拿不准永春侨中高二年文科的学生的水平.“以不变应万变”,本节课重点在于“类比”学习双曲线,考虑文科学生计算能力相对弱,故难点在于双曲线标准方程的推导.教学支持条件分析课本以拉链问题呈现双曲线的定义,虽然直观,但实际操作性难.,于是弃之不用,选择当场制作课件,让学生直接感受.同时通过列表的形式,让学生更为直观理解椭圆与双曲线的差异,且通过对题目合理变式让学生明白椭圆与双曲线不仅定义可类比、解题同样可以类比,对学生学法指导(如“类比”学习)做了很好的铺垫与引导.教学过程设计(一)复习引入1.椭圆的定义:平面内与两个定点12F ,F 的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.设M 是椭圆上的动点,则需满足()121222MF MF a a F F =>+2.椭圆的标准方程: (1) 焦点在x 轴:()222210x y a b a b+=>>. (2)焦点在y 轴:(222210y x a b a b+=>> 其中222c a b =-. 3.导入新课:问题:我们知道,差是和的逆运算,那么,平面内与两个定点12F ,F 距离的差等于常数的点的轨迹是什么呢?为了研究方便,设动点M ,则问题即为研究满足12MF MF -=常数C 的轨迹问题. 解析:实数C 可以分为000C ,C ,C =><. 【学情预设】由于学生事先有预习,所以急着给出答案:双曲线.果真是双曲线吗?一石激起千层浪!【设计意图】从“差是和的逆运算”,引导学生思考问题,过渡自然,且在“发现问题”做了较好的引导.对学生的答案及时加以肯定,但“果真是双曲线吗?”,又引起学生对实数C 的讨论,渗透分类讨论思想.(二)新课学习1.展示知识形成过程(几何画板揭示动点轨迹形成) 在()120MF MF C C -=>的解决中,关键在于M 动,但12MF MF -定,为此,可联想到圆的性质,圆上任一点到圆心的距离相等,可构造两相交圆.(教师当场利用几何画板作图,如图1,2)教师借助直观,说明作图依据:如图1,设两定点12A ,A ,B 为以2A 为端点的射线上的一点,则有1212A B A B A A -==定值. 以1F 为圆心,1A B 为半径作圆,以2F 为圆心,2A B 为半径作圆,设两圆的交点为M ,则121212MF MF A B A B A A -=-==常数.【学情预设】学生对“轨迹的形成”充满好奇,却不知其原因,对知识形成充满好奇.【设计意图】教师当场利用几何画板作图,可以让学生直观感受双曲线定义的形成,深刻理解定义的形成过程,避免出现学生“知其然,不知其所以然”的局面.(2)“形”“数”两方面揭示定义从形.的方面,我们可以看到图2中的两条曲线有完美的对称性(关于线段12F F 的中垂线对称),我们把这两条曲线合起来叫做双曲线,每一条叫做双曲线的一支.从数.的方面,可以统一为:1212MF MF A A -=,类比椭圆,不妨记为()1220MF MF a a -=>【设计意图】虽然解析几何强调坐标法,但对形的认识也是必不可少的,借助几何画板,可以直观展示双曲线定义形成过程.从形的直观提炼数的特征再到定义的归纳(即图形语言、符号语言、文字语言之间的转化)又是学生认识的一个提升.2.尝试、完善双曲线的定义(1)类比椭圆定义,获得双曲线定义:把平面内与两个定点1F ,2F 的距离的差的绝对值等于非零常数(小于12F F )的点的轨迹叫做双曲线.其中这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.即双曲线上的动点M 满足()1212202MF MF a a F F -=<<.注:容易忽略的地方:①“距离的差的绝对值”;②“常数小于21F F ”. 思考:若122a F F =:两条射线;若122a F F >:无轨迹.(2)师生共同阅读课本让学生解释拉链问题.【学情预设】学生是有能力类比椭圆的定义得到双曲线的定义,但对“距离的差的绝对值”;“常数小于21F F ”认识不够,常忽视!【设计意图】让学生尝试、完善双曲线的定义,培养学生思维的慎密.3.探究双曲线的标准方程(1)回顾椭圆标准方程的推导过程:“建系、设点、列式、化简”(为了使学生更好类比椭圆标准方程的推导,教师引导学生回归课本,再次熟悉课本推导过程)【设计意图】引导学生回归课本,再次熟悉椭圆标准方程的推导过程,是为了更好地类比到双曲线!(2)教师引导学生类比椭圆推导双曲线的标准方程建系:取过焦点21F F ,的直线为x 轴,线段21F F 的垂直平分线为y 轴设点:设()M x,y 为双曲线上的任意一点,双曲线的焦距是2c (0>c )则 )0,(),0,(21c F c F -,1MF =2MF =列式:()1220MF MF a a -=>,122MF MF a ∴-=±a y c x y c x 2)()(2222±=+--++∴,2a =±整理得:)()(22222222a c a y a x a c -=--,由定义c a 22<022>-∴a c ,令222c a b -=代入,得:222222b a y a x b =-, 两边同除22b a 得:12222=-b y a x ,此即为双曲线的标准方程. 它所表示的双曲线的焦点在x 轴上,焦点是)0,(),0,(21c F c F -,其中222b a c +=【学情预设】学生对方程的整理还是存在一定的困难,需要一定的时间处理问题.【设计意图】让学生再次熟悉课本椭圆标准方程推导过程,不仅可以回顾旧知,而且可以较顺利解决新知.让学生尝试推导双曲线标准方程,能进一步落实计算处理.(3)若坐标系的选取不同,可得到双曲线的不同的方程.类比焦点在y 轴上的椭圆方程以及类比刚才的推导过程,如图可得到:焦点在y 轴上则焦点是),0(),,0(21c F c F -,将y x ,互换,得到12222=-bx a y ,此也是双曲线的标准方程 【设计意图】呈现焦点在y 轴上双曲线的形状,从形帮助学生的理解.4.找不同(让学生发现椭圆、双曲线标准方程的不同点)椭圆0a b >> 双曲线00a ,b >>焦点在x 轴:22221x y a b+= 焦点在y 轴:22221y x a b+= 焦点在x 轴:22221x y a b-= 焦点在y 轴:22221y x a b -= 方程形式 + -a,b 大小a b > a 不一定大于b 2c222c a b =- 222c a b =+ 焦点判断 看分母的大小(看大的) 看系数的正负(看正的)【设计意图】把信息表格化,能直观区分椭圆与双曲线的差异,能快速建立新知与旧知的联系.5.演练反馈1.判断下列方程是否表示双曲线?若是,求出c b a ,,及焦点坐标.(1)22142x y -=(2)22148x y -=- 【设计意图】强调双曲线标准方程(尤其(2):把非标准方程化为标准方程)及基本量c b a ,,的计算.2.课本第47页例1:已知双曲线两个焦点分别为()()125050F ,,F ,-,双曲线上一点P 到12F ,F 距离差的绝对值等于6,求双曲线的标准方程.变式:已知双曲线两个焦点分别为()()125050F ,,F ,-,(6P ,在双曲线上,求双曲线的标准方程.解法一:因为双曲线的焦点在x 轴上,所以设它的标准方程为:()2222100x y a ,b a b -=>>. 则有2236481a b-=,即22223648b a a b -=,又2225a b +=, 代入消去2b 有4210936250a a -+⨯=,即()()2210090a a --=,所以29a =(舍去2100a =). 即所求双曲线的标准方程为221916x y -=. 解法二:(教师先引导学生把课本翻到第34页,共同回顾例1的解题过程)因为双曲线的焦点在x 轴上,所以设它的标准方程为:()2222100x y a ,b a b -=>>由双曲线的定义有122a MF MF =-=137=-=6 所以3a =,又因为5c =,所以22216b c a =-=,因此,所求双曲线的标准方程为221916x y -=. 【解题反思】求标准方程常见方法有二:①待定系数法,立足基本量的运算:设方程、代入、消参;②利用定义,注意:两焦点,用定义.【学情预设】多数的学生会采用解法一:待定系数法,涉及基本量的计算,解法二对学生的理解要求较高,学生比较难以第一时间想到,让他们回顾椭圆中的解法,有利于建立新知与旧知的联系.【设计意图】解法二的介绍目的在于让学生明白椭圆与双曲线不仅定义可类比、解题同样可以类比.解完题,及时引导学生进行反思,有利知识的梳理与深化.(三)课堂小结(1)通过表格总结椭圆与双曲线的定义和标准方程.(2)关注双曲线与椭圆之间的类比学习,如定义、方程推导、解题等.(四)课后作业课本第48页:练习1、2;课本第54页:A组1、2.二、教学实践心得基于解析几何教学价值的学法指导“高中数学课程应注重学生的数学思维能力,这是数学教育的基本目标之一.人们在学习数学和运用数学解决问题时,不断地经历直观感知、观察发现、归纳类比……等思维过程”.只有学生掌握了一定的数学学习方法,才有可能从繁杂多样的“题海”中解脱,才有可能实现“减负”,因此,注重学生学法的指导是课堂教学的一个重要、长期的教学任务.这也就要求教师在日常的教学中,能善于抓住教学时机,对学生渗透学习方法的指导,并逐渐实现潜移默化,使教学效率得以提高.1.学法指导要有针对性即要结合数学学科的特征、学习内容,针对学生的实际情况进行指导,这是学法指导的根本原则.比如双曲线与椭圆,无论是定义的探索或是问题的解决或是学生的学法、教师的教法等等方面,这两者都具有极强的相似性,这样无论是双曲线在定义形成、标准方程的推导、解题方法,都适合与椭圆进行类比,当然这种类比在抛物线的学习同样适用.2.学法指导要有实用性学法指导的最终目的是通过让学生掌握科学的学习方法,提高学习能力,培养良好的学习习惯,增强学习效果.所以,学法指导应避免摆花架子,不切实际,死搬硬套,要立足日常的课堂教学,以常规的学习方法为重点.椭圆、双曲线、抛物线是进行学法指导的良好载体,因此在双曲线(抛物线)的定义形成、方程推导、解题的学习要让学生体会“通过类比,可以解决诸如此类的问题”,让他们学以致用,用以生效.更深层次可以引导学生归纳提炼它们的解决都是围绕着“练、思、算”,即圆锥曲线学习离不开“一定量的练习、勤于反思总结类比、合理简化运算”三步曲.3.学法指导要循序渐进学法指导过程中,要按照数学学科的逻辑系统和学生认知发展的规律,结合学法指导的内在规律,持续、连贯、有系统地进行指导,要循序渐进、逐步提高.三种圆锥曲线适合类比学习,但并不意味着学生类比学习就能把它们学好,在一些具体的环节上仍需教师加以引导,比如为什么椭圆要求122a F F >,而双曲线则要求122a F F <,再如直线代入椭圆方程一般只须考虑判别式∆,而双曲线除了考虑判别式∆,还要考虑二次项前面的系数是否为0等等.因此,师生对学习方法的掌握过程要有一定的“心理价位”,不可操之过急.三、专家点评 本节课作为新授课的教学,能凸显概念教学中重要而有效的突破点:经历概念的发生发展过程,提炼概念本质.圆锥曲线的学习中,不仅要让学生深深体会、理解“坐标法”的核心思想,同时要让学生掌握学习的方法,即三种圆锥曲线之间的类比学习,本节课在学法指导方面下足功夫,教学顺畅,体现了授课教师很好的业务素质,教学效果良好,学生能得到很好的启发与引导.本节课有如下几个亮点:1.体现学科教育价值授课教师教学过程中能落实数学教育的任务.数形结合思想是解析几何的重要思想之一,本节课在双曲线标准的推导中,能引导学生类比椭圆标准方程的推导,思考如何建系,如何整理方程,并通过表格使得椭圆与双曲线的差异直观呈现.其次,教学中,教师舍得花时间让学生进行演算(而非直接给出双曲线的标准方程,计算能力的突破是解析几何教学的难点),能较好落实学生的计算能力的提升.2.能注重学法指导授课教师在双曲线定义的呈现上,以几何画板当场呈现,让学生直观感受动点轨迹的形成;在例题、习题上设置上能凸显教学目标,凸显对学生学法的指导,可见授课教师在备课上下足了功夫,能很好的研读教材,能理清教材内容之间的纵横联系,并且在教学的过程中,能有所取舍(舍去拉链问题的操作,突出对拉链问题背后的数学说理,强化学生对双曲线定义的理解),突出教学重点,化解教学难点.同时,在例题1的讲解上,能进行适当的变式,能以此为契机,让学生明白双曲线与椭圆的类比不仅仅是定义、方程的类比,也可以是解题方法上的类比,对学生及时进行学法的指导,实现“授之以渔”的教育目标.(洪丽敏)。
云南省曲靖市麒麟区第七中学高中数学 2-3曲线与方程2学案新人教A版选修1-1【学习目标】:了解解析几何的基本思想;了解用坐标法研究几何问题的初步知识和观点;初步掌握求曲线的方程的方法。
【学习重点】:求曲线的方程的方法、步骤。
【学习难点】:如何建立适当的坐标系将几何条件代数化。
【问题导学】一、课前准备(预习教材理P36~ P37,找出疑惑之处)1:已知曲线C的方程为22y x=,曲线C上有点(1,2)A,A的坐标是不是22y x=的解?点(0.5,)t在曲线C上,则t=___ .2:曲线(包括直线)与其所对应的方程(,)0f x y=之间有哪些关系?二、新课导学引入:圆心C的坐标为(6,0),半径为4r=,求此圆的方程.问题:此圆有一半埋在地下,求其在地表面的部分的方程.探究:若4AB=,如何建立坐标系求AB的垂直平分线的方程.【典型例题】A的距离的2倍,试求曲线的方程.例1 有一曲线,曲线上的每一点到x轴的距离等于这点到(0,3)变式:现有一曲线在x 轴的下方,曲线上的每一点到x 轴的距离减去这点到点(0,2)A ,的距离的差是2,求曲线的方程.小结:点(,)P a b 到x 轴的距离是 ;点(,)P a b 到y 轴的距离是 ;点(1,)P b 到直线10x y +-=的距离是 .例2已知一条直线l 和它上方的一个点F ,点F 到l 的距离是2,一条曲线也在l 的上方,它上面的每一点到F 的距离减去到l 的距离的差都是2,建立适当的坐标系,求这条曲线的方程.动手试试练1. 有一曲线,曲线上的每一点到x 轴的距离等于这点到直线10x y +-=的距离的2倍,试求曲线的方程.【基础题组】1.方程[]2(3412)log (2)30x y x y --+-=的曲线经过点(0,3)A -,(0,4)B ,(4,0)C ,57(,)34D -中的( ).A .0个B .1个C .2个D .3个2.已知(1,0)A ,(1,0)B -,动点满足2MA MB -=,则点M 的轨迹方程是( ).A .0(11)y x =-≤≤B .0(1)y x =≥C .0(1)y x =≤-D .0(1)y x =≥ 3.曲线21y x =--与曲线0y x +=的交点个数一定是( ).A .0个B .2个C .4个D .3个4.若定点(1,2)A 与动点(,)P x y 满足4OP OA •=,则点P 的轨迹方程是 .5.由方程111x y -+-=确定的曲线所围成的图形的面积是 .6.以O 为圆心,2为半径,上半圆弧的方程是什么?在第二象限的圆弧的方程是什么?7.已知点C 的坐标是(2,2),过点C 的直线CA 与x 轴交于点A ,过点C 且与直线CA 垂直的直线CB 与y 轴交于点B .设点M 是线段AB 的中点,求点M 的轨迹方程.【拓展提升】1.设圆C :1)1(22=+-y x 过原点O 作圆C 的任意弦,求所作弦的中点的轨迹方程.2.过原点的直线与圆5622=+-+xyx相交于A、B两点,求弦AB的中点M的轨迹方程。
精选教课教课方案设计| Excellent teaching plan教师学科教课方案[ 20–20学年度第__学期]任教课科: _____________任教年级: _____________任教老师: _____________xx市实验学校精选教课教课方案设计| Excellent teaching plan人教 A 版高中数学选修 1-1《双曲线及其标准方程》教课方案一设计思想:本课为分析几何内容,充足表现认识析法的应用.学好观点是本课的关键,在协助媒体的采用上我选择了实物投影和课件共用.让学生疏组着手实验,领会双曲线的图形形成,借助于几何画板再一次演示双曲线的形成,课件表现图表类比,对照椭圆与双曲线的异同.本课将经过让学生着手演示,动口表达,动脑编题等方式,充足调换学生的思想,形成以学生为主体的课堂氛围.二教材分析:本内容选自人教 A 版一般高中课程标准实验教科书选修2-1第2章第3节双曲线的第一课时,双曲线是三种圆锥曲线中最复杂的一种,传统的办理方法是先学习椭圆,再学习双曲线,这充足考虑了密切联系知识系统和由易到难的教课要求,切合学生的学习,在新课程教材中持续保存,前方有椭圆知识及学习方法的铺垫,后边有抛物线学习的综合增强,有益于学生掌握和稳固.本课的主要学习内容有:①研究轨迹(双曲线)②学习双曲线的观点③推导双曲线标准方程④学习标准方程的简单求法三学情分析:学生先前已经学习了椭圆,基本掌握了椭圆的相关问题及研究方法,而双曲线问题,它与椭圆问题有近似性,知识的正迁徙作用可在本节课中充足显示.也就是说,学生在经过先期分析几何的系统学习,已初步掌握认识析法思想和分析研究的能力,学习本课已具备必定的基础.在学习过程,较椭圆而言,从直观图形轨迹到抽象观点的形成,中间一些细节问题的办理要求学生有更仔细入微的分析和更强的意会性,所以学生归纳起来有更高的难度.特别是关于为何需要加绝对值, c 与 a 的有怎么样大小关系,为何是这样的等等.此外,与椭圆除了自己内容的差别以外,初中所学的“反比率精选教课教课方案设计| Excellent teaching plan函数图象”在学生的脑筋里有一个原有认知,而这个认知关于此刻的学习会产生必定帮助的同时,其方程形式的不一样也会带来必定的认知矛盾.四教课目的:△经过双曲线轨迹的研究过程,体验双曲线的特点,研究总结双曲线的定义;△经过类比椭圆的标准方程,推导并掌握双曲线的标准方程;△经过对双曲线观点和标准方程的研究,培育学生察看分析抽象的能力,体验分析思想,激发学生研究事物运动规律,进一步认清事物的实质特点的兴趣;五重点难点:△重点:双曲线的定义及其标准方程;△难点:正确理解表述双曲线的定义,标准方程的推导六课前准备:△教具准备:①全班按分红7 个组,每组准备 8K 纸一张,拉链一根②教师准备小木板一块,长拉链一根,图钉两枚,美工笔一支.③实物投影仪,几何画板.△教法准备:在教师的指导下研究学习,经过作图——原理分析——定义——方程推导的研究,深入对双曲线的认识,并注意与椭圆的类比.七教课过程:(一)回首椭圆,追求引领方法问题 1:椭圆的定义是什么?椭圆的标准方程是怎么样的?怎么推导而来?问题 2:将椭圆定义中的“和”改变成“差”会是什么样的曲线呢?(二)着手演示,感觉双曲线形成在椭圆定义中,到两定点的距离之“和”改为到两定点的距离之“差”为定值,则曲线的轨迹又会如何?可否利用手头的工具来演示获得知足这样条件的曲线呢?(师生共同研究研究作图方案,主要解决如何来实现距离之差为定值)总结方法:取拉链,拉开一部分,在拉开的一边上取其M端点,在另一边的中部地点取一点分别固定在纸上的两F1F2个定点 F1和 F2处,(注意 F1F2的距离要比拉链两点的差要大),把笔尖搭在拉链头 M 处,跟着拉链的拉开或闭合,笔尖就画出一条曲线.(学生着手,老师指导,而后在讲台演出示)M (三)分析特点,提炼双曲线定义F1F23.1分析演示结果展现学生绘图结果一:拉链在拉开闭拢的过程中,拉开的两边长一直相等,即 |MF1|=|MF2|+|F1F2|.动点 M 变化时, |MF1|与|MF2|在不停变化,但总有 |MF1|-|MF2|=|F1F2|,而 |F1F2|为定长,所以点 M 到两定点 F1和 F2的距离之差为常数,记为2a,即 |MF1|-|MF2|=2a展现学生绘图结果二:M画出来的曲线张口向左侧F1F2(把学生的图在实物投影下展现,发现存在的差别,议论点 M 到 F1 与 F2 两点的距离的差切实如何表示?)展现学生绘图结果三:拉链头拉不到 F2 点,图画不出来M(引起学生思虑为何会画不出来?||MF1|-|MF2||.F1F2与 |F1F2|有何关系?)3.2 双曲线定义:(指引学生归纳出双曲线的定义)平面内与两个定点 F 1、F 2 的距离的差的绝对值等于常数 (小于 <|F 1F 2 |)的点轨迹叫做双曲线, 这两个定点叫做双曲线的焦点, 两焦点的距离叫做双曲线的焦距.数学简记: || MF 1 | | MF 2 ||2a ( 0 2a 2c | F 1 F 2 | )(直观感觉双曲线有“两条” (两支),每一支“有点象”抛物线.以前学过的反比率函数图象是双曲线. 那么双曲线就是反比率函数图象?答, 不是的,反比率函数图象是双曲线,但双曲线所对应的表达式不必定是反比率函数的形式,下边我们就研究双曲线的方程)(四)类比椭圆,推导标准方程4.1 推导回想椭圆的标准方程的推导步骤,来推导双曲线的标准方程.(教师提示步骤,叫一学生登台板演,其他学生自己推导,教师个别指导)整理改正板演学生的结果:设 M ( x, y) , F 1( c,0) , F 2 (c,0) ,由|MF 1| |MF 2 |2 a ,得 ( x c)2y 2(x c) 2 y 22a( x c) 2y 2(x c)2 y 22a( x c)2 y 2 ( x c)2y 24a ( x c)2 y 24a 2cx a 2a ( x c)2 y 2(cx a 2 ) 2 a 2 [( x c)2 y 2](c 2a 2 ) x 2 a 2 y 2a 2 (c 2 a 2 ) ,x 22 令 c 2a 2b 2( b 0 ),得 b 2x 2a 2y 22 b 2 ,即y 1 .a2b 2a(议论:推导的过程是一个等价变形的过程吗?)4.2标准方程①双曲线的标准方程当焦点在 x 轴上,中心在原点时,方程形式:x 2 y21a 2b 2精选教课教课方案设计| Excellent teaching plan 当焦点在 y 轴上,中心在原点时,方程形式:y2x2a 2b 21②参数 a,b,c 的关系c2 a 2b20 )|MF | |MF| 2a| F F | 2c( a, b, c12(实轴长) 1 2(焦距)③与椭圆的对照(从定义论述,方程构造特点,a,b,c 之间的关系,焦点坐标的判断着手分析同样点和不一样点,并用课件表格的形式表现)(五)应用解题,稳固知识重点例 1 例 1.已知双曲线的两个焦点分别为( - 5,0),(5,0),双曲线上一点 P F1F2到 F1 , F2距离差的绝对值等于6,求双曲线的标准方程 .(学生自己解答,稳固标准方程及此中相应的数目关系,做出相应的变式训练)变式 1:已知双曲线的两个焦点分别为(0,-5),(0,5),双曲线上一点 P 到F1F2F1 , F2距离差的绝对值等于6,求双曲线的标准方程 .变式 2:已知双曲线的两个焦点分别为( - 5,0),(5,0),双曲线上一点 P 到F1F2F1 , F2距离差等于6,求双曲线的标准方程.变式 3:已知平面内两点分别为( - 5,0),(5,0),一动点 P到F1, F2距离差的F1F2绝对值等于 10,求轨迹方程方程 .( - 5,0),(5,0),精选教课教课方案设计| Excellent teaching plan绝对值等于 12,求轨迹是什么? .(六)对照总结,整合新学知识1.应用双曲线和椭圆的对照图表,总结整理双曲线定义的重点,标准方程的形式2.课本练习P60 1,2,33.思虑(1)当0时,方程x2sin y 2 cos1表示什么曲线?( 2)反比率函数图象是特别的双曲线,为何其方程和标准方程不同?八板书设计 :双曲线的定义及标准方程1、双曲线的定义 3.例 1 解题过程2、标准方程的推导y4. 例 2 解题过程焦点在 x 轴上Mx2FO 1F 5. 例 3 解题过程标准方程焦点在 y 轴上x2F标准方程O y1FM问题商讨:本节课设计源于自己讲堂教课的一个真切事例.在教课思想上,以“问题引导,研究沟通”为主,兼容解说、演示、合作等多种方式,力争灵巧运用.在教学目标上,以突出分析思想为主,容知识与技术、过程与方法、感情与体验为一体,力争多元价值取向.在多媒体应用上,力争灵巧适用,不跟着课件走,使得多媒体真切做到为讲堂有效服务.整堂课下来充分流利,讲堂氛围姣好.但也存在几个值得反省和议论的问题:1.让学生着手演示比较费时间,所以在着手以前教师应当把重点正确的分析到位.2.在标准方程的推导过程中,议论推导的过程能否为一个等价变形的过程,比较复杂,学生理解起来不是很清楚,这里存在如何能恰到利处的办理这一问题,精选教课教课方案设计| Excellent teaching plan 有待进一步的思虑和商讨.。
2021 2021年高中数学新课标人教B版《选修一》《选修1 1》《第二章圆锥曲线与方程》精选专题----264b55f0-6ea1-11ec-bd8e-7cb59b590d7d2021-2021年高中数学新课标人教b版《选修一》《选修1-1》《第二章圆锥曲线与方程》精选专题2022-2022年高中数学新课程标准人民教育b版选修课1选修课1-1第二章圆锥曲线与方程选题论文[6]含答案考点及解析类别:_________________;分数:___________题号一二得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上评分员3总分1,多项选择题1.已知命题a.c.【答案】d【解析】,然后()b.d.试题分析:根据全名命题的否定是一个特殊命题和无命题的特点,我们可以知道选择的D题:全名命题的否定。
2“点在曲线“向上”是“点”的坐标满足方程“关于()a.充分非必要条件c.充要条件【答案】b【解析】b、必要条件和不足条件d.既非充分也非必要条件问题分析:“m点的坐标满足方程”?“曲线上的m点”;“曲线上的点m”不一定满足“点m的坐标满足方程”。
因此,“曲线上的点m”是“点m的坐标满足方程”的必要条件和不足条件。
所以选择B.测试点:充分必要条件的判断方法。
3下列命题中正确的一个是()A.如果B“为真命题,则,“是的”,那么,使得“真理命题”的充要条件或”的逆否命题为“若,则,使得或,则”c.命题“若d、提议【答案】d【解析】试题分析:根据故a不正确,因为真命题要求,即有一个真即可,而同号,所以“,为真命题,要求“是的”两者都真,然后”的充分不必如果B不正确,则命题“If,then或”的反命题为“If and””,故c不正确,根据特称命题的否定形式,可知d是正确的,故选d.考点:复合命题的真值表,充要条件,逆否命题,特称命题的否定.4.命题“存在a.充要条件【答案】a【解析】试题分析:根据问题的含义,选择一个考点:充要条件的判断.5.下列命题中是假命题的是()a.b.函数c、关于方程D.函数和函数[answer]D[分析]试题分析:对应a,当什么时候是幂函数,且在向上递减;对于B函数,解决方案是或;,使是幂函数,在上递减或恒成立,即,解得“错误命题”是一个命题b.必要不充分条件“关于()c.充分不必要条件d、既不充分也不必要要条件,作为一个充要条件,至少有一个负根的充要条件是图像是关于一条直线对称的的值域为,则对于C,什么时候时,方程化为如果有根,那么;对于D,函数存在一个负根;当,即,若方程和功能,若关于的二次方程如果没有负根,那么至少有一个负根的充答案是对称的的图象关于直线所以,不存在关于要条件是为d.测试点:命题的真假6.给定两个命题p,q.若vp是q的必要而不充分条件,则p是vq的()a.充分而不必要条件c.充要条件b、必要条件和不充分条件D.既不充分也不必要条件【答案】a【解析】试题分析:由是的,必要条件,但不是充分条件是的充分而不必要条件,故选a.试验场地:必要和充分条件。
2.3.2 抛物线的简单几何性质1【学情分析】:由于学生具备了曲线与方程的部分知识,掌握了研究解析几何的基本方法,因而利用已有椭圆与双曲线的知识,引导学生独立发现、归纳知识,指导学生在实践和创新意识上下工夫,训练基本技能。
【教学目标】:(1)知识与技能:熟练掌握抛物线的范围,对称性,顶点,准线,离心率等几何性质。
(2)过程与方法:重视基础知识的教学、基本技能的训练和能力的培养;启发学生能够发现问题和提出问题,善于独立思考。
(3)情感、态度与价值观:培养严谨务实,实事求是的个性品质和数学交流合作能力,以及勇于探索,勇于创新的求知意识,激发学生学习数学的兴趣与热情。
【教学重点】:熟练掌握抛物线的范围,对称性,顶点,准线,离心率等几何性质。
【教学难点】:熟练掌握抛物线的范围,对称性,顶点,准线,离心率等几何性质及其应用。
【课前准备】:Powerpoint或投影片【教学过程设计】:三、例题讲解例1 已知抛物线的顶点在原点,对称轴为坐标轴,且过点A(4,23),求这条抛物线的准线方程。
解:⑴若抛物线开口向右,设抛物线的标准方程为22(0)y px p=>∵()22324p=∴32p=∴抛物线的标准方程为34x=-⑵若抛物线开口向上,设抛物线的标准方程为22(0)x py p=>∵24223p=∴433p=∴抛物线的标准方程为233y=-例2 汽车前灯反射镜与轴截面的交线是抛物线的一部分,灯口所在的圆面与反射镜的轴垂直,灯泡位于抛物线焦点处。
已知灯口的直径是24cm,灯深10cm,那么灯泡与反射镜的顶点距离是多少?让学生运用抛物线的几何性质,写出符合条件的抛物线的准线方程。
三、例题讲解分析:依标准方程特点和几何性质建系,由待定系数法求解,强调方程的完备性。
解:如图,在探照灯的轴截面所在平面内建立直角坐标系,使反光镜的顶点(即抛物线的顶点)与原点重合,轴垂直于灯口直径.抛物线的标准方程为22(0)y px p=>,由已知条件可得点的坐标是(40,30)且在抛物线上,代入方程得:230240p=,254p=所以所求抛物线的标准方程为2452y=,焦点坐标是.例3 过抛物线pxy22=的焦点F任作一条直线m,交这抛物线于A、B两点,求证:以AB为直径的圆和这抛物线的准线相切.分析:运用抛物线的定义和平面几何知识来证比较简捷.证明:如图.设AB的中点为E,过A、E、B分别向准线l引垂线AD,EH,BC,垂足为D、H、C,则|AF|=|AD|,|BF|=|BC|∴|AB|=|AF|+|BF|=|AD|运用抛物线的几何性质解决现实生活中的问题,提高学生学习数学的兴趣和综合解题能力。
章末评估验收(三)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若函数f(x)=α2-cos x,则f′(α)等于()A.sin αB.cos αC.2α+sin αD.2α-sin α解析:f′(x)=(α2-cos x)′=sin x,当x=α时,f′(α)=sin α.答案:A2.曲线y=f(x)=x3-3x2+1在点(2,-3)处的切线方程为()A.y=-3x+3 B.y=-3x+1C.y=-3 D.x=2解析:由于y′=f′(x)=3x2-6x,则曲线y=x3-3x2+1在点(2,-3)处的切线的斜率k=f′(2)=3×22-6×2=0,所以切线方程为y-(-3)=0×(x-2),即y=-3.答案:C3.函数f(x)=x3-3x+1的单调递减区间是()A.(1,2) B.(-1,1)C.(-∞,-1) D.(-∞,-1),(1,+∞)解析:f′(x)=3x2-3,由f′(x)<0,可得-1<x<1.答案:B4.函数f(x)=x3+ax2+3x-9,在x=-3时取得极值,则a等于()A.2 B.3 C.4 D.5解析:f′(x)=3x2+2ax+3.由f(x)在x=-3时取得极值,即f′(-3)=0,即27-6a+3=0,所以a=5.答案:D5.观看(x2)′=2x,(x4)′=4x3,(cos x)′=-sin x,归纳可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)=() A.f(x) B.-f(x) C.g(x) D.-g(x)解析:观看可知,偶函数f(x)的导函数g(x)是奇函数,所以g(-x)=-g(x).答案:D6.若函数f(x)=13x3-f′(1)·x2-x,则f′(1)的值为()A.0 B.2 C.1 D.-1解析:f′(x)=x2-2f′(1)·x-1,则f′(1)=12-2f′(1)·1-1,解得f′(1)=0.答案:A7.某商场从生产厂家以每件20元的价格购进一批商品.设该商品零售价定为P元,销售量为Q件,且Q与P有如下关系:Q=8 300-170P-P2,则最大毛利润为(毛利润=销售收入-进货支出)()A.30元B.60元C.28 000元D.23 000元解析:设毛利润为L(P)元,由题意知L(P)=PQ-20Q=Q(P-20)=(8 300-170P-P2)(P-20)=-P3-150 P2+11 700 P-166 000,所以L′(P)=-3P2-300P +11 700.令L′(P)=0,解得P=30或P=-130(舍去).当20≤P<30时,L′(P)>0,L (P )为增函数;当P >30时,L ′(P )>0,L (P )为减函数,故P =30为L (P )的极大值点,也是最大值点,此时L (30)=23 000,即最大毛利润为23 000元.答案:D8.设函数f (x )=13x -ln x (x >0),则y =f (x )( )A .在区间⎝ ⎛⎭⎪⎫1e ,1(1,e)内均有零点B .在区间⎝ ⎛⎭⎪⎫1e ,1(1,e)内均无零点C .在区间⎝ ⎛⎭⎪⎫1e ,1内无零点,在区间(1,e)内有零点D .在区间⎝ ⎛⎭⎪⎫1e ,1内有零点,在区间(1,e)内无零点 解析:由题意得f ′(x )=x -33x ,令f ′(x )>0得x >3;令f ′(x )<0得0<x <3;f ′(x )=0得x =3,故知函数f (x )在区间(0,3)上为减函数,在区间(3,+∞)为增函数,在点x =3处有微小值1-ln 3<0;又f (1)=13>0,f (e)=e3-1<0,f ⎝ ⎛⎭⎪⎫1e =13e+1>0.答案:C9.对于R 上可导的任意函数f (x ),若满足(x -1)f ′(x )≥0,则必有( ) A .f (0)+f (2)<2f (1) B .f (0)+f (2)≤2f (1) C .f (0)+f (2)≥2f (1)D .f (0)+f (2)>2f (1)解析:当x <1时,则f ′(x )≤0;当x >1时,f ′(x )≥0,故f ′(1)=0.由f (x )的任意性知f (x )在[0,2]上有唯一的微小值f (1),即f (0)≥f (1),f (2)≥f (1),所以f (0)+f (2)≥2f (1).答案:C10.设函数f (x )在R 上可导,其导函数为f ′(x ),且函数f (x )在x =-2处取得微小值,则函数y =xf ′(x )的图象可能是( )解析:由于f (x )在x =-2处取得微小值,所以在x =-2四周的左侧f ′(x )<0,当x <-2时, xf ′(x )>0;在x =-2四周的右侧f ′(x )>0, 当-2<x <0时,xf ′(x )<0. 答案:C11.对任意的x ∈R ,函数f (x )=x 3+ax 2+7ax 不存在极值点的充要条件是( )A .0≤a ≤21B .a =0或a =7C .a <0或a >21D .a =0或a =21解析:f ′(x )=3x 2+2ax +7a ,令f ′(x )=0,即3x 2+2ax +7a =0,对于此方程,Δ=4a 2-84a ,当Δ≤0,即0≤a ≤21时,f ′(x )≥0恒成立,函数不存在极值点.答案:A12.若a >0,b >0,且函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,则ab 的最大值等于( )A .2B .3C .6D .9解析:函数的导数为f ′(x )=12x 2-2ax -2b ,由函数f (x )在x =1处有极值,可知函数f ′(x )在x =1处的导数值为0,即12-2a -2b =0,所以a +b =6,由题意知a ,b 都是正实数,所以ab ≤⎝ ⎛⎭⎪⎪⎫a +b 22=⎝ ⎛⎭⎪⎫622=9,当且仅当a =b =3时取到等号. 答案:D二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.若曲线y =x a +1(a ∈R)在点(1,2)处的切线经过坐标原点,则a =________. 解析:由题意,知y ′=ax a -1,故在点(1,2)处的切线的斜率a ,又由于切线过坐标原点,所以a =2-01-0=2.答案:214.函数f (x )=ax 4-4ax 2+b (a >0,1≤x ≤2)的最大值为3,最小值为-5,则a =________,b =________.解析:y ′=4ax 3-8ax =4ax (x 2-2),令y ′=0,解得x 1=0(舍),x 2=2,x 3=-2(舍).又f (1)=a -4a +b =b -3a ,f (2)=16a -16a +b =b , f (2)=b -4a .所以 ⎩⎨⎧b -4a =-5,b =3.所以 a =2,b =3.答案:2 315.当x ∈[-1,2]时,x 3-x 2-x <m 恒成立,则实数m 的取值范围是________. 解析:记f (x )=x 3-x 2-x ,所以f ′(x )=3x 2-2x -1. 令f ′(x )=0,得x =-13或x =1.又由于f ⎝ ⎛⎭⎪⎫-13=527,f (2)=2,f (-1)=-1,f (1)=-1,所以当x ∈[-1,2]时,(f (x ))max =2,所以m >2. 答案:(2,+∞)16.在平面直角坐标系xOy 中,已知点P 是函数f (x )=e x (x >0)的图象上的动点,该图象在点P 处的切线l 交y 轴于点M ,过点P 作l 的垂线交y 轴于点N ,设线段MN 的中点的纵坐标为t ,则t 的最大值是________.解析:设P (m ,e m )(m 是变量,且m >0),则在点P 处切线l 的方程为y -e m=e m (x -m ),令x =0,得y =(1-m )e m ,故得M (0,(1-m )e m ). 过点P 作l 的垂线,则该垂线的直线方程为y -e m = -e -m (x -m ),令x =0,得y =e m +m e -m ,故得N (0,e m +m e -m ). 所以t =12[(1-m )e m +e m +m e -m ]=e m +12m (e -m -e m ), t ′=12(e m +e -m)(1-m ).令t ′=0,得到m =1.当0<m <1时,t ′>0; 当m >1时,t ′<0.所以t 在(0,1)上单调递增,在(1,+∞)上单调递减.所以t max =12⎝ ⎛⎭⎪⎫e +1e .答案:12⎝ ⎛⎭⎪⎫e +1e三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)偶函数f (x )=ax 4+bx 3+cx 2+dx +e 的图象过点P (0,1),且在x =1处的切线方程为y =x -2,求y =f (x )的解析式.解:由于f (x )的图象过点P (0,1),所以 e =1. 又f (x )为偶函数,所以 f (-x )=f (x ).故ax 4+bx 3+cx 2+dx +e =ax 4-bx 3+cx 2-dx +e ,所以 b =0,d =0,所以 f (x )=ax 4+cx 2+1. 由于函数f (x )在x =1处的切线方程为y =x -2, 所以 切点为(1,-1). 所以 a +c +1=-1.由于f ′(x )=4ax 3+2cx ,所以 f ′(x )|x =1=4a +2c , 所以 4a +2c =1,所以 a =52,c =-92.所以 函数y =f (x )的解析式为f (x )=52x 4-92x 2+1.18.(本小题满分12分)设函数y =f (x )=4x 3+ax 2+bx +5在x =32与x =-1处有极值.(1)写出函数的解析式;(2)指出函数的单调区间; (3)求f (x )在[-1,2]上的最值.解:(1)y ′=12x 2+2ax +b ,由题设知当x =32与x =-1时函数有极值,则x =32与x =-1满足y ′=0,即⎩⎪⎨⎪⎧12×⎝ ⎛⎭⎪⎫322+2a ·32+b =0,12×(-1)2+2a ·(-1)+b =0,解得⎩⎨⎧a =-3,b =-18, 所以 y =4x 3-3x 2-18x +5.(2)y ′=12x 2-6x -18=6(x +1)(2x -3),列表如下: ↗↘↗由上表可知(-∞,-1)和(32,+∞)为函数的单调递增区间,⎝ ⎛⎭⎪⎫-1,32为函数的单调递减区间.(3)由于f (-1)=16,f ⎝ ⎛⎭⎪⎫32=-614,f (2)=-11,所以f (x )在[-1,2]上最小值是-614,最大值为16.19.(本小题满分12分)有甲、乙两种商品,经营销售这两种商品所能获得的利润依次是P 万元和Q 万元,它们与投入资金x 万元的关系有阅历公式:P =x5,Q =35x .现有3万元资金投入经营甲、乙两种商品,为获得最大利润,对甲、乙两种商品的资金投入分别应为多少?能获得的最大利润是多少?解:设对乙种商品投资x 万元,则甲种商品投资为(3-x )万元,总利润为y 万元.依据题意,得y =3-x 5+35x (0≤x ≤3),y ′=-15+310·1x .令y ′=0,解得x =94.由实际意义知x =94即为函数的极大值点,也是最大值点,此时3-x =34.因此为获得最大利润,对甲、乙两种商品的资金投入应分别为0.75万元和2.25万元,获得的最大利润为1.05万元.20.(本小题满分12分)若函数f (x )=4x 3-ax +3在[-12,12]上是单调函数,则实数a 的取值范围为多少?解:f ′(x )=12x 2-a ,若f (x )在⎣⎢⎡⎦⎥⎤-12,12上为单调增函数,则f ′(x )≥0在⎣⎢⎡⎦⎥⎤-12,12上恒成立,即12x 2-a ≥0在⎣⎢⎡⎦⎥⎤-12,12上恒成立.所以 a ≤12x 2在[-12,12]上恒成立,所以 a ≤(12x 2)min =0.当a =0时,f ′(x )=12x 2≥0恒成立[只有x =0时f ′(x )=0].所以 a =0符合题意.若f (x )在⎣⎢⎡⎦⎥⎤-12,12上为单调减函数,则f ′(x )≤0,在⎣⎢⎡⎦⎥⎤-12,12上恒成立,即12x 2-a ≤0在⎣⎢⎡⎦⎥⎤-12,12上恒成立,所以 a ≥12x 2在⎣⎢⎡⎦⎥⎤-12,12上恒成立,所以 a ≥(12x 2)max =3.当a =3时,f ′(x )=12x 2-3=3(4x 2-1)≤0恒成立(且只有x =±12时f ′(x )=0.因此,a 的取值范围为a ≤0或a ≥3.21.(本小题满分12分)已知函数f (x )=x -a ln x (a ∈R). (1)当a =2时,求曲线y =f (x )在点A (1,f (1))处的切线方程; (2)求函数f (x )的极值.解:函数f (x )的定义域为(0,+∞),f ′(x )=1-ax .(1)当a =2时,f (x )=x -2ln x ,f ′(x )=1-2x (x >0).所以f (1)=1,f ′(1)=-1.所以曲线y =f (x )在点A (1,f (1))处的切线方程为 y -1=-(x -1),即x +y -2=0. (2)由f ′(x )=1-a x =x -ax(x >0)知,①当a ≤0时,f ′(x )>0,函数f (x )为(0,+∞)上的增函数,函数f (x )无极值. ②当a >0时,由f ′(x )=0,得x =a . 当x ∈(0,a )时,f ′(x )<0; 当x ∈(a ,+∞)时,f ′(x )>0,从而函数f (x )在x =a 处取得微小值,且微小值为f (a )=a -a ln a ,无极大值. 综上可得,当a ≤0时,函数f (x )无极值;当a >0时,函数f (x )在x =a 处取得微小值a -a ln a ,无极大值. 22.(本小题满分12分)已知函数f (x )=2x 3-3x . (1)求f (x )在区间[-2,1]上的最大值;(2)若过点P (1,t )存在3条直线与曲线y =f (x )相切,求t 的取值范围; (3)过点A (-1,2),B (2,10),C (0,2)分别存在几条直线与曲线y =f (x )相切(只需写出结论)?解:(1)由f (x )=2x 3-3x ,得f ′(x )=6x 2-3.令f ′(x )=0,得x =-22或x =22.由于f (-2)=-10,f ⎝ ⎛⎭⎪⎫-22=2,f ⎝ ⎛⎭⎪⎫22=-2,f (1)=1,所以f (x )在区间[-2,1]上的最大值为f ⎝⎛⎭⎪⎫-22= 2.(2)设过点P (1,t )的直线与曲线y =f (x )相切于点(x 0,y 0),则y 0=2x 30-3x 0,且切线斜率为k =6x 20-3, 所以切线方程为y -y 0=(6x 20-3)(x -x 0),因此t -y 0=(6x 20-3)(1-x 0), 整理得4x 30-6x 20+t +3=0.设g (x )=4x 3-6x 2+t +3,则“过点P (1,t )存在3条直线与曲线y =f (x )相切”等价于“g (x )有3个不同的零点”.g ′(x )=12x 2-12x =12x (x -1).当x 变化时,g ′(x )与g (x )的变化状况如下:所以g (0)=t +3是g (x )的极大值,g (1)=t +1是g (x )的微小值.当g (0)=t +3≤0,即t ≤-3时,g (x )在区间(-∞,1]和(1,+∞)上分别至多有1个零点,所以g (x )至多有2个零点.当g (1)=t +1≥0,即t ≥-1时,g (x )在区间(-∞,0)和[0,+∞)上分别至多有1个零点,所以g (x )至多有2个零点.当g (0)>0且g (1)<0,即-3<t <-1时,由于g (-1)=t -7<0,g (2)=t +11>0,所以g (x )分别在区间[-1,0],[0,1)和[1,2)上恰有1个零点.由于g (x )在区间(-∞,0)和(1,+∞)上单调,所以g (x )分别在区间(-∞,0)和[1,+∞]上恰有1个零点.综上可知,当过点P(1,t)存在3条直线与曲线y=f(x)相切时,t的取值范围是(-3,-1).(3)过点A(-1,2)存在3条直线与曲线y=f(x)相切,过点B(2,10)存在2条直线与曲线y=f(x)相切,过点C(0,2)存在1条直线与曲线y=f(x)相切.。
直线与双曲线位置关系学案巩义二中高二数学(文科)备课组一、学习目标:类比直线与椭圆的位置关系的研究,尝试探究直线与双曲线的位置关系,进一步体会用坐标法研究几何问题的思路二、学习重点:直线与双曲线的位置关系三、知识链接:(1) 直线与椭圆的位置关系有哪些?是如何研究的? (2)当直线与椭圆相交时,如何求弦长? (3)涉及弦的中点问题,如何解决? 四、问题探究1、过双曲线16322=-y x 的右焦点2F ,倾斜角为030的直线交双曲线于A 、B 两点,求||AB 。
思考:(1) 将条件“倾斜角为030”改为“倾斜角为045”, ||AB 如何变化?(2)将条件“倾斜角为030”改为“斜率为2”, ||AB ?(3) 将条件“倾斜角为030”改为“倾斜角为060”, ||AB 如何变化? (4) 将条件“倾斜角为030”改为“倾斜角为090”, ||AB 如何变化?2、若直线2:+=kx y l 与双曲线32x —2y =1恒有两个不同的交点A 和B ,且OB OA ⋅>2(其中O 为原点),求K 的取值范围。
练习:1、过双曲线02222=--y x 的右焦点作直线l ,并交双曲线于A 、B 两点,若||AB =4,则这样的直线存在( ) A .0条 B.1条 C.2条 D. 3条 2、已知双曲线C :122=-y x 及直线l :1-=kx y (1)若l 与C 有两个不同的交点,求实数k 的取值范围:(2)若l 与C 交于A 、B 两点,O 是坐标原点,且ΔAOB 的面积为2,求实数k 值。
思考:直线与双曲线的位置关系的讨论,和椭圆完全一样吗?3、已知双曲线1222=-y x ,过点P(1,1)能否做一条直线l ,与双曲线交于A 、B 两点,且点P 是线段AB 的中点?五、巩固练习1、经过点)2,21(且与双曲线1422=-y x 仅有一个公共点的直线的条数是A .4 B.3 C.2 D. 12、已知双曲线的中心在原点,且一个焦点为)0,7(F ,直线y=x-1与其相交于M 、N 两点,MN 中点的横坐标为32-,则此双曲线的方程为 A .14322=-y x B. 13422=-y x C. 12522=-y x D. 15222=-y x 3、以y= 为渐近线,一个焦点是F (0,2)的双曲线方程为( )A .223y x -=1B .223y x -=1C.222x -=–1D222x -=1 4、如果双曲线22142x y -=上一点P 到双曲线右焦点的距离是2,那么点P 到y 轴的距离是( )A3 B3CD5、已知双曲线221124x y -=的右焦点为F ,若过点F 的直线与双曲线的右支有且只有一个交点,则此直线斜率的取值范围是( )A( B( C[ D[6、已知21,F F 是双曲线)0,0(12222>>=-b a by a x 的两焦点,以线段21F F 为边作正三角形21F MF ,若边1MF 的中点N 在双曲线上,则双曲线的离心率是 ( ) A .324+ B. 13- C.213+ D. 13+ 7、双曲线116922=-y x 的右顶点为A ,右焦点为F ,过点F 且平行于双曲线的渐近线的直线与双曲线交于点B ,则ΔABF 的面积为8、已知方程11222=+-+λλy x 表示双曲线,求实数λ的取值范围是 9、设ABC ∆是等腰三角形,0120=∠ABC ,则以A 、B 为焦点且过点C 的双曲线的离心率为10、已知双曲线1322=-y x ,直线l 过双曲线右焦点F 与双曲线交于A 、B 两点,且直线l 的斜率为1,求线段AB 的长度。
2.4.1 抛物线及其标准方程的教学设计2.能够利用给定条件求抛物线的标准方程3.通过“观察”、“思考”、“探究”与“合作交流”等一系列数学活动,培养学生观察、类比、分析、概括的能力以及逻辑思维的能力,使学生学会数学思考与推理,学会反思与感悟,形成良好的数学观。
并进抛物线的定义及标准方程三、教学难点抛物线定义的形成过程及抛物线标准方程的推导(关键是坐标系方案的选择)四、教学过程(一)复习旧知在初中,我们学习过了二次函数,知道二次函数的图象是一条抛物线,例如:(1),(2)的图象(展示两个函数图象):(二)讲授新课1.课题引入在实际生活中,我们也有许多的抛物线模型,(展示几个抛物线模型)到底什么样的曲线才可以称做是抛物线?它具有怎样的几何特征征?它的方程是什么呢?这就是我们今天要研究的内容.(板书:课题§2.4.1 抛物线及其标准方程)2.将一根细绳的一端固定在三角板的直角顶点C处,另一端固定在一定点F处,三角板的一条直角边沿着一条直线向上滑动,用一支铅笔将笔尖放在M处,随着三角板向上移,笔尖向右移动,画出一部分曲线,调换三角板位置,沿同一条直线并垂直向下滑动,画出另一部分曲线,这样画出的曲线就是抛物线。
(学生观察画图过程,并讨论)可以发现,点M随着三角板运动的过程中,始终有|MC|=|MF|,即点M与定点F和定直线L 的距离相等。
(也可以用几何画板度量|MC|,|MF|的值)(定义引入):我们把平面内与一个定点F和一条定直线L(L不经过点F)距离相等的点的轨迹叫做抛物线,点F叫做抛物线的焦点,直线L 叫做抛物线的准线.(板书)3.抛物线的标准方程从抛物线的定义中我们知道,抛物线上的点M 满足到焦点F的距离与到准线L 的距离相等。
那么动点M 的轨迹方程是什么,即抛物线的方程是什么呢?要求抛物线的方程,必须先建立直角坐标系.问题设焦点F到准线L 的距离为P ,你认为应该如何选择坐标系求抛物线的方程?按照你建立直角坐标系的方案,求抛物线的方程.推导过程:取过焦点F且垂直于准线l的直线为x轴,x轴与l交于K,以线段KF的垂直平分线为y轴建立直角坐标系,如右图所示,则有F(p/2 ,0),l的方程为x=p/2 .设动点M(x,y),由抛物线定义化简得y2=2px(p>0)师:我们把方程叫做抛物线的标准方程,它表示的抛物线的焦点坐标是(p/2 ,0),准线方程是x=p/2 。
2021年高中数学《曲线与方程》学案新人教A版选修2-1
【学习目标】
1、了解曲线和方程的对应关系;
2、能用坐标法解决一些简单的几何问题和实际问题;
3、进一步感受数形结合的基本思想;
【学习重点】用坐标法求曲线的方程;
【学习难点】曲线和方程的对应关系的理解.
一、自主学习(阅读课本P34-P36页回答下列问题):
1、一般地,在直角坐标系中,如果某曲线C上的点与一个二元方程的实数解建立了如下的关系:
(1)_______________________________________________;
(2)_______________________________________________.
那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线.
2、求曲线方程一般有五个步骤:
(1)_______________________________________________;
(2)_______________________________________________;
(3)_______________________________________________;
(4)_______________________________________________;
(5)_______________________________________________.
实用文档
其中步骤____和步骤____可以省略,如有特殊情况,可以适当说明.
二、例题探究:
例1.如果命题“坐标满足方程的点都在曲线C上”不正确,那么以下命题正确的是()
A、曲线C上的点的坐标都满足方程
B、坐标满足方程的点有些在曲线C上,有些不在曲线C上;
C、坐标满足方程的点都不在曲线C上;
D、一定有不在曲线C上的点,其坐标满足方程.
例2.已知,,求直角顶点C的轨迹方程。
例3. 设圆的圆心为C,过原点作圆的弦OA,求OA中点B的轨迹方程。
三.知识反馈:
1. 方程表示的图形是:________________________.
实用文档
2.画出方程表示的曲线.
3.已知,求平面内到两个定点A、B的距离之比等于2的动点的轨迹方程。
4.设过点的直线分别与轴的正半轴和轴的正半轴交于A、B两点,点Q与点P关于轴对称,O为坐标原点,若,且,求P点的轨迹方程.
5.习题2.1A组3、4 和B组1、2
【自我评价】你认为本小节你的学习目标完成的(A.很好 B.一般 C.不好)
实用文档。